Skip to main content
Skip to main menu


GTC 2019: Speaker: Tejas Kalelkar

Date and time:
Boyd Room 328


Title: Taut foliations of compact 3-manifolds with constrained boundary slopes

Abstract: A codimension one foliation of a 3-manifold is called taut if there exists a simple closed curve in the manifold that intersects each leaf of the foliation transversally. A surface bundle over a circle is a simple example of a 3-manifold with a taut foliation. Every compact 3-manifold can be obtained from such a surface bundle by Dehn filling the boundary components, i.e., by sticking a solid tori to the torus boundaries. We have proved that the fiber structure of a surface bundle (with possibly disconnected boundary) can be perturbed to taut foliations that realise all rational boundary slopes in a neighbourhood of the the boundary slopes the fiber. This is joint work with Rachel Roberts.

Support us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.