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CHAPTER 1

Curves

1. Examples, Arclength Parametrization

We say a vector function fW .a; b/! R
3 is Ck (k D 0; 1; 2; : : :) if f and its first k derivatives, f0, f00, . . . ,

f.k/, exist and are all continuous. We say f is smooth if f is Ck for every positive integer k. A parametrized

curve is a C3 (or smooth) map ˛W I ! R
3 for some interval I D .a; b/ or Œa; b� in R (possibly infinite). We

say ˛ is regular if ˛0.t/ ¤ 0 for all t 2 I .

We can imagine a particle moving along the path ˛, with its position at time t given by ˛.t/. As we

learned in vector calculus,

˛0.t/ D d˛

dt
D lim

h!0

˛.t C h/ � ˛.t/

h

is the velocity of the particle at time t . The velocity vector ˛0.t/ is tangent to the curve at ˛.t/ and its length,

k˛0.t/k, is the speed of the particle.

Example 1. We begin with some standard examples.

(a) Familiar from linear algebra and vector calculus is a parametrized line: Given points P and Q in

R
3, we let v D ��!PQ D Q � P and set ˛.t/ D P C tv, t 2 R. Note that ˛.0/ D P , ˛.1/ D Q,

and for 0 � t � 1, ˛.t/ is on the line segment PQ. We ask the reader to check in Exercise 8 that of

all paths from P to Q, the “straight line path” ˛ gives the shortest. This is typical of problems we

shall consider in the future.

(b) Essentially by the very definition of the trigonometric functions cos and sin, we obtain a very natural

parametrization of a circle of radius a, as pictured in Figure 1.1(a):

˛.t/ D a
�

cos t; sin t
�

D
�

a cos t; a sin t
�

; 0 � t � 2�:

(a cos t, a sin t)

(a cos t, b sin t)

t

a a

b

(a) (b)

FIGURE 1.1

1
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(c) Now, if a; b > 0 and we apply the linear map

T WR2 ! R
2; T .x; y/ D .ax; by/;

we see that the unit circle x2Cy2 D 1maps to the ellipse x2=a2Cy2=b2 D 1. Since T .cos t; sin t/ D
.a cos t; b sin t/, the latter gives a natural parametrization of the ellipse, as shown in Figure 1.1(b).

(d) Consider the two cubic curves in R
2 illustrated in Figure 1.2. On the left is the cuspidal cubic

y=tx

y2=x3

y2=x3+x2

(a) (b)

FIGURE 1.2

y2 D x3, and on the right is the nodal cubic y2 D x3Cx2. These can be parametrized, respectively,

by the functions

˛.t/ D .t2; t3/ and ˛.t/ D .t2 � 1; t.t2 � 1//:

(In the latter case, as the figure suggests, we see that the line y D tx intersects the curve when

.tx/2 D x2.x C 1/, so x D 0 or x D t2 � 1.)

z=x3

y=x2

z2=y3

FIGURE 1.3
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(e) Now consider the twisted cubic in R
3, illustrated in Figure 1.3, given by

˛.t/ D .t; t2; t3/; t 2 R:

Its projections in the xy-, xz-, and yz-coordinate planes are, respectively, y D x2, z D x3, and

z2 D y3 (the cuspidal cubic).

(f) Our next example is a classic called the cycloid: It is the trajectory of a dot on a rolling wheel

(circle). Consider the illustration in Figure 1.4. Assuming the wheel rolls without slipping, the

t

O

P
a

FIGURE 1.4

distance it travels along the ground is equal to the length of the circular arc subtended by the angle

through which it has turned. That is, if the radius of the circle is a and it has turned through angle

t , then the point of contact with the x-axis, Q, is at units to the right. The vector from the origin to

t a cos t

a sin t

a

P

C

O

P

Q

C

FIGURE 1.5

the point P can be expressed as the sum of the three vectors
��!
OQ,

��!
QC , and

��!
CP (see Figure 1.5):

��!
OP D ��!OQC��!QC C��!CP
D .at; 0/C .0; a/C .�a sin t;�a cos t/;

and hence the function

˛.t/ D .at � a sin t; a � a cos t/ D a.t � sin t; 1 � cos t/; t 2 R

gives a parametrization of the cycloid.

(g) A (circular) helix is the screw-like path of a bug as it walks uphill on a right circular cylinder at a

constant slope or pitch. If the cylinder has radius a and the slope is b=a, we can imagine drawing a

line of that slope on a piece of paper 2�a units long, and then rolling the paper up into a cylinder.

The line gives one revolution of the helix, as we can see in Figure 1.6. If we take the axis of the

cylinder to be vertical, the projection of the helix in the horizontal plane is a circle of radius a, and

so we obtain the parametrization ˛.t/ D .a cos t; a sin t; bt/.
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FIGURE 1.6

Brief review of hyperbolic trigonometric functions. Just as the circle x2Cy2 D 1 is parametrized

by .cos �; sin �/, the portion of the hyperbola x2�y2 D 1 lying to the right of the y-axis, as shown

in Figure 1.7, is parametrized by .cosh t; sinh t/, where

cosh t D et C e�t

2
and sinh t D et � e�t

2
:

By analogy with circular trigonometry, we set tanh t D sinh t

cosh t
and sech t D 1

cosh t
. The following

(cosh t, sinh t)

FIGURE 1.7

formulas are easy to check:

cosh2 t � sinh2 t D 1; tanh2 t C sech2 t D 1
sinh0.t/ D cosh t ; cosh0.t/ D sinh t ; tanh0.t/ D sech2 t ; sech0.t/ D � tanh t sech t :
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(h) When a uniform and flexible chain hangs from two pegs, its weight is uniformly distributed along

its length. The shape it takes is called a catenary.1 As we ask the reader to check in Exercise 9,

the catenary is the graph of f .x/ D C cosh.x=C/, for any constant C > 0. This curve will appear

FIGURE 1.8

numerous times in this course. O

Example 2. One of the more interesting curves that arise “in nature” is the tractrix.2 The traditional

story is this: A dog is at the end of a 1-unit leash and buries a bone at .0; 1/ as his owner begins to walk

down the x-axis, starting at the origin. The dog tries to get back to the bone, so he always pulls the leash

taut as he is dragged along the tractrix by his owner. His pulling the leash taut means that the leash will be

tangent to the curve.3 When the master is at .t; 0/, let the dog’s position be .x.t/; y.t//, and let the leash

FIGURE 1.9

make angle �.t/ with the positive x-axis. Then we have x.t/ D t C cos �.t/, y.t/ D sin �.t/, so

tan �.t/ D dy

dx
D y0.t/

x0.t/
D cos �.t/� 0.t/

1 � sin �.t/� 0.t/
:

Therefore, � 0.t/ D sin �.t/. Separating variables and integrating, we have
R

d�= sin � D
R

dt , and so

t D � ln.csc � C cot �/ C c for some constant c. Since � D �=2 when t D 0, we see that c D 0. Now,

since csc �Ccot � D 1C cos �

sin �
D 2 cos2.�=2/

2 sin.�=2/ cos.�=2/
D cot.�=2/, we can rewrite this as t D ln tan.�=2/.

1From the Latin catēna, chain.
2From the Latin trahere, tractus, to pull.
3It’s been pointed out to me many times that a live dog will always point straight toward the bone, and this gives a far

different—and less interesting—curve; thus, some people have suggested dragging a brick instead. Some of my students years ago

suggested dragging a dead dog. With apologies for their crass canine cruelty, rewrite this as you wish.
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Thus, we can parametrize the tractrix by

˛.�/ D
�

cos � C ln tan.�=2/; sin �
�

; �=2 � � < �:

Alternatively, since tan.�=2/ D et , we have

sin � D 2 sin.�=2/ cos.�=2/ D 2et

1C e2t
D 2

et C e�t
D sech t

cos � D cos2.�=2/ � sin2.�=2/ D 1 � e2t

1C e2t
D e�t � et

et C e�t
D � tanh t ;

and so we can parametrize the tractrix instead by

ˇ.t/ D
�

t � tanh t; sech t/; t � 0: O

The fundamental concept underlying the geometry of curves is the arclength of a parametrized curve.

Definition. If ˛W Œa; b� ! R
3 is a parametrized curve, then for any a � t � b, we define its arclength

from a to t to be s.t/ D
Z t

a

k˛0.u/kdu. That is, the distance a particle travels—the arclength of its

trajectory—is the integral of its speed.

The discussion that follows here is totally optional. An alternative approach is to start with the following

Definition. Let ˛W Œa; b�! R
3 be a (continuous) parametrized curve. Given a partition P D fa D t0 <

t1 < � � � < tk D bg of the interval Œa; b�, let

`.˛;P/ D
k
X

iD1

k˛.ti / � ˛.ti�1/k:

That is, `.˛;P/ is the length of the inscribed polygon with vertices at ˛.ti /, i D 0; : : : ; k, as indicated in

a b

FIGURE 1.10

Figure 1.10. We define the arclength of ˛ to be

length.˛/ D supf`.˛;P/ W P a partition of Œa; b�g;

provided the set of polygonal lengths is bounded above.
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Now, using this definition, we can prove that the distance a particle travels is the integral of its speed.

We will need to use the result of Exercise A.2.4.

Proposition 1.1. Let ˛W Œa; b�! R
3 be a piecewise-C1 parametrized curve. Then

length.˛/ D
Z b

a

k˛0.t/kdt :

Proof. For any partition P of Œa; b�, we have

`.˛;P/ D
k
X

iD1

k˛.ti / � ˛.ti�1/k D
k
X

iD1






Z ti

ti�1

˛0.t/dt





�

k
X

iD1

Z ti

ti�1

k˛0.t/kdt D
Z b

a

k˛0.t/kdt ;

so length.˛/ �
Z b

a

k˛0.t/kdt . The corresponding inequality holds on any interval.

Now, for a � t � b, define s.t/ to be the arclength of the curve ˛ on the interval Œa; t �. Then for h > 0

we have

k˛.t C h/ � ˛.t/k
h

� s.t C h/ � s.t/
h

� 1

h

Z tCh

t

k˛0.u/kdu;

since s.t C h/ � s.t/ is the arclength of the curve ˛ on the interval Œt; t C h�. (See Exercise 8 for the first

inequality and the first paragraph for the second.) Now

lim
h!0C

k˛.t C h/ � ˛.t/k
h

D k˛0.t/k D lim
h!0C

1

h

Z tCh

t

k˛0.u/kdu:

Therefore, by the squeeze principle,

lim
h!0C

s.t C h/ � s.t/
h

D k˛0.t/k:

A similar argument works for h < 0, and we conclude that s0.t/ D k˛0.t/k. Therefore,

s.t/ D
Z t

a

k˛0.u/kdu; a � t � b;

and, in particular, s.b/ D length.˛/ D
Z b

a

k˛0.t/kdt , as desired. �

If k˛0.t/k D 1 for all t 2 Œa; b�, i.e., ˛ always has speed 1, then s.t/ D t � a. We say the curve ˛ is

parametrized by arclength if s.t/ D t for all t . In this event, we usually use the parameter s 2 Œ0; L� and

write ˛.s/.

Example 3. (a) Let ˛.t/ D
�

1
3
.1C t/3=2; 1

3
.1 � t/3=2; 1p

2
t
�

, t 2 .�1; 1/. Then we have ˛0.t/ D
�

1
2
.1C t/1=2;�1

2
.1� t/1=2; 1p

2

�

, and k˛0.t/k D 1 for all t . Thus, ˛ always has speed 1.

(b) The standard parametrization of the circle of radius a is ˛.t/ D .a cos t; a sin t/, t 2 Œ0; 2��,

so ˛0.t/ D .�a sin t; a cos t/ and k˛0.t/k D a. It is easy to see from the chain rule that if

we reparametrize the curve by ˇ.s/ D .a cos.s=a/; a sin.s=a//, s 2 Œ0; 2�a�, then ˇ0.s/ D
.� sin.s=a/; cos.s=a// and kˇ0.s/k D 1 for all s. Thus, the curve ˇ is parametrized by arc-

length. O
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An important observation from a theoretical standpoint is that any regular parametrized curve can be

reparametrized by arclength. For if ˛ is regular, the arclength function s.t/ D
Z t

a

k˛0.u/kdu is an increas-

ing differentiable function (since s0.t/ D k˛0.t/k > 0 for all t), and therefore has a differentiable inverse

function t D t.s/. Then we can consider the parametrization

ˇ.s/ D ˛.t.s//:

Note that the chain rule tells us that

ˇ0.s/ D ˛0.t.s//t 0.s/ D ˛0.t.s//=s0.t.s// D ˛0.t.s//=k˛0.t.s//k

is everywhere a unit vector; in other words, ˇ moves with speed 1.

EXERCISES 1.1

*1. Parametrize the unit circle (less the point .�1; 0/) by the (signed) length t indicated in Figure 1.11.

t

(−1,0)

(x,y)

FIGURE 1.11

]2. Consider the helix ˛.t/ D .a cos t; a sin t; bt/. Calculate ˛0.t/, k˛0.t/k, and reparametrize ˛ by arc-

length.

3. Let ˛.t/ D
�

1p
3

cos t C 1p
2

sin t; 1p
3

cos t; 1p
3

cos t � 1p
2

sin t
�

. Calculate ˛0.t/, k˛0.t/k, and reparam-

etrize ˛ by arclength.

*4. Parametrize the graph y D f .x/, a � x � b, and show that its arclength is given by the traditional

formula

length D
Z b

a

q

1C
�

f 0.x/
�2
dx:

5. a. Show that the arclength of the catenary ˛.t/ D .t; cosh t/ for 0 � t � b is sinh b.

b. Reparametrize the catenary by arclength. (Hint: Find the inverse of sinh by using the quadratic

formula.)

*6. Consider the curve ˛.t/ D .et ; e�t ;
p
2t/. Calculate ˛0.t/, k˛0.t/k, and reparametrize ˛ by arclength,

starting at t D 0.
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7. Find the arclength of the tractrix, given in Example 2, starting at .0; 1/ and proceeding to an arbitrary

point.

]8. Let P;Q 2 R
3 and let ˛W Œa; b� ! R

3 be any parametrized curve with ˛.a/ D P , ˛.b/ D Q. Let

v D Q � P . Prove that length.˛/ � kvk, so that the line segment from P to Q gives the shortest

possible path. (Hint: Consider

Z b

a

˛0.t/ � vdt and use the Cauchy-Schwarz inequality u � v � kukkvk.
Of course, with the alternative definition on p. 6, it’s even easier.)

9. Consider a uniform cable with density ı hanging in equilibrium. As shown in Figure 1.12, the tension

forces T.x C �x/, �T.x/, and the weight of the piece of cable lying over Œx; x C �x� all balance.

If the bottom of the cable is at x D 0, T0 is the magnitude of the tension there, and the cable is

FIGURE 1.12

the graph y D f .x/, show that f 00.x/ D gı

T0

p

1C f 0.x/2. (Remember that tan � D f 0.x/.) Letting

C D T0=gı, show that f .x/ D C cosh.x=C/Cc for some constant c. (Hint: To integrate

Z
dup
1C u2

,

make the substitution u D sinh v.)

10. As shown in Figure 1.13, Freddy Flintstone wishes to drive his car with square wheels along a strange

road. How should you design the road so that his ride is perfectly smooth, i.e., so that the center of his

wheel travels in a horizontal line? (Hints: Start with a square with vertices at .˙1;˙1/, with center

C

P

Q

O

FIGURE 1.13

C at the origin. If ˛.s/ D .x.s/; y.s// is an arclength parametrization of the road, starting at .0;�1/,
consider the vector

��!
OC D ��!OP C ��!PQ C ��!QC , where P D ˛.s/ is the point of contact and Q is the

midpoint of the edge of the square. Use
��!
QP D s˛0.s/ and the fact that

��!
QC is a unit vector orthogonal to
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��!
QP . Express the fact that C moves horizontally to show that s D �y

0.s/

x0.s/
; you will need to differentiate

unexpectedly. Now use the result of Exercise 4 to find y D f .x/. Also see the hint for Exercise 9.)

11. Show that the curve ˛.t/ D

8

<

:

�

t; t sin.�=t/
�

; t ¤ 0
.0; 0/; t D 0

has infinite length on Œ0; 1�. (Hint: Consider

`.˛;PN / with PN D f0; 1=N; 2=.2N � 1/; 1=.N � 1/; : : : ; 1=2; 2=3; 1g.)

12. Prove that no four distinct points on the twisted cubic (see Example 1(e)) lie on a plane.

13. Consider the “spiral” ˛.t/ D r.t/.cos t; sin t/, where r is C1 and 0 � r.t/ � 1 for all t � 0.

a. Show that if ˛ has finite length on Œ0;1/ and r is decreasing, then r.t/! 0 as t !1.

b. Show that if r.t/ D 1=.t C 1/, then ˛ has infinite length on Œ0;1/.
c. If r.t/ D 1=.t C 1/2, does ˛ have finite length on Œ0;1/?
d. Characterize (in terms of the existence of improper integral(s)) the functions r for which ˛ has

finite length on Œ0;1/.
e. Use the result of part d to show that the result of part a holds even without the hypothesis that r be

decreasing.

14. (a special case of a recent American Mathematical Monthly problem) Suppose ˛W Œa; b� ! R
2 is a

smooth parametrized plane curve (perhaps not arclength-parametrized). Prove that if the chord length

k˛.s/ � ˛.t/k depends only on js � t j, then ˛ must be a (subset of) a line or a circle. (How many

derivatives of ˛ do you need to use?)

2. Local Theory: Frenet Frame

What distinguishes a circle or a helix from a line is their curvature, i.e., the tendency of the curve to

change direction. We shall now see that we can associate to each smooth (C3) arclength-parametrized curve

˛ a natural “moving frame” (an orthonormal basis for R3 chosen at each point on the curve, adapted to the

geometry of the curve as much as possible).

We begin with a fact from vector calculus that will appear throughout this course.

Lemma 2.1. Suppose f; gW .a; b/! R
3 are differentiable and satisfy f.t/ � g.t/ D const for all t . Then

f0.t/ � g.t/ D �f.t/ � g0.t/. In particular,

kf.t/k D const if and only if f.t/ � f0.t/ D 0 for all t :

Proof. Since a function is constant on an interval if and only if its derivative is zero everywhere on that

interval, we deduce from the product rule,

.f � g/0.t/ D f0.t/ � g.t/C f.t/ � g0.t/;

that if f � g is constant, then f � g0 D �f0 � g. In particular, kfk is constant if and only if kfk2 D f � f is constant,

and this occurs if and only if f � f0 D 0. �

Remark. This result is intuitively clear. If a particle moves on a sphere centered at the origin, then

its velocity vector must be orthogonal to its position vector; any component in the direction of the position
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vector would move the particle off the sphere. Similarly, suppose f and g have constant length and a constant

angle between them. Then in order to maintain the constant angle, as f turns towards g, we see that g must

turn away from f at the same rate.

Using Lemma 2.1 repeatedly, we now construct the Frenet frame of suitable regular curves. We assume

throughout that the curve ˛ is parametrized by arclength. Then, for starters, ˛0.s/ is the unit tangent vector

to the curve, which we denote by T.s/. Since T has constant length, T0.s/ will be orthogonal to T.s/.

Assuming T0.s/ ¤ 0, define the principal normal vector N.s/ D T0.s/=kT0.s/k and the curvature �.s/ D
kT0.s/k. So far, we have

T0.s/ D �.s/N.s/:

If �.s/ D 0, the principal normal vector is not defined. Assuming � ¤ 0, we continue. Define the binormal

vector B.s/ D T.s/ � N.s/. Then fT.s/;N.s/;B.s/g form a right-handed orthonormal basis for R3.

Now, N0.s/ must be a linear combination of T.s/, N.s/, and B.s/. But we know from Lemma 2.1 that

N0.s/ �N.s/ D 0 and N0.s/ �T.s/ D �T0.s/ �N.s/ D ��.s/. We define the torsion �.s/ D N0.s/ �B.s/. This

gives us

N0.s/ D ��.s/T.s/C �.s/B.s/:

Finally, B0.s/must be a linear combination of T.s/, N.s/, and B.s/. Lemma 2.1 tells us that B0.s/�B.s/ D 0,

B0.s/ � T.s/ D �T0.s/ � B.s/ D 0, and B0.s/ �N.s/ D �N0.s/ � B.s/ D ��.s/. Thus,

B0.s/ D ��.s/N.s/:

In summary, we have:

Frenet formulas

T0.s/ D �.s/N.s/

N0.s/ D ��.s/T.s/ C �.s/B.s/

B0.s/ D ��.s/N.s/

The skew-symmetry of these equations is made clearest when we state the Frenet formulas in matrix

form:
2

6
4

j j j
T0.s/ N0.s/ B0.s/

j j j

3

7
5 D

2

6
4

j j j
T.s/ N.s/ B.s/

j j j

3

7
5

2

6
4

0 ��.s/ 0

�.s/ 0 ��.s/
0 �.s/ 0

3

7
5 :

Indeed, note that the coefficient matrix appearing on the right is skew-symmetric. This is the case whenever

we differentiate an orthogonal matrix depending on a parameter (s in this case). (See Exercise A.1.4.)

Note that, by definition, the curvature, �, is always nonnegative; the torsion, � , however, has a sign, as

we shall now see.

Example 1. Consider the helix, given by its arclength parametrization (see Exercise 1.1.2) ˛.s/ D
�

a cos.s=c/; a sin.s=c/; bs=c
�

, where c D
p
a2 C b2 and a > 0. Then we have

T.s/ D 1

c

�

�a sin.s=c/; a cos.s=c/; b
�
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T0.s/ D 1

c2

�

�a cos.s=c/;�a sin.s=c/; 0
�

D a

c2
„ƒ‚…

�.s/

�

� cos.s=c/;� sin.s=c/; 0
�

„ ƒ‚ …

N.s/

:

Summarizing,

�.s/ D a

c2
D a

a2 C b2
and N.s/ D

�

� cos.s=c/;� sin.s=c/; 0
�

:

Now we deal with B and the torsion:

B.s/ D T.s/ � N.s/ D 1

c

�

b sin.s=c/;�b cos.s=c/; a
�

B0.s/ D 1

c2

�

b cos.s=c/; b sin.s=c/; 0
�

D � b
c2

N.s/;

so we infer that �.s/ D b

c2
D b

a2 C b2
.

Note that both the curvature and the torsion are constants. The torsion is positive when the helix is

“right-handed” (b > 0) and negative when the helix is “left-handed” (b < 0). It is interesting to observe

that, fixing a > 0, as b ! 0, the helix becomes very tightly wound and almost planar, and � ! 0; as

b !1, the helix twists extremely slowly and looks more and more like a straight line on the cylinder and,

once again, � ! 0. As the reader can check, the helix has the greatest torsion when b D a; why does this

seem plausible?

In Figure 2.1 we show the Frenet frames of the helix at some sample points. (In the latter two pictures,

T

N

B

T

N

B

T N

B

T

N
B

FIGURE 2.1

the perspective is misleading. T;N;B still form a right-handed frame: In the third, T is in front of N, and in

the last, B is pointing upwards and out of the page.) O

We stop for a moment to contemplate what happens with the Frenet formulas when we are dealing with

a non-arclength-parametrized, regular curve ˛. As we did in Section 1, we can (theoretically) reparametrize

by arclength, obtaining ˇ.s/. Then we have ˛.t/ D ˇ.s.t//, so, by the chain rule,

(�) ˛0.t/ D ˇ0.s.t//s0.t/ D �.t/T.s.t//;
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where �.t/ D s0.t/ is the speed.4 Similarly, by the chain rule, once we have the unit tangent vector as a

function of t , differentiating with respect to t , we have

.Tıs/0.t/ D T0.s.t//s0.t/ D �.t/�.s.t//N.s.t//:

Using the more casual—but convenient—Leibniz notation for derivatives,

dT

dt
D dT

ds

ds

dt
D ��N or �N D dT

ds
D

dT
dt

ds
dt

D 1

�

dT

dt
:

Example 2. Let’s calculate the curvature of the tractrix (see Example 2 in Section 1). Using the first

parametrization, we have ˛0.�/ D .� sin � C csc �; cos �/, and so

�.�/ D k˛0.�/k D
q

.� sin � C csc �/2 C cos2 � D
p

csc2 � � 1 D � cot � :

(Note the negative sign because
�

2
� � < � .) Therefore,

T.�/ D � 1

cot �
.� sin � C csc �; cos �/ D � tan �.cot � cos �; cos �/ D .� cos �;� sin �/:

Of course, looking at Figure 1.9, we should expect the formula for T. Then, to find the curvature, we

calculate

�N D dT

ds
D

dT
d�

ds
d�

D .sin �;� cos �/

� cot �
D .� tan �/.sin �;� cos �/:

Since � tan � > 0 and .sin �;� cos �/ is a unit vector we conclude that

�.�/ D � tan � and N.�/ D .sin �;� cos �/:

Later on we will see an interesting geometric consequence of the equality of the curvature and the (absolute

value of) the slope. O

Example 3. Let’s calculate the “Frenet apparatus” for the parametrized curve

˛.t/ D .3t � t3; 3t2; 3t C t3/:

We begin by calculating ˛0 and determining the unit tangent vector T and speed �:

˛0.t/ D 3.1 � t2; 2t; 1C t2/; so

�.t/ D k˛0.t/k D 3
q

.1 � t2/2 C .2t/2 C .1C t2/2 D 3
q

2.1C t2/2 D 3
p
2.1C t2/ and

T.t/ D 1p
2

1

1C t2 .1 � t
2; 2t; 1C t2/ D 1p

2

�
1� t2
1C t2 ;

2t

1C t2 ; 1
�

:

Now

�N D dT

ds
D

dT
dt

ds
dt

D 1

�.t/

dT

dt

D 1

3
p
2.1C t2/

1p
2

� �4t
.1C t2/2 ;

2.1 � t2/
.1C t2/2 ; 0

�

4� is the Greek letter upsilon, not to be confused with �, the Greek letter nu.
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D 1

3
p
2.1C t2/

1p
2
� 2

1C t2
„ ƒ‚ …

�

�

� 2t

1C t2 ;
1� t2
1C t2 ; 0

�

„ ƒ‚ …

N

:

Here we have factored out the length of the derivative vector and left ourselves with a unit vector in its

direction, which must be the principal normal N; the magnitude that is left must be the curvature �. In

summary, so far we have

�.t/ D 1

3.1C t2/2 and N.t/ D
�

� 2t

1C t2 ;
1 � t2
1C t2 ; 0

�

:

Next we find the binormal B by calculating the cross product

B.t/ D T.t/ �N.t/ D 1p
2

�

� 1 � t
2

1C t2 ;�
2t

1C t2 ; 1
�

:

And now, at long last, we calculate the torsion by differentiating B:

��N D dB

ds
D

dB
dt

ds
dt

D 1

�.t/

dB

dt

D 1

3
p
2.1C t2/

1p
2

�
4t

.1C t2/2 ;
2.t2 � 1/
.1C t2/2 ; 0

�

D � 1

3.1C t2/2
„ ƒ‚ …

�

�

� 2t

1C t2 ;
1 � t2
1C t2 ; 0

�

„ ƒ‚ …

N

;

so �.t/ D �.t/ D 1

3.1C t2/2 . O

Now we see that curvature enters naturally when we compute the acceleration of a moving particle.

Differentiating the formula (�) on p. 12, we obtain

˛00.t/ D � 0.t/T.s.t//C �.t/T0.s.t//s0.t/

D � 0.t/T.s.t//C �.t/2
�

�.s.t//N.s.t//
�

:

Suppressing the variables for a moment, we can rewrite this equation as

(��) ˛00 D � 0TC ��2N:

The tangential component of acceleration is the derivative of speed; the normal component (the “centripetal

acceleration” in the case of circular motion) is the product of the curvature of the path and the square of the

speed. Thus, from the physics of the motion we can recover the curvature of the path:

Proposition 2.2. For any regular parametrized curve ˛, we have � D k˛
0 � ˛00k
k˛0k3 .

Proof. Since ˛0�˛00 D .�T/� .� 0TC��2N/ D ��3T�N and ��3 > 0, we obtain ��3 D k˛0�˛00k,
and so � D k˛0 � ˛00k=�3, as desired. �

We next proceed to study various theoretical consequences of the Frenet formulas.

Proposition 2.3. A space curve is a line if and only if its curvature is everywhere 0.
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Proof. The general line is given by ˛.s/ D svC c for some unit vector v and constant vector c. Then

˛0.s/ D T.s/ D v is constant, so � D 0. Conversely, if � D 0, then T.s/ D T0 is a constant vector,

and, integrating, we obtain ˛.s/ D
Z s

0

T.u/duC ˛.0/ D sT0 C ˛.0/. This is, once again, the parametric

equation of a line. �

Example 4. Suppose all the tangent lines of a space curve pass through a fixed point. What can we

say about the curve? Without loss of generality, we take the fixed point to be the origin and the curve to be

arclength-parametrized by ˛. Then there is a scalar function � so that for every s we have ˛.s/ D �.s/T.s/.
Differentiating, we have

T.s/ D ˛0.s/ D �0.s/T.s/C �.s/T0.s/ D �0.s/T.s/C �.s/�.s/N.s/:

Then .�0.s/ � 1/T.s/C �.s/�.s/N.s/ D 0, so, since T.s/ and N.s/ are linearly independent, we infer that

�.s/ D sC c for some constant c and �.s/ D 0. Therefore, the curve must be a line through the fixed point.

O

Somewhat more challenging is the following

Proposition 2.4. A space curve is planar if and only if its torsion is everywhere 0. The only planar

curves with nonzero constant curvature are (portions of) circles.

Proof. If a curve lies in a plane P, then T.s/ and N.s/ span the plane P0 parallel to P and passing

through the origin. Therefore, B D T � N is a constant vector (the normal to P0), and so B0 D ��N D 0,

from which we conclude that � D 0. Conversely, if � D 0, the binormal vector B is a constant vector B0.

Now, consider the function f .s/ D ˛.s/ � B0; we have f 0.s/ D ˛0.s/ � B0 D T.s/ � B.s/ D 0, and so

f .s/ D c for some constant c. This means that ˛ lies in the plane x � B0 D c.

We leave it to the reader to check in Exercise 2a. that a circle of radius a has constant curvature 1=a.

(This can also be deduced as a special case of the calculation in Example 1.) Now suppose a planar curve ˛

has constant curvature �0. Consider the auxiliary function ˇ.s/ D ˛.s/C 1

�0
N.s/. Then we have ˇ0.s/ D

˛0.s/C 1

�0
.��0.s/T.s// D T.s/ � T.s/ D 0. Therefore ˇ is a constant function, say ˇ.s/ D P for all s.

Now we claim that ˛ is a (subset of a) circle centered at P , for k˛.s/ � P k D k˛.s/ � ˇ.s/k D 1=�0. �

We have already seen that a circular helix has constant curvature and torsion. We leave it to the reader

to check in Exercise 10 that these are the only curves with constant curvature and torsion. Somewhat more

interesting are the curves for which �=� is a constant.

A generalized helix is a space curve with � ¤ 0 all of whose tangent vectors make a constant angle with

a fixed direction. As shown in Figure 2.2, this curve lies on a generalized cylinder, formed by taking the

union of the lines (rulings) in that fixed direction through each point of the curve. We can now characterize

generalized helices by the following

Proposition 2.5. A curve is a generalized helix if and only if �=� is constant.

Proof. Suppose ˛ is an arclength-parametrized generalized helix. Then there is a (constant) unit vector

A with the property that T �A D cos � for some constant � . Differentiating, we obtain �N � A D 0, whence

N � A D 0. Differentiating yet again, we have

(�) .��TC �B/ � A D 0:
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FIGURE 2.2

Now, note that A lies in the plane spanned by T and B, and thus B � A D ˙ sin � . Thus, we infer from

equation (�) that �=� D ˙ cot � , which is indeed constant.

Conversely, if �=� is constant, set �=� D cot � for some angle � 2 .0; �/. Set A.s/ D cos �T.s/ C
sin �B.s/. Then A0.s/ D .� cos � � � sin �/N.s/ D 0, so A.s/ is a constant unit vector A, and T.s/ � A D
cos � is constant, as desired. �

Example 5. In Example 3 we saw a curve ˛ with � D � , so from the proof of Proposition 2.5 we see

that the curve should make a constant angle � D �=4 with the vector A D 1p
2
.T C B/ D .0; 0; 1/ (as

should have been obvious from the formula for T alone). We verify this in Figure 2.3 by drawing ˛ along

with the vertical cylinder built on the projection of ˛ onto the xy-plane. O

FIGURE 2.3



÷2. LOCAL THEORY: FRENET FRAME 17

The Frenet formulas actually characterize the local picture of a space curve.

Proposition 2.6 (Local canonical form). Let ˛ be a smooth (C3 or better) arclength-parametrized curve.

If ˛.0/ D 0, then for s near 0, we have

˛.s/ D
 

s � �
2
0

6
s3 C : : :

!

T.0/C
�
�0

2
s2 C �0

0

6
s3 C : : :

�

N.0/C
��0�0

6
s3 C : : :

�

B.0/:

(Here �0, �0, and �0
0 denote, respectively, the values of �, � , and �0 at 0, and lim

s!0
: : : =s3 D 0.)

Proof. Using Taylor’s Theorem, we write

˛.s/ D ˛.0/C s˛0.0/C 1

2
s2˛00.0/C 1

6
s3˛000.0/C : : : ;

where lim
s!0

: : : =s3 D 0. Now, ˛.0/ D 0, ˛0.0/ D T.0/, and ˛00.0/ D T0.0/ D �0N.0/. Differentiating

again, we have ˛000.0/ D .�N/0.0/ D �0
0N.0/C �0.��0T.0/C �0B.0//. Substituting, we obtain

˛.s/ D sT.0/C 1

2
s2�0N.0/C 1

6
s3
�

��2
0T.0/C �0

0N.0/C �0�0B.0/
�

C : : :

D
 

s � �
2
0

6
s3 C : : :

!

T.0/C
�
�0

2
s2 C �0

0

6
s3 C : : :

�

N.0/C
��0�0

6
s3 C : : :

�

B.0/;

as required. �

We now introduce three fundamental planes at P D ˛.0/:

(i) the osculating plane, spanned by T.0/ and N.0/,

(ii) the rectifying plane, spanned by T.0/ and B.0/, and

(iii) the normal plane, spanned by N.0/ and B.0/.

We see that, locally, the projections of ˛ into these respective planes look like

(i)
�

u � .�2
0=6/u

3 C : : : ; .�0=2/u
2 C .�0

0=6/u
3 C : : :

�

(ii)
�

u � .�2
0=6/u

3 C : : : ; .�0�0=6/u
3 C : : :

�

, and

(iii)
�

.�0=2/u
2 C .�0

0=6/u
3 C : : : ; .�0�0=6/u

3 C : : :
�

,

where lim
u!0

: : : =u3 D 0. Thus, the projections of ˛ into these planes look locally as shown in Figure 2.4.

The osculating (“kissing”) plane is the plane that comes closest to containing ˛ near P (see also Exercise

osculating plane rectifying plane normal plane

T T

N

N

B B

FIGURE 2.4
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25); the rectifying (“straightening”) plane is the one that comes closest to flattening the curve near P ; the

normal plane is normal (perpendicular) to the curve at P . (Cf. Figure 1.3.)

EXERCISES 1.2

1. Compute the curvature of the following arclength-parametrized curves:

a. ˛.s/ D
�

1p
2

cos s; 1p
2

cos s; sin s
�

b. ˛.s/ D
�p
1C s2; ln.s C

p
1C s2/

�

*c. ˛.s/ D
�

1
3
.1C s/3=2; 1

3
.1� s/3=2; 1p

2
s
�

, s 2 .�1; 1/

2. Calculate the unit tangent vector, principal normal, and curvature of the following curves:

a. a circle of radius a: ˛.t/ D .a cos t; a sin t/

b. ˛.t/ D .t; cosh t/

c. ˛.t/ D .cos3 t; sin3 t/, t 2 .0; �=2/

3. Calculate the Frenet apparatus (T, �, N, B, and �) of the following curves:

*a. ˛.s/ D
�

1
3
.1C s/3=2; 1

3
.1� s/3=2; 1p

2
s
�

, s 2 .�1; 1/
b. ˛.t/ D

�
1
2
et .sin t C cos t/; 1

2
et .sin t � cos t/; et

�

*c. ˛.t/ D
�p
1C t2; t; ln.t C

p
1C t2/

�

d. ˛.t/ D .et cos t; et sin t; et /

e. ˛.t/ D .cosh t; sinh t; t/

f. ˛.t/ D
�

t; t2=2; t
p
1C t2 C ln.t C

p
1C t2/

�

g. ˛.t/ D .t � sin t cos t; sin2 t; cos t/, t 2 .0; �/

]4. Prove that the curvature of the plane curve y D f .x/ is given by � D jf 00j
.1C f 02/3=2

.

]*5. Use Proposition 2.2 and the second parametrization of the tractrix given in Example 2 of Section 1 to

recompute the curvature.

*6. By differentiating the equation B D T � N, derive the equation B0 D ��N.

]7. Suppose ˛ is an arclength-parametrized space curve with the property that k˛.s/k � k˛.s0/k D R for

all s sufficiently close to s0. Prove that �.s0/ � 1=R. (Hint: Consider the function f .s/ D k˛.s/k2.

What do you know about f 00.s0/?)

8. Let ˛ be a regular (arclength-parametrized) curve with nonzero curvature. The normal line to ˛ at ˛.s/

is the line through ˛.s/ with direction vector N.s/. Suppose all the normal lines to ˛ pass through a

fixed point. What can you say about the curve?

9. a. Prove that if all the normal planes of a curve pass through a particular point, then the curve lies on

a sphere. (Hint: Apply Lemma 2.1.)

*b. Prove that if all the osculating planes of a curve pass through a particular point, then the curve is

planar.

10. Prove that if � D �0 and � D �0 are nonzero constants, then the curve is a (right) circular helix.
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(Hint: Start by solving for N. The only solutions of the differential equation y00 C k2y D 0 are

y D c1 cos.kt/C c2 sin.kt/. )

Remark. It is an amusing exercise to give a and b (in our formula for the circular helix) in terms

of �0 and �0.

*11. Proceed as in the derivation of Proposition 2.2 to show that

� D ˛0 � .˛00 � ˛000/

k˛0 � ˛00k2 :

12. Let ˛ be a C
4 arclength-parametrized curve with � ¤ 0. Prove that ˛ is a generalized helix if and only

if ˛00 � .˛000 � ˛.iv// D 0. (Here ˛.iv/ denotes the fourth derivative of ˛.)

13. Suppose �� ¤ 0 at P . Of all the planes containing the tangent line to ˛ at P , show that ˛ lies locally

on both sides only of the osculating plane.

14. Let ˛ be a regular curve with � ¤ 0 at P . Prove that the planar curve obtained by projecting ˛ into its

osculating plane at P has the same curvature at P as ˛.

15. A closed, planar curve C is said to have constant breadth � if the distance between parallel tangent

lines to C is always �. (No, C needn’t be a circle. See Figure 2.5.) Assume for the rest of this problem

that the curve is arclength parametrized by a C2 function ˛W Œ0; L�! R
2 with � ¤ 0. To say C is closed

means ˛.0/ D ˛.L/ and the derivatives match as well.

(the Wankel engine design)

FIGURE 2.5

a. Let’s call two points with parallel tangent lines opposite. Prove that if C has constant breadth

�, then the chord joining opposite points is normal to the curve at both points. (Hint: If ˇ.s/ is

opposite ˛.s/, then ˇ.s/ D ˛.s/C �.s/T.s/C�N.s/. First explain why the coefficient of N is �;

then show that � D 0.)

b. Prove that the sum of the reciprocals of the curvature at opposite points is equal to �. (Warning: If

˛ is arclength-parametrized, ˇ is quite unlikely to be. It might be helpful to introduce the notation

Tˇ and Nˇ for the unit tangent vector and principal normal of ˇ. How are they related to T and

N?)

16. Let ˛ and ˇ be two regular curves defined on Œa; b�. We say ˇ is an involute of ˛ if, for each t 2 Œa; b�,
(i) ˇ.t/ lies on the tangent line to ˛ at ˛.t/, and
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(ii) the tangent vectors to ˛ and ˇ at ˛.t/ and ˇ.t/, respectively, are perpendicular.

Reciprocally, we also refer to ˛ as an evolute of ˇ.

a. Suppose ˛ is arclength-parametrized. Show that ˇ is an involute of ˛ if and only if ˇ.s/ D
˛.s/C .c � s/T.s/ for some constant c (here T.s/ D ˛0.s/). We will normally refer to the curve ˇ

obtained with c D 0 as the involute of ˛. If you were to wrap a string around the curve ˛, starting

at s D 0, the involute is the path the end of the string follows as you unwrap it, always pulling the

string taut, as illustrated in the case of a circle in Figure 2.6.

P

FIGURE 2.6

b. Show that the involute of a helix is a plane curve.

c. Show that the involute of a catenary is a tractrix. (Hint: You do not need an arclength parametriza-

tion!)

d. If ˛ is an arclength-parametrized plane curve, prove that the curve ˇ given by

ˇ.s/ D ˛.s/C 1

�.s/
N.s/

is the unique evolute of ˛ lying in the plane of ˛. Prove, moreover, that this curve is regular if

�0 ¤ 0. (Hint: Go back to the original definition.)

17. Find the involute of the cycloid ˛.t/ D .t C sin t; 1 � cos t/, t 2 Œ��;��, using t D 0 as your starting

point. Give a geometric description of your answer.

18. Suppose ˛ is a generalized helix with axis in direction A. Let ˇ be the curve obtained by projecting ˛

onto a plane orthogonal to A. Prove that the principal normals of ˛ and ˇ are parallel at corresponding

points and calculate the curvature of ˇ in terms of the curvature of ˛.

19. Let ˛ be a curve parametrized by arclength with �; � ¤ 0.

a. Suppose ˛ lies on the surface of a sphere centered at the origin (i.e., k˛.s/k D const for all s).

Prove that

(?)
�

�
C
�
1

�

�
1

�

�0�0
D 0:
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(Hint: Write ˛ D �TC �N C �B for some functions �, �, and �, differentiate, and use the fact

that fT;N;Bg is a basis for R3.)

b. Prove the converse: If ˛ satisfies the differential equation (?), then ˛ lies on the surface of some

sphere. (Hint: Using the values of �, �, and � you obtained in part a, show that ˛�.�TC�NC�B/

is a constant vector, the candidate for the center of the sphere. If the nature of this argument puzzles

you, review the latter part of the proof of Proposition 2.4.)

20. Two distinct parametrized curves ˛ and ˇ are called Bertrand mates if for each t , the normal line to ˛

at ˛.t/ equals the normal line to ˇ at ˇ.t/. An example is pictured in Figure 2.7. Suppose ˛ and ˇ are

FIGURE 2.7

Bertrand mates.

a. If ˛ is arclength-parametrized, show that ˇ.s/ D ˛.s/ C r.s/N.s/ and r.s/ D const. Thus,

corresponding points of ˛ and ˇ are a constant distance apart.

b. Show that, moreover, the angle between the tangent vectors to ˛ and ˇ at corresponding points

is constant. (Hint: If T˛ and Tˇ are the unit tangent vectors to ˛ and ˇ respectively, consider

T˛ � Tˇ.)

c. Suppose ˛ is arclength-parametrized and �� ¤ 0. Show that ˛ has a Bertrand mate ˇ if and only if

there are constants r and c so that r� C c� D 1. (Hint for H): Interpret the result of part b using

your formula for ˇ0 from part a.)

d. Given ˛, prove that if there is more than one curve ˇ so that ˛ and ˇ are Bertrand mates, then there

are infinitely many such curves ˇ and this occurs if and only if ˛ is a circular helix.

21. (See Exercise 20.) Suppose ˛ and ˇ are Bertrand mates. Prove that the torsion of ˛ and the torsion of

ˇ at corresponding points have constant product.

22. Suppose Y is a C
2 vector function on Œa; b� with kYk D 1 and Y, Y0, and Y00 everywhere linearly

independent. For any nonzero constant c, define ˛.t/ D c
Z t

a

�

Y.u/ � Y0.u/
�

du, t 2 Œa; b�. Prove that

the curve ˛ has constant torsion 1=c. (Hint: Show that B D ˙Y.)

23. (See Exercise 20.) Suppose Y is a C2 arclength-parametrized curve on the unit sphere. For any nonzero

constant a and 0 < � � �=2, define

˛.t/ D a
�Z t

0

Y.s/ds C cot �

Z t

0

�

Y.s/ � Y0.s/
�

ds

�

:

Show that the curve ˛ has a Bertrand mate. (Hint: Show that N D ˙Y0.)
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24. a. Let ˛ be an arclength-parametrized plane curve. We create a “parallel” curve ˇ by taking ˇ D
˛C "N (for a fixed small positive value of "). Explain the terminology and express the curvature

of ˇ in terms of " and the curvature of ˛.

b. Now let ˛ be an arclength-parametrized space curve. Show that we can obtain a “parallel” curve ˇ

by taking ˇ D ˛C "
�

.cos �/NC .sin �/B
�

for an appropriate function � . How many such parallel

curves are there?

c. Sketch such a parallel curve for a circular helix ˛.

25. Suppose ˛ is an arclength-parametrized curve, P D ˛.0/, and �.0/ ¤ 0. Use Proposition 2.6 to

establish the following:

*a. Let Q D ˛.s/ and R D ˛.t/. Show that the plane spanned by P , Q, and R approaches the

osculating plane of ˛ at P as s; t ! 0.

b. The osculating circle at P is the limiting position of the circle passing through P , Q, and R as

s; t ! 0. Prove that the osculating circle has center Z D P C
�

1=�.0/
�

N.0/ and radius 1=�.0/.

c. The osculating sphere at P is the limiting position of the sphere through P and three neighboring

points on the curve, as the latter points tend to P independently. Prove that the osculating sphere

has center

Z D P C
�

1=�.0/
�

N.0/C
�

1=�.0/.1=�/0.0/
�

B.0/

and radius q

.1=�.0//2 C .1=�.0/.1=�/0.0//2:
d. How is the result of part c related to Exercise 19?

26. a. Suppose ˇ is a plane curve and Cs is the circle centered at ˇ.s/ with radius r.s/. Assuming ˇ and

r are differentiable functions, show that the circle Cs is contained inside the circle Ct whenever

t > s if and only if kˇ0.s/k � r 0.s/ for all s.

b. Let ˛ be arclength-parametrized plane curve and suppose � is a decreasing function. Prove that the

osculating circle at ˛.s/ lies inside the osculating circle at ˛.t/ whenever t > s. (See Exercise 25

for the definition of the osculating circle.)

27. Suppose the front wheel of a bicycle follows the arclength-parametrized plane curve ˛. Determine the

path ˇ of the rear wheel, 1 unit away, as shown in Figure 2.8. (Hint: If the front wheel is turned an

FIGURE 2.8

angle � from the axle of the bike, start by writing ˛ � ˇ in terms of � , T, and N. Your goal should be
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a differential equation that � must satisfy, involving only �. Note that the path of the rear wheel will

obviously depend on the initial condition �.0/. In all but the simplest of cases, it may be impossible to

solve the differential equation explicitly.)

3. Some Global Results

3.1. Space Curves. The fundamental notion in geometry (see Section 1 of the Appendix) is that of

congruence: When do two figures differ merely by a rigid motion? If the curve ˛� is obtained from the

curve ˛ by performing a proper (orientation-preserving) rigid motion —i.e., the composition of a translation

and a rotation—-then the Frenet frames at corresponding points differ by that same rigid motion, and the

twisting of the frames (which is what gives curvature and torsion) should be the same. (Note that a reflection

will not affect the curvature, but will change the sign of the torsion.)

Theorem 3.1 (Fundamental Theorem of Curve Theory). Two space curves C and C � with nonzero

curvature differ by a proper rigid motion if and only if their arclength parametrizations ˛;˛�W Œ0; L� ! R
3

have the property that �.s/ D ��.s/ and �.s/ D ��.s/ for all s 2 Œ0; L�.

Proof. Suppose ˛� D ‰ı˛ for some proper rigid motion ‰WR3 ! R
3, so ‰.x/ D Ax C b for

some b 2 R
3 and some 3 � 3 orthogonal matrix A with detA > 0. Then ˛�.s/ D A˛.s/ C b, so

k˛�0.s/k D kA˛0.s/k D 1, since A is orthogonal. Therefore, ˛� is likewise arclength-parametrized, and

T�.s/ D AT.s/. Differentiating again, ��.s/N�.s/ D �.s/AN.s/. Since A is orthogonal, AN.s/ is a unit

vector, and so N�.s/ D AN.s/ and ��.s/ D �.s/. But then B�.s/ D T�.s/ � N�.s/ D AT.s/ � AN.s/ D
A.T.s/�N.s// D AB.s/, inasmuch as orthogonal matrices map orthonormal bases to orthonormal bases and

detA > 0 insures that orientation is preserved as well (i.e., right-handed bases map to right-handed bases).

Last, B�0.s/ D ���.s/N�.s/ and B�0.s/ D AB0.s/ D ��.s/AN.s/ D ��.s/N�.s/, so ��.s/ D �.s/, as

required.

Conversely, suppose � D �� and � D ��. We now define a rigid motion ‰ as follows. Let A be

the unique orthogonal matrix so that AT.0/ D T�.0/, AN.0/ D N�.0/, and AB.0/ D B�.0/, and let

b D ˛�.0/ � A˛.0/. A also has positive determinant, since both orthonormal bases are right-handed. Set

Q̨ D ‰ı˛. We now claim that ˛�.s/ D Q̨ .s/ for all s 2 Œ0; L�. Note, by our argument in the first part of the

proof, that Q� D � D �� and Q� D � D ��. Consider

f .s/ D QT.s/ � T�.s/C QN.s/ �N�.s/C QB.s/ � B�.s/:

We now differentiate f , using the Frenet formulas.

f 0.s/ D
� QT0.s/ � T�.s/C QT.s/ � T�0.s/

�

C
� QN0.s/ � N�.s/C QN.s/ � N�0.s/

�

C
� QB0.s/ � B�.s/C QB.s/ � B�0.s/

�

D �.s/
� QN.s/ � T�.s/C QT.s/ � N�.s/

�

� �.s/
� QT.s/ �N�.s/C QN.s/ � T�.s/

�

C �.s/
� QB.s/ � N�.s/C QN.s/ � B�.s/

�

� �.s/
� QN.s/ � B�.s/C QB.s/ � N�.s/

�

D 0;

since the first two terms cancel and the last two terms cancel. By construction, f .0/ D 3, so f .s/ D 3 for

all s 2 Œ0; L�. Since each of the individual dot products can be at most 1, the only way the sum can be 3 for
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all s is for each to be 1 for all s, and this in turn can happen only when QT.s/ D T�.s/, QN.s/ D N�.s/, and

QB.s/ D B�.s/ for all s 2 Œ0; L�. In particular, since Q̨ 0.s/ D QT.s/ D T�.s/ D ˛�0.s/ and Q̨ .0/ D ˛�.0/, it

follows that Q̨ .s/ D ˛�.s/ for all s 2 Œ0; L�, as we wished to show. �

Remark. The latter half of this proof can be replaced by asserting the uniqueness of solutions of a sys-

tem of differential equations, as we will see in a moment. Also see Exercise A.3.1 for a matrix-computational

version of the proof we just did.

Example 1. We now see that the only curves with constant � and � are circular helices. O

Perhaps more interesting is the existence question: Given continuous functions �; � W Œ0; L�! R (with �

everywhere positive), is there a space curve with those as its curvature and torsion? The answer is yes, and

this is an immediate consequence of the fundamental existence theorem for differential equations, Theorem

3.1 of the Appendix. That is, we let

F.s/ D

2

6
4

j j j
T.s/ N.s/ B.s/

j j j

3

7
5 and K.s/ D

2

6
4

0 ��.s/ 0

�.s/ 0 ��.s/
0 �.s/ 0

3

7
5 :

Then integrating the linear system of ordinary differential equations F 0.s/ D F.s/K.s/, F.0/ D F0, gives

us the Frenet frame everywhere along the curve, and we recover ˛ by integrating T.s/.

We turn now to the concept of total curvature of a closed space curve, which is the integral of its

curvature. That is, if ˛W Œ0; L�! R
3 is an arclength-parametrized curve with ˛.0/ D ˛.L/, ˛0.0/ D ˛0.L/,

and ˛00.0/ D ˛00.L/, then its total curvature is

Z L

0

�.s/ds. This quantity can be interpreted geometrically as

follows: The Gauss map of ˛ is the map to the unit sphere,†, given by the unit tangent vector TW Œ0; L�! †;

its image, � , is classically called the tangent indicatrix of ˛. Observe that—provided the Gauss map is one-

T

FIGURE 3.1

to-one—the length of � is the total curvature of ˛, since length.�/ D
Z L

0

kT0.s/kds D
Z L

0

�.s/ds. More

generally, this integral is the length of � “counting multiplicities.”

A preliminary question to ask is this: What curves � in the unit sphere can be the Gauss map of some

closed space curve ˛? Since ˛.s/ D ˛.0/C
Z s

0

T.u/du, we see that a necessary and sufficient condition

is that

Z L

0

T.s/ds D 0. (Note, however, that this depends on the arclength parametrization of the original
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curve and is not a parametrization-independent condition on the image curve � � †.) We do, nevertheless,

have the following geometric consequence of this condition. For any (unit) vector A, we have

0 D A �
Z L

0

T.s/ds D
Z L

0

.T.s/ � A/ds;

and so the average value of T � A must be 0. In particular, the tangent indicatrix must cross the great circle

with normal vector A. That is, if the curve � is to be a tangent indicatrix, it must be “balanced” with respect

to every direction A. It is natural to ask for the shortest curve(s) with this property.

If � 2 †, let �? denote the oriented great circle with normal vector �. (By this we mean that we go

around the circle �? so that at x, the tangent vector T points so that x;T; � form a right-handed basis for

R
3.)

Proposition 3.2 (Crofton’s formula). Let � be a piecewise-C1 curve on the sphere. Then

length.�/ D 1

4

Z

†

#.� \ �?/d�

D � � .the average number of intersections of � with all great circles/:

(Here d� represents the usual element of surface area on †.)

Proof. We leave this to the reader in Exercise 12. �

Remark. Although we don’t stop to justify it here, the set of � for which #.� \ �?/ is infinite is a set

of measure zero, and so the integral makes sense.

Applying this to the case of the tangent indicatrix of a closed space curve, we deduce the following

classical result.

Theorem 3.3 (Fenchel). The total curvature of any closed space curve is at least 2� , and equality holds

if and only if the curve is a simple closed (convex) planar curve.

Proof. Let � be the tangent indicatrix of our space curve. If C is a simple closed plane curve, then � is

a great circle on the sphere. As we shall see in the next section, convexity of the curve can be interpreted as

saying � > 0 everywhere, so the tangent indicatrix traverses the great circle exactly once and

Z

C

�ds D 2�
(cf. Theorem 3.5 in the next section).

To prove the converse, note that, by our earlier remarks, � must cross �? for almost every � 2 † and

hence must intersect it at least twice, and so it follows from Proposition 3.2 that

Z

C

�ds D length.�/ �
1

4
.2/.4�/ D 2� . Now, we claim that if � is a connected, closed curve in † of length � 2� , then � lies in a

closed hemisphere. It will follow, then, that if � is a tangent indicatrix of length 2� , it must be a great circle.

(For if � lies in the hemisphere A � x � 0,

Z L

0

T.s/ � Ads D 0 forces T � A D 0, so � is the great circle

A � x D 0.) It follows that the curve is planar and the tangent indicatrix traverses the great circle precisely

one time, which means that � > 0 and the curve is convex. (See the next section for more details on this.)

To prove the claim, we proceed as follows. Suppose length.�/ � 2� . Choose P and Q in � so that the

arcs �1 D
_

PQ and �2 D
_

QP have the same length. Choose N bisecting the shorter great circle arc from P

toQ, as shown in Figure 3.2. For convenience, we rotate the picture so thatN is the north pole of the sphere.

Suppose now that the curve �1 were to enter the southern hemisphere; let �1 denote the reflection of �1
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FIGURE 3.2

across the north pole (following arcs of great circle through N ). Now, �1 [ �1 is a closed curve containing

a pair of antipodal points and therefore is longer than a great circle. (See Exercise 1.) Since �1 [ �1 has

the same length as � , we see that length.�/ > 2� , which is a contradiction. Therefore � indeed lies in the

northern hemisphere. �

We now sketch the proof of a result that has led to many interesting questions in higher dimensions. We

say a simple (non-self-intersecting) closed5 space curve is knotted if we cannot fill it in with a disk.

Theorem 3.4 (Fáry-Milnor). If a simple closed space curve is knotted, then its total curvature is at least

4� .

Sketch of proof. Suppose the total curvature of C is less than 4� . Then the average number

#.� \ �?/ < 4. Since this is generically an even number � 2 (whenever the great circle isn’t tangent

to �), there must be an open set of �’s for which we have #.� \ �?/ D 2. Choose one such, �0. This

means that the tangent vector to C is only perpendicular to �0 twice, so the function f .x/ D x � �0 has only

two critical points. That is, the planes perpendicular to �0 will intersect C either in a single point (at the

maximum and minimum points of f ) or in exactly two points (by Rolle’s Theorem). Now, by moving these

planes from the bottom of C to the top, joining the two intersection points in each plane with a line segment,

we fill in a disk, so C is unknotted. �

3.2. Plane Curves. We conclude this chapter with some results on plane curves. Now we assign a

sign to the curvature: Given an arclength-parametrized curve ˛, (re)define N.s/ so that fT.s/;N.s/g is

a right-handed basis for R
2 (i.e., one turns counterclockwise from T.s/ to N.s/), and then set �.s/ D

T0.s/ � N.s/, from which it follows that T0.s/ D �.s/N.s/ (why?), as before. So � > 0 when T is twisting

counterclockwise and � < 0 when T is twisting clockwise. Although the total curvature

Z

C

j�.s/jds of a

simple closed plane curve may be quite a bit larger than 2� , it is intuitively plausible that the tangent vector

must make precisely one full rotation, either counterclockwise or clockwise, and thus we have

Theorem 3.5 (Hopf Umlaufsatz). If C is a simple closed plane curve, then

Z

C

�ds D ˙2� , the C
occurring when C is oriented counterclockwise and � when it’s oriented clockwise.

The crucial ingredient is to keep track of a continuous total angle through which the tangent vector has

turned. That is, we need the following

5To be more careful here, if ˛W Œa; b� ! R3 is a parametrization with ˛.a/ D ˛.b/, then ˛.t/ D ˛.u/ occurs only when

ft; ug D fa; bg.
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T

T

T

N
N

N

FIGURE 3.3

Lemma 3.6. Let ˛W Œa; b�! R
2 be a C1, regular parametrized plane curve. Then there is a C

1 function

� W Œa; b�! R so that T.t/ D
�

cos �.t/; sin �.t/
�

for all t 2 Œa; b�. Moreover, for any two such functions, �

and ��, we have �.b/ � �.a/ D ��.b/ � ��.a/. The number .�.b/ � �.a//=2� is called the rotation index

of ˛.

Proof. Consider the four open semicircles U1 D f.x; y/ 2 S1 W x > 0g, U2 D f.x; y/ 2 S1 W
x < 0g, U3 D f.x; y/ 2 S1 W y > 0g, and U4 D f.x; y/ 2 S1 W y < 0g. Then the functions

 1;n.x; y/ D arctan.y=x/C 2n�
 2;n.x; y/ D arctan.y=x/C .2nC 1/�
 3;n.x; y/ D � arctan.x=y/C .2nC 1

2
/�

 4;n.x; y/ D � arctan.x=y/C .2n � 1
2
/�

are smooth maps  i;nWUi ! R with the property that
�

cos. i;n.x; y//; sin. i;n.x; y//
�

D .x; y/ for every

i D 1; 2; 3; 4 and n 2 Z.

Define �.a/ so that T.a/ D
�

cos �.a/; sin �.a/
�

. Let S D ft 2 Œa; b� W � is defined and C
1 on Œa; t �g,

and let t0 D supS . Suppose first that t0 < b. Choose i so that T.t0/ 2 Ui , and choose n 2 Z so that

 i;n.T.t0// D limt!t�
0
�.t/. Because T is continuous at t0, there is ı > 0 so that T.t/ 2 Ui for all t with

jt � t0j < ı. Then setting �.t/ D  i;n.T.t// for all t0 � t < t0 C ı gives us a C
1 function � defined on

Œ0; t0 C ı=2�, so we cannot have t0 < b. (Note that �.t/ D  i;n.T.t// for all t0 � ı < t < t0. Why?) But

the same argument shows that when t0 D b, the function � is C1 on all of Œa; b�.

Now, since T.b/ D T.a/, we know that �.b/ � �.a/ must be an integral multiple of 2� . Moreover,

for any other function �� with the same properties, we have ��.t/ D �.t/C 2�n.t/ for some integer n.t/.

Since � and �� are both continuous, n must be a continuous function as well; since it takes on only integer

values, it must be a constant function. Therefore, ��.b/ � ��.a/ D �.b/ � �.a/, as required. �

Sketch of proof of Theorem 3.5. Note first that if T.s/ D
�

cos �.s/; sin �.s/
�

, then T0.s/ D

� 0.s/
�

� sin �.s/; cos �.s/
�

, so �.s/ D � 0.s/ and

Z L

0

�.s/ds D
Z L

0

� 0.s/ds D �.L/ � �.0/ is 2� times the

rotation index of the closed curve ˛.



28 CHAPTER 1. CURVES

Let � D f.s; t/ W 0 � s � t � Lg. Consider the secant map hW�! S1 defined by

h.s; t/ D

8

ˆ̂
ˆ
<

ˆ̂

:̂

T.s/; s D t
�T.0/; .s; t/ D .0;L/

˛.t/ � ˛.s/

k˛.t/ � ˛.s/k ; otherwise

:

Then it follows from Proposition 2.6 (using Taylor’s Theorem to calculate ˛.t/ D ˛.s/C .t � s/˛0.s/C : : :)
that h is continuous. A more sophisticated version of the proof of Lemma 3.6 will establish (see Exercise

14) that there is a continuous function Q� W�! R so that h.s; t/ D
�

cos Q�.s; t/; sin Q�.s; t/
�

for all .s; t/ 2 �.

It then follows from Lemma 3.6 that
Z

C

�ds D �.L/ � �.0/ D Q�.L;L/ � Q�.0; 0/ D Q�.0;L/ � Q�.0; 0/
„ ƒ‚ …

N1

C Q�.L;L/ � Q�.0;L/
„ ƒ‚ …

N2

:

Rotating the curve as required, we assume that ˛.0/ is the lowest point on the curve (i.e., the one whose

y-coordinate is smallest) and, then, that ˛.0/ is the origin and T.0/ D e1, as shown in Figure 3.4. (The

FIGURE 3.4

last may require reversing the orientation of the curve.) Now, N1 is the angle through which the position

vector of the curve turns, starting at 0 and ending at � ; since the curve lies in the upper half-plane, we must

have N1 D � . But N2 is likewise the angle through which the negative of the position vector turns, so

N2 D N1 D � . With these assumptions, we see that the rotation index of the curve is 1. Allowing for the

possible change in orientation, the rotation index must therefore be ˙1, as required. �

Corollary 3.7. If C is any closed curve with nonzero rotation index (e.g., a simple closed curve), for

any point P 2 C there is a point Q 2 C where the unit tangent vector is opposite that at P .

Proof. Let T.s/ D
�

cos �.s/; sin �.s/
�

for a C
1 function � W Œ0; L� ! R, as in Lemma 3.6. Say P D

˛.s0/, and let �.s0/ D �0. Since �.L/ � �.0/ is an integer multiple of 2� , there must be s1 2 Œ0; L� with

either �.s1/ D �0 C � or �.s1/ D �0 � � . Take Q D ˛.s1/. �

Recall that one of the ways of characterizing a convex function f WR ! R is that its graph lie on one

side of each of its tangent lines. So we make the following

Definition. The regular closed plane curve ˛ is convex if it lies on one side of its tangent line at each

point.
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Proposition 3.8. A simple closed regular plane curve C is convex if and only if we can choose the

orientation of the curve so that � � 0 everywhere.

Remark. We leave it to the reader in Exercise 2 to give a non-simple closed curve for which this result

is false.

Proof. Assume, without loss of generality, that T.0/ D .1; 0/ and the curve is oriented counterclock-

wise. Using the function � constructed in Lemma 3.6, the condition that � � 0 is equivalent to the condition

that � is a nondecreasing function with �.L/ D 2� .

Suppose first that � is nondecreasing and C is not convex. Then we can find a point P D ˛.s0/ on the

curve and values s0
1, s0

2 so that ˛.s0
1/ and ˛.s0

2/ lie on opposite sides of the tangent line to C at P . Then,

by the maximum value theorem, there are values s1 and s2 so that ˛.s1/ is the greatest distance “above”

the tangent line and ˛.s2/ is the greatest distance “below.” Consider the unit tangent vectors T.s0/, T.s1/,

and T.s2/. Since these vectors are either parallel or anti-parallel, some pair must be identical. Letting the

respective values of s be s� and s�� with s� < s��, we have �.s�/ D �.s��/ (since � is nondecreasing and

�.L/ D 2� , the values cannot differ by a multiple of 2�), and therefore �.s/ D �.s�/ for all s 2 Œs�; s���.

This means that that portion of C between ˛.s�/ and ˛.s��/ is a line segment parallel to the tangent line of

C at P ; this is a contradiction.

Conversely, suppose C is convex and �.s1/ D �.s2/ for some s1 < s2. By Corollary 3.7 there must be

s3 with T.s3/ D �T.s1/ D �T.s2/. Since C is convex, the tangent line at two of ˛.s1/, ˛.s2/, and ˛.s3/

must be the same, say at ˛.s�/ D P and ˛.s��/ D Q. If PQ does not lie entirely in C , choose R 2 PQ,

R … C . Since C is convex, the line through R perpendicular to
 !
PQ must intersect C in at least two points,

say M and N , with N farther from
 !
PQ than M . Since M lies in the interior of 4NPQ, all three vertices

of the triangle can never lie on the same side of any line through M . In particular, N , P , and Q cannot lie

on the same side of the tangent line to C at M . Thus, it must be that PQ � C , so �.s/ D �.s1/ D �.s2/

for all s 2 Œs1; s2�. Therefore, � is nondecreasing, and we are done. �

Definition. A critical point of � is called a vertex of the curve C .

A closed curve must have at least two vertices: the maximum and minimum points of �. Every point of

a circle is a vertex. We conclude with the following

Proposition 3.9 (Four Vertex Theorem). A closed convex plane curve has at least four vertices.

Proof. Suppose that C has fewer than four vertices. As we see from Figure 3.5, either � must have

two critical points (maximum and minimum) or � must have three critical points (maximum, minimum,

and inflection point). More precisely, suppose that � increases from P to Q and decreases from Q to P .

Without loss of generality, we may take P to be at the origin. The equation of
 !
PQ is A � x D 0, where we

choose A so that �0.s/ � 0 precisely when A � ˛.s/ � 0. Then

Z

C

�0.s/.A � ˛.s//ds > 0. Integrating by

parts, we have

Z

C

�0.s/.A � ˛.s//ds D �
Z

C

�.s/.A � T.s//ds D
Z

C

A � N0.s/ds D A �
Z

C

N0.s/ds D 0:

From this contradiction, we infer that C must have at least four vertices. �
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0 L 0 L

FIGURE 3.5

3.3. The Isoperimetric Inequality. One of the classic questions in mathematics is the following:

Given a closed curve of length L, what shape will enclose the most area? A little experimentation will

most likely lead the reader to the

Theorem 3.10 (Isoperimetric Inequality). If a simple closed plane curve C has length L and encloses

area A, then

L2 � 4�A;
and equality holds if and only if C is a circle.

Proof. There are a number of different proofs, but we give one (due to E. Schmidt, 1939) based on

Green’s Theorem, Theorem 2.6 of the Appendix, and—not surprisingly—relying heavily on the geometric-

arithmetic mean inequality and the Cauchy-Schwarz inequality (see Exercise A.1.2). We choose parallel

FIGURE 3.6

lines `1 and `2 tangent to, and enclosing, C , as pictured in Figure 3.6. We draw a circle C of radius R with

those same tangent lines and put the origin at its center, with the y-axis parallel to `i . We now parametrize

C by arclength by ˛.s/ D .x.s/; y.s//, s 2 Œ0; L�, taking ˛.0/ 2 `1 and ˛.s0/ 2 `2. We then consider

˛W Œ0; L�! R
2 given by

˛.s/ D
�

x.s/; y.s/
�

D

8

<

:

�

x.s/;�
p

R2 � x.s/2
�

; 0 � s � s0
�

x.s/;
p

R2 � x.s/2
�

; s0 � s � L
:
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(˛ needn’t be a parametrization of the circle C , since it may cover certain portions multiple times, but that’s

no problem.) Letting A denote the area enclosed by C and A D �R2 that enclosed by C , we have (by

Exercise A.2.5)

A D
Z L

0

x.s/y0.s/ds

A D �R2 D �
Z L

0

y.s/x0.s/ds D �
Z L

0

y.s/x0.s/ds:

Adding these equations and applying the Cauchy-Schwarz inequality, we have

AC �R2 D
Z L

0

�

x.s/y0.s/ � y.s/x0.s/
�

ds D
Z L

0

�

x.s/; y.s/
�

�
�

y0.s/;�x0.s/
�

ds

�
Z L

0

k
�

x.s/; y.s/
�

kk
�

y0.s/;�x0.s/
�

kds D RL;(�)

inasmuch as k.y0.s/;�x0.s//k D k.x0.s/; y0.s//k D 1 since ˛ is arclength-parametrized. We now recall

the arithmetic-geometric mean inequality:

p
ab � aC b

2
for positive numbers a and b;

with equality holding if and only if a D b. We therefore have

p
A
p
�R2 � AC �R

2

2
� RL

2
;

so 4�A � L2.

Now suppose equality holds here. Then we must have A D �R2 and L D 2�R. It follows that the

curve C has the same breadth in all directions (since L now determines R). But equality must also hold

in (�), so the vectors ˛.s/ D
�

x.s/; y.s/
�

and
�

y0.s/;�x0.s/
�

must be everywhere parallel. Since the first

vector has length R and the second has length 1, we infer that

�

x.s/; y.s/
�

D R
�

y0.s/;�x0.s/
�

;

and so x.s/ D Ry0.s/. By our remark at the beginning of this paragraph, the same result will hold if

we rotate the axes �=2; let y D y0 be the line halfway between the enclosing horizontal lines `i . Now,

substituting y � y0 for x and �x for y, so we have y.s/ � y0 D �Rx0.s/, as well. Therefore, x.s/2 C
�

y.s/ � y0

�2 D R2.x0.s/2 C y0.s/2/ D R2, and C is indeed a circle of radius R. �

EXERCISES 1.3

1. a. Prove that the shortest path between two points on the unit sphere is an arc of a great circle con-

necting them. (Hint: Without loss of generality, take one point to be .0; 0; 1/ and the other to be

.sinu0; 0; cos u0/. Let ˛.t/ D .sinu.t/ cos v.t/; sin u.t/ sin v.t/; cos u.t//, a � t � b, be an arbi-

trary curve with u.a/ D 0, v.a/ D 0, u.b/ D u0, v.b/ D 0, calculate the arclength of ˛, and show

that it is smallest when v.t/ D 0 for all t .)

b. Prove that if P andQ are points on the unit sphere, then the shortest path between them has length

arccos.P �Q/.
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2. Give a closed plane curve C with � > 0 that is not convex.

3. Draw closed plane curves with rotation indices 0, 2, �2, and 3, respectively.

*4. Suppose C is a simple closed plane curve with 0 < � � c. Prove that length.C / � 2�=c.

5. Give an alternative proof of the latter part of Theorem 3.1 by considering instead the function

f .s/ D k QT.s/ � T�.s/k2 C k QN.s/ � N�.s/k2 C k QB.s/ � B�.s/k2 :

6. (See Exercise 1.2.15.) Prove that if C is a simple closed (convex) plane curve of constant breadth �,

then length.C / D ��.

7. Suppose C is a convex simple closed plane curve with maximum curvature �0. Prove that the distance

between any pair of parallel tangent lines of C is at least 2=�0.

8. A convex plane curve with the origin in its interior can be determined by its tangent lines .cos �/x C
.sin �/y D p.�/, called its support lines, as shown in Figure 3.7. The function p.�/ is called the

support function. (Here � is the polar coordinate, and we assume p.�/ > 0 for all � 2 Œ0; 2��.)

FIGURE 3.7

a. Prove that the line given above is tangent to the curve at the point

˛.�/ D .p.�/ cos � � p0.�/ sin �; p.�/ sin � C p0.�/ cos �/.

b. Prove that the curvature of the curve at ˛.�/ is 1
ı�

p.�/C p00.�/
�

.

c. Prove that the length of ˛ is given by L D
Z 2�

0

p.�/d� .

d. Prove that the area enclosed by ˛ is given by A D 1

2

Z 2�

0

�

p.�/2 � p0.�/2
�

d� .

e. Use the answer to part c to reprove the result of Exercise 6.

9. Let C be a C
2 closed space curve, say parametrized by arclength by ˛W Œ0; L� ! R

3. A unit normal

field X on C is a C1 vector-valued function with X.0/ D X.L/ and X.s/ �T.s/ D 0 and kX.s/k D 1 for

all s. We define the twist of X to be

tw.C;X/ D 1

2�

Z L

0

X0.s/ � .T.s/ � X.s//ds:

a. Show that if X and X� are two unit normal fields on C , then tw.C;X/ and tw.C;X�/ differ by an

integer. The fractional part of tw.C;X/ (i.e., the twist mod 1) is called the total twist of C . (Hint:

Write X.s/ D cos �.s/N.s/C sin �.s/B.s/.)

b. Prove that the total twist of C equals the fractional part of
1

2�

Z L

0

�ds.
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c. Prove that if a closed curve lies on a sphere, then its total twist is 0. (Hint: Choose an obvious

candidate for X.)

Remark. W. Scherrer proved in 1940 that if the total twist of every closed curve on a surface is 0,

then that surface must be a (subset of a) plane or sphere.

10. (See Exercise 1.2.24.) Under what circumstances does a closed space curve have a parallel curve that is

also closed? (Hint: Exercise 9 should be relevant.)

11. (The Bishop Frame) Suppose ˛ is an arclength-parametrized C
2 curve. Suppose we have C

1 unit vector

fields N1 and N2 D T � N1 along ˛ so that

T � N1 D T �N2 D N1 � N2 D 0I

i.e., T;N1;N2 will be a smoothly varying right-handed orthonormal frame as we move along the curve.

(To this point, the Frenet frame would work just fine if the curve were C
3 with � ¤ 0.) But now we

want to impose the extra condition that N0
1 � N2 D 0. We say the unit normal vector field N1 is parallel

along ˛; this means that the only change of N1 is in the direction of T. In this event, T;N1;N2 is called

a Bishop frame for ˛. A Bishop frame can be defined even when a Frenet frame cannot (e.g., when there

are points with � D 0).

a. Show that there are functions k1 and k2 so that

T0 D k1N1 C k2N2

N0
1 D �k1T

N0
2 D �k2T

b. Show that �2 D k2
1 C k2

2 .

c. Show that if ˛ is C
3 with � ¤ 0, then we can take N1 D .cos �/N C .sin �/B, where � 0 D �� .

Check that k1 D � cos � and k2 D �� sin � .

d. Show that ˛ lies on the surface of a sphere if and only if there are constants �, � so that �k1 C
�k2 C 1 D 0; moreover, if ˛ lies on a sphere of radius R, then �2 C �2 D R2. (Cf. Exercise

1.2.19.)

e. What condition is required to define a Bishop frame globally on a closed curve? (See Exercise 9.)

How is this question related to Exercise 1.2.24?

12. Prove Proposition 3.2 as follows. Let ˛W Œ0; L� ! † be the arclength parametrization of � , and define

FW Œ0; L� � Œ0; 2�/ ! † by F.s; �/ D �, where �? is the great circle making angle � with � at ˛.s/.

Check that F takes on the value � precisely #.� \ �?/ times, so that F is a “multi-parametrization” of

† that gives us
Z

†

#.� \ �?/d� D
Z L

0

Z 2�

0






@F

@s
� @F

@�





d�ds:

Compute that






@F

@s
� @F

@�





D j sin �j (this is the hard part) and finish the proof. (Hints: As pictured in

Figure 3.8, show v.s; �/ D cos�T.s/C sin�.˛.s/ � T.s// is the tangent vector to the great circle �?

and deduce that F.s; �/ D ˛.s/ � v.s; �/. Show that
@F

@�
and ˛ � @v

@s
are both multiples of v.)
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Γ

FIGURE 3.8

13. Generalize Theorem 3.5 to prove that if C is a piecewise-smooth simple closed plane curve with exterior

angles �j , j D 1; : : : ; `, then

Z

C

�ds C
X̀

j D1

�j D ˙2� . (As shown in Figure 3.9, the exterior angle �j

C

FIGURE 3.9

at ˛.sj / is defined to be the angle between ˛0
�.sj / D lim

s!s�
j

˛0.s/ and ˛0
C.sj / D lim

s!s
C

j

˛0.s/, with the

convention that j�j j � � .)

14. Complete the details of the proof of the indicated step in the proof of Theorem 3.5, as follows (following

H. Hopf’s original proof). Pick an interior point s0 2 �.

a. Choose Q�.s0/ so that h.s0/ D
�

cos Q�.s0/; sin Q�.s0/
�

. Use Lemma 3.6, slightly modified, to deter-

mine Q� uniquely as a function that is continuous on each ray
�!
s0s for every s 2 �.

b. Since a continuous function on a compact (closed and bounded) set � � R
2 is uniformly continu-

ous, given any "0 > 0, there is a number ı0 > 0 so that whenever s; s0 2 � and ks � s0k < ı0, we

will have kh.s/ � h.s0/k < "0. In particular, show that there is ı0 so that whenever s; s0 2 � and

ks� s0k < ı0, the angle between the vectors h.s/ and h.s0/ is less than � .

c. Consider the triangle formed by two radii of the unit circle making angle � . Give an upper bound

on � in terms of the chord length `. Using this, deduce that given " > 0, there is 0 < ı < ı0 so that

whenever ks � s0k < ı, we have j Q�.s/ � Q�.s0/C 2�n.s/j < " for some integer n.s/.

d. Now choose s0 D s1 2 � arbitrary. Consider the function f .u/ D Q�.s0 C u.s � s0// � Q�.s0 C
u.s1 � s0//. Show that f is continuous and f .0/ D 0, and deduce that jf .1/j < � . Conclude that

n D 0 in part c and, thus, that Q� is continuous.



CHAPTER 2

Surfaces: Local Theory

1. Parametrized Surfaces and the First Fundamental Form

Let U be an open set in R
2. A function fWU ! R

m (for us,m D 1 and 3will be most common) is called

C
1 if f and its partial derivatives

@f

@u
and

@f

@v
are all continuous. We will ordinarily use .u; v/ as coordinates

in our parameter space, and .x; y; z/ as coordinates in R
3. Similarly, for any k � 2, we say f is Ck if all its

partial derivatives of order up to k exist and are continuous. We say f is smooth if f is Ck for every positive

integer k. We will henceforth assume all our functions are C
k for k � 3. One of the crucial results for

differential geometry is that if f is C2, then
@2f

@u@v
D @2f

@v@u
(and similarly for higher-order derivatives).

Notation: We will often also use subscripts to indicate partial derivatives, as follows:

fu $ @f

@u

fv $ @f

@v

fuu $ @2f

@u2

fuv D .fu/v $ @2f

@v@u

Definition. A regular parametrization of a subset M � R
3 is a (C3) one-to-one function

xWU !M � R
3 so that xu � xv ¤ 0

for some open set U � R
2.1 A connected subset M � R

3 is called a surface if each point has a neighbor-

hood that is regularly parametrized.

We might consider the curves on M obtained by fixing v D v0 and varying u, called a u-curve, and

obtained by fixing u D u0 and varying v, called a v-curve; these are depicted in Figure 1.1. At the point

P D x.u0; v0/, we see that xu.u0; v0/ is tangent to the u-curve and xv.u0; v0/ is tangent to the v-curve.

We are requiring that these vectors span a plane, whose normal vector is given by xu � xv .

Example 1. We give some basic examples of parametrized surfaces. Note that our parameters do not

necessarily range over an open set of values.

(a) The graph of a function f WU ! R, z D f .x; y/, is parametrized by x.u; v/ D .u; v; f .u; v//.

Note that xu � xv D .�fu;�fv; 1/ ¤ 0, so this is always a regular parametrization.

1For technical reasons with which we shall not concern ourselves in this course, we should also require that the inverse function

x�1W x.U /! U be continuous. We shall also often be sloppy and use subsets U that are not quite open. The interested reader can

easily repair things by adding some companion parametrizations.

35
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FIGURE 1.1

(b) The helicoid, as shown in Figure 1.2, is the surface formed by drawing horizontal rays from the axis

FIGURE 1.2

of the helix ˛.t/ D .cos t; sin t; bt/ to points on the helix:

x.u; v/ D .u cos v; u sin v; bv/; u > 0; v 2 R:

Note that xu � xv D .b sin v;�b cos v; u/ ¤ 0. The u-curves are rays and the v-curves are helices.

(c) The torus (surface of a doughnut) is formed by rotating a circle of radius b about a circle of radius

a > b lying in an orthogonal plane, as pictured in Figure 1.3. The regular parametrization is given

b

a

FIGURE 1.3
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by

x.u; v/ D ..aC b cosu/ cos v; .aC b cosu/ sin v; b sinu/; 0 � u; v < 2�:

Then xu � xv D �b.aC b cos u/
�

cos u cos v; cos u sin v; sin u
�

, which is never 0.

(d) The standard parametrization of the unit sphere † is given by spherical coordinates .�; �/$ .u; v/:

x.u; v/ D .sinu cos v; sinu sin v; cosu/; 0 < u < �; 0 � v < 2�:

Since xu� xv D sinu.sinu cos v; sin u sin v; cos u/ D .sinu/x.u; v/, the parametrization is regular

away from u D 0; � , which we’ve excluded anyhow because x fails to be one-to-one at such points.

The u-curves are the so-called lines of longitude and the v-curves are the lines of latitude on the

sphere.

(e) Another interesting parametrization of the sphere is given by stereographic projection. (Cf. Exercise

1.1.1.) We parametrize the unit sphere less the north pole .0; 0; 1/ by the xy-plane, assigning to each

FIGURE 1.4

.u; v/ the point (¤ .0; 0; 1/) where the line through .0; 0; 1/ and .u; v; 0/ intersects the unit sphere,

as pictured in Figure 1.4. We leave it to the reader to derive the following formula in Exercise 1:

x.u; v/ D
�

2u

u2 C v2 C 1;
2v

u2 C v2 C 1;
u2 C v2 � 1
u2 C v2 C 1

�

: O

For our last examples, we give two general classes of surfaces that will appear throughout our work.

Example 2. Let I � R be an interval, and let ˛.u/ D .0; f .u/; g.u//, u 2 I , be a regular parametrized

plane curve2 with f > 0. Then the surface of revolution obtained by rotating ˛ about the z-axis is

parametrized by

x.u; v/ D
�

f .u/ cos v; f .u/ sin v; g.u/
�

; u 2 I; 0 � v < 2�:
2Throughout, we assume regular parametrized curves to be one-to-one.



38 CHAPTER 2. SURFACES: LOCAL THEORY

Note that xu � xv D f .u/
�

�g0.u/ cos v;�g0.u/ sin v; f 0.u/
�

, so this is a regular parametrization. The

u-curves are often called profile curves or meridians; these are copies of ˛ rotated an angle v around the

z-axis. The v-curves are circles, called parallels. O

Example 3. Let I � R be an interval, let ˛W I ! R
3 be a regular parametrized curve, and let ˇW I ! R

3

be an arbitrary smooth function with ˇ.u/ ¤ 0 for all u 2 I . We define a parametrized surface by

x.u; v/ D ˛.u/C vˇ.u/; u 2 I; v 2 R:

This is called a ruled surface with rulings ˇ.u/ and directrix ˛. It is easy to check that xu � xv D .˛0.u/C
vˇ0.u// � ˇ.u/, which may or may not be everywhere nonzero.

As particular examples, we have the helicoid (see Figure 1.2) and the following (see Figure 1.5):

(1) Cylinder: Here ˇ is a constant vector, and the surface is regular as long as ˛ is one-to-one with

˛0 ¤ ˇ.

(2) Cone: Here we fix a point (say the origin) as the vertex, let ˛ be a curve with ˛ � ˛0 ¤ 0, and let

ˇ D �˛. Obviously, this fails to be a regular surface at the vertex (when v D 1), but xu � xv D
.v� 1/˛.u/�˛0.u/ is nonzero otherwise. (Note that another way to parametrize this surface would

be to take ˛� D 0 and ˇ� D ˛.)

(3) Tangent developable: Let ˛ be a regular parametrized curve with nonzero curvature, and let ˇ D ˛0;

that is, the rulings are the tangent lines of the curve ˛. Then xu � xv D �v˛0.u/ � ˛00.u/, so (at

least locally) this is a regular parametrized surface away from the directrix. O

FIGURE 1.5

In calculus, we learn that, given a differentiable function f , the best linear approximation to the graph

y D f .x/ “near” x D a is given by the tangent line y D f 0.a/.x � a/ C f .a/, and similarly in higher

dimensions. In the case of a regular parametrized surface, it seems reasonable that the tangent plane at

P D x.u0; v0/ should contain the tangent vector to the u-curve ˛1.u/ D x.u; v0/ at u D u0 and the tangent

vector to the v-curve ˛2.v/ D x.u0; v/ at v D v0. That is, the tangent plane should contain the vectors xu

and xv , each evaluated at .u0; v0/. Now, since xu�xv ¤ 0 by hypothesis, the vectors xu and xv are linearly

independent and must therefore span a plane. We now make this an official

Definition. LetM be a regular parametrized surface, and let P 2 M . Then choose a regular parametriza-

tion xWU ! M � R
3 with P D x.u0; v0/. We define the tangent plane of M at P to be the subspace

TPM spanned by xu and xv (evaluated at .u0; v0/).

Remark . The alert reader may wonder what happens if two people pick two different such local

parametrizations of M near P . Do they both provide the same plane TPM ? This sort of question is very
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common in differential geometry, and is not one we intend to belabor in this introductory course. However,

to get a feel for how such arguments go, the reader may work Exercise 15.

There are two unit vectors orthogonal to the tangent plane TPM . Given a regular parametrization x,

we know that xu � xv is a nonzero vector orthogonal to the plane spanned by xu and xv; we obtain the

corresponding unit vector by taking

n D xu � xv

kxu � xvk
:

This is called the unit normal of the parametrized surface.

Example 4. We know from basic geometry and vector calculus that the unit normal of the unit sphere

centered at the origin should be the position vector itself. This is in fact what we discovered in Example

1(d). O

Example 5. Consider the helicoid given in Example 1(b). Then, as we saw, xu � xv D
.b sin v;�b cos v; u/, and n D 1p

u2 C b2
.b sin v;�b cos v; u/. As we move along a ruling v D v0, the

normal starts horizontal at u D 0 (where the surface becomes vertical) and rotates in the plane orthogonal

to the ruling, becoming more and more vertical as we move out the ruling. O

We saw in Chapter 1 that the geometry of a space curve is best understood by calculating (at least in

principle) with an arclength parametrization. It would be nice, analogously, if we could find a parametriza-

tion x.u; v/ of a surface so that xu and xv form an orthonormal basis at each point. We’ll see later that this

can happen only very rarely. But it makes it natural to introduce what is classically called the first funda-

mental form, IP .U;V/ D U � V, for U;V 2 TPM . Working in a parametrization, we have the natural basis

fxu; xvg, and so we define

E D IP .xu; xu/ D xu � xu

F D IP .xu; xv/ D xu � xv D xv � xu D IP .xv; xu/

G D IP .xv; xv/ D xv � xv ;

and it is often convenient to put these in as entries of a (symmetric) matrix:

IP D
"

E F

F G

#

:

Then, given tangent vectors U D axu C bxv and V D cxu C dxv 2 TPM , we have

U � V D IP .U;V/ D .axu C bxv/ � .cxu C dxv/ D E.ac/C F.ad C bc/CG.bd/:

In particular, kUk2 D IP .U;U/ D Ea2 C 2Fab CGb2.

Suppose M and M � are surfaces. We say they are locally isometric if for each P 2 M there are a

regular parametrization xWU ! M with x.u0; v0/ D P and a regular parametrization x�WU ! M � (using

the same domain U � R
2) with the property that IP D I�

P � whenever P D x.u; v/ and P � D x�.u; v/ for

some .u; v/ 2 U . That is, the function f D x�ıx�1W x.U / ! x�.U / is a one-to-one correspondence that

preserves the first fundamental form and is therefore distance-preserving (see Exercise 2).
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fold seal

FIGURE 1.6

Example 6. Parametrize a portion of the plane (say, a piece of paper) by x.u; v/ D .u; v; 0/ and a

portion of a cylinder by x�.u; v/ D .cos u; sinu; v/. Then it is easy to calculate that E D E� D 1,

F D F � D 0, and G D G� D 1, so these surfaces, pictured in Figure 1.6, are locally isometric. On the

other hand, if we let u vary from 0 to 2� , the rectangle and the cylinder are not globally isometric because

points far away in the rectangle can become very close (or identical) in the cylinder. O

If ˛.t/ D x.u.t/; v.t// is a curve on the parametrized surface M with ˛.t0/ D x.u0; v0/ D P , then it

is an immediate consequence of the chain rule, Theorem 2.2 of the Appendix, that

˛0.t0/ D u0.t0/xu.u0; v0/C v0.t0/xv.u0; v0/:

(Customarily we will write simply xu, the point .u0; v0/ at which it is evaluated being assumed.) That is,

if the tangent vector .u0.t0/; v0.t0// back in the “parameter space” is .a; b/, then the tangent vector to ˛

at P is the corresponding linear combination axu C bxv . In fancy terms, this is merely a consequence of

the linearity of the derivative of x. We say a parametrization x.u; v/ is conformal if angles measured in the

x P

FIGURE 1.7

uv-plane agree with corresponding angles in TPM for all P . We leave it to the reader to check in Exercise

6 that this is equivalent to the conditions E D G, F D 0.

Since

"

E F

F G

#

D
"

xu � xu xu � xv

xv � xu xv � xv

#

D

2

6
4

j j
xu xv

j j

3

7
5

T2

6
4

j j
xu xv

j j

3

7
5 ;
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we have

EG � F 2 D det

 "

xu � xu xu � xv

xv � xu xv � xv

#!

D det

0

B
@

2

6
4

xu � xu xu � xv 0

xv � xu xv � xv 0

0 0 1

3

7
5

1

C
A

D det

0

B
@

2

6
4

j j j
xu xv n

j j j

3

7
5

T2

6
4

j j j
xu xv n

j j j

3

7
5

1

C
A D

0

B
@det

2

6
4

j j j
xu xv n

j j j

3

7
5

1

C
A

2

;

which is the square of the volume of the parallelepiped spanned by xu, xv , and n. Since n is a unit vector

orthogonal to the plane spanned by xu and xv , this is, in turn, the square of the area of the parallelogram

spanned by xu and xv . That is,

EG � F 2 D kxu � xvk2 > 0:
We remind the reader that we obtain the surface area of the parametrized surface xWU !M by calculating

the double integral
Z

U

kxu � xvkdudv D
Z

U

p
EG � F 2dudv:

EXERCISES 2.1

1. Derive the formula given in Example 1(e) for the parametrization of the unit sphere.

]2. Suppose ˛.t/ D x.u.t/; v.t//, a � t � b, is a parametrized curve on a surface M . Show that

length.˛/ D
Z b

a

q

I˛.t/

�

˛0.t/;˛0.t/
�

dt

D
Z b

a

q

E.u.t/; v.t//.u0.t//2 C 2F.u.t/; v.t//u0.t/v0.t/CG.u.t/; v.t//.v0.t//2dt :

Conclude that if ˛ � M and ˛� � M � are corresponding paths in locally isometric surfaces, then

length.˛/ D length.˛�/.

3. Compute I (i.e., E, F , and G) for the following parametrized surfaces.

*a. the sphere of radius a: x.u; v/ D a.sinu cos v; sin u sin v; cos u/

b. the torus: x.u; v/ D ..aC b cosu/ cos v; .aC b cosu/ sin v; b sinu/ (0 < b < a)

c. the helicoid: x.u; v/ D .u cos v; u sin v; bv/

*d. the catenoid: x.u; v/ D a.coshu cos v; cosh u sin v; u/

4. Find the surface area of the following parametrized surfaces.

*a. the torus: x.u; v/ D ..aC b cosu/ cos v; .aC b cosu/ sin v; b sinu/ (0 < b < a), 0 � u; v � 2�
b. a portion of the helicoid: x.u; v/ D .u cos v; u sin v; bv/, 1 < u < 3, 0 � v � 2�
c. a zone of a sphere3: x.u; v/ D a.sinu cos v; sinu sin v; cos u/, 0 � u0 � u � u1 � � ,

0 � v � 2�
3You should obtain the remarkable result that the surface area of the portion of a sphere between two parallel planes depends

only on the distance between the planes, not on where you locate them.
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*5. Show that if all the normal lines to a surface pass through a fixed point, then the surface is (a portion of)

a sphere. (By the normal line to M at P we mean the line passing through P with direction vector the

unit normal at P .)

6. Check that the parametrization x.u; v/ is conformal if and only if E D G and F D 0. (Hint: For H),

choose two convenient pairs of orthogonal directions.)

*7. Check that a parametrization preserves area and is conformal if and only if it is a local isometry.

*8. Check that the parametrization of the unit sphere by stereographic projection (see Example 1(e)) is

conformal.

9. (Lambert’s cylindrical projection) Project the unit sphere (except for the north and south poles) radially

outward to the cylinder of radius 1 by sending .x; y; z/ to .x=
p

x2 C y2; y=
p

x2 C y2; z/. Check that

this map preserves area locally, but is neither a local isometry nor conformal. (Hint: Let x.u; v/ be

the spherical coordinates parametrization of the sphere, and consider x�.u; v/ D .cos v; sin v; cos u/.

Compare the parallelogram formed by xu and xv with the parallelogram formed by x�
u and x�

v .)

]10. Consider the “pacman” region M given by x.u; v/ D .u cos v; u sin v; 0/, 0 � u � R, 0 � v � V , with

V < 2� . Let c D V=2� . Let M � be given by the parametrization

x�.u; v/ D
�

cu cos.v=c/; cu sin.v=c/;
p
1� c2u

�

; 0 � u � R; 0 � v � V :

Compute that E D E�, F D F �, andG D G�, and conclude that the mapping f D x�ıx�1WM !M �

is a local isometry. Describe this mapping in concrete geometric terms.

11. Consider the hyperboloid of one sheet, M , given by the equation x2 C y2 � z2 D 1.

a. Show that x.u; v/ D .cosh u cos v; cosh u sin v; sinh u/, u 2 R, 0 � v < 2� , gives a parametriza-

tion of M as a surface of revolution.

*b. Find two parametrizations of M as a ruled surface ˛.u/C vˇ.u/.

c. Show that x.u; v/ D
�
uv C 1
uv � 1 ;

u � v
uv � 1;

uC v
uv � 1

�

gives a parametrization of M where both sets of

parameter curves are rulings.

]12. Given a ruled surface M parametrized by x.u; v/ D ˛.u/C vˇ.u/ with ˛0 ¤ 0 and kˇk D 1.

a. Check that we may assume that ˛0.u/ � ˇ.u/ D 0 for all u. (Hint: Replace ˛.u/ with ˛.u/ C
t.u/ˇ.u/ for a suitable function t .)

b. Suppose, moreover, that ˛0.u/, ˇ.u/, and ˇ0.u/ are linearly dependent for every u. Conclude that

ˇ0.u/ D �.u/˛0.u/ for some function �. Prove that:

(i) If �.u/ D 0 for all u, then M is a cylinder.

(ii) If � is a nonzero constant, then M is a cone.

(iii) If � and �0 are both nowhere zero, thenM is a tangent developable. (Hint: Find the directrix.)

13. (The Mercator projection) Mercator developed his system for mapping the earth, as pictured in Figure

1.8, in 1569, about a century before the advent of calculus. We want a parametrization x.u; v/ of the

sphere, u 2 R, v 2 .��;�/, so that the u-curves are the longitudes and so that the parametrization is

conformal. Letting .�; �/ be the usual spherical coordinates, write � D f .u/ and � D v. Show that
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u

v

FIGURE 1.8

conformality and symmetry about the equator will dictate f .u/ D 2 arctan.e�u/. Deduce that

x.u; v/ D .sech u cos v; sech u sin v; tanh u/:

(Cf. Example 2 in Section 1 of Chapter 1.)

14. A parametrization x.u; v/ is called a Tschebyschev net if the opposite sides of any quadrilateral formed

by the coordinate curves have equal length.

a. Prove that this occurs if and only if
@E

@v
D @G

@u
D 0. (Hint: Express the length of the u-curves,

u0 � u � u1, as an integral and use the fact that this length is independent of v.)

b. Prove that we can locally reparametrize by Qx. Qu; Qv/ so as to obtain QE D QG D 1, QF D cos �. Qu; Qv/
(so that the Qu- and Qv-curves are parametrized by arclength and meet at angle � ). (Hint: Choose Qu
as a function of u so that Qx Qu D xu

ı

.d Qu=du/ has unit length.)

15. Suppose x and y are two parametrizations of a surface M near P . Say x.u0; v0/ D P D y.s0; t0/.

Prove that Span.xu; xv/ D Span.ys; yt / (where the partial derivatives are all evaluated at the obvious

points). (Hint: f D x�1ıy gives a C
1 map from an open set around .s0; t0/ to an open set around

.u0; v0/. Apply the chain rule to show ys; yt 2 Span.xu; xv/.)

16. (A programmable calculator, Maple, or Mathematica will be needed for parts of this problem.) A

catenoid, as pictured in Figure 1.9, is parametrized by

x.u; v/ D .a cosh u cos v; a cosh u sin v; au/; u 2 R; 0 � v < 2� .a > 0 fixed/:

*a. Compute the surface area of that portion of the catenoid given by juj � 1=a. (Hint: cosh2 u D
1
2
.1C cosh 2u/.)

b. Find the number R0 > 0 so that for every R � R0, there is at least one catenoid whose boundary

is the pair of parallel circles x2 C y2 D R2, jzj D 1. (Hint: Graph f .t/ D t cosh.1=t/.)

c. For R � R0, compare the area of the catenoid(s) with 2�R2 (the area of the pair of disks filling in

the circles). For what values of R does the pair of disks have the least area? (You should display

the results of your investigation in either a graph or a table.)
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FIGURE 1.9

d. (For extra credit) Show that as R ! 1, the area of the inner catenoid is asymptotic to 2�R2 and

the area of the outer catenoid is asymptotic to 4�R.

17. There are two obvious families of circles on a torus. Find a third family. (Hint: Look for a plane that

is tangent to the torus at two points. Using the parametrization of the torus, you should be able to find

equations (either parametric or cartesian) for the curve in which the bitangent plane intersects the torus.)

2. The Gauss Map and the Second Fundamental Form

Given a regular parametrized surface M , the function nWM ! † that assigns to each point P 2M the

unit normal n.P /, as pictured in Figure 2.1, is called the Gauss map of M . As we shall see in this chapter,

n
n(P)

P

FIGURE 2.1

most of the geometric information about our surface M is encapsulated in the mapping n.

Example 1. A few basic examples are these.

(a) On a plane, the tangent plane never changes, so the Gauss map is a constant.

(b) On a cylinder, the tangent plane is constant along the rulings, so the Gauss map sends the entire

surface to an equator of the sphere.

(c) On a sphere centered at the origin, the Gauss map is merely the (normalized) position vector.

(d) On a saddle surface (as pictured in Figure 2.1), the Gauss map appears to “reverse orientation”: As

we move counterclockwise in a small circle around P , we see that the unit vector n turns clockwise

around n.P /. O
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Recall from the Appendix that for any function f on M (scalar- or vector-valued) and any tangent

vector V 2 TPM , we can compute the directional derivative DVf .P / by choosing a curve ˛W .�"; "/!M

with ˛.0/ D P and ˛0.0/ D V and computing .f ı˛/0.0/.

To understand the shape of M at the point P , we might try to understand the curvature at P of various

curves in M . Perhaps the most obvious thing to try is various normal slices of M . That is, we slice M

with the plane through P spanned by n.P / and a unit vector V 2 TPM . Various such normal slices are

shown for a saddle surface in Figure 2.2. Let ˛ be the arclength-parametrized curve obtained by taking such

FIGURE 2.2

a normal slice. We have ˛.0/ D P and ˛0.0/ D V. Then since the curve lies in the plane spanned by n.P /

and V, the principal normal of the curve at P must be˙n.P / (C if the curve is curving towards n, � if it’s

curving away). Since .nı˛.s// � T.s/ D 0 for all s near 0, applying Lemma 2.1 of Chapter 1 yet again, we

have:

(�) ˙�.P / D �N � n.P / D T0.0/ � n.P / D �T.0/ � .nı˛/0.0/ D �DVn.P / �V:

This leads us to study the directional derivative DVn.P / more carefully.

Proposition 2.1. For any V 2 TPM , the directional derivative DVn.P / 2 TPM . Moreover, the linear

map SP WTPM ! TPM defined by

SP .V/ D �DVn.P /

is a symmetric linear map; i.e., for any U;V 2 TPM , we have

(�) SP .U/ � V D U � SP .V/

SP is called the shape operator at P .

Proof. For any curve ˛W .�"; "/!M with ˛.0/ D P and ˛0.0/ D V, we observe that nı˛ has constant

length 1. Thus, by Lemma 2.1 of Chapter 1, DVn.P / � n.P / D .nı˛/0.0/ � .nı˛/.0/ D 0, so DVn.P / is in
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the tangent plane toM at P . That SP is a linear map is an immediate consequence of Proposition 2.3 of the

Appendix.

Symmetry is our first important application of the equality of mixed partial derivatives. First we verify

(�) when U D xu, V D xv . Note that n � xv D 0, so 0 D
�

n � xv

�

u D nu � xv C n � xvu. (Remember that

we’re writing nu for Dxu
n.) Thus,

SP .xu/ � xv D �Dxu
n.P / � xv D �nu � xv D n � xvu

D n � xuv D �nv � xu D �Dxv
n.P / � xu D SP .xv/ � xu :

Next, knowing this, we just write out general vectors U and V as linear combinations of xu and xv: If

U D axu C bxv and V D cxu C dxv , then

SP .U/ �V D SP .axu C bxv/ � .cxu C dxv/

D
�

aSP .xu/C bSP .xv/
�

� .cxu C dxv/

D acSP .xu/ � xu C adSP .xu/ � xv C bcSP .xv/ � xu C bdSP .xv/ � xv

D acSP .xu/ � xu C adSP .xv/ � xu C bcSP .xu/ � xv C bdSP .xv/ � xv

D .axu C bxv/ �
�

cSP .xu/C dSP .xv/
�

D U � SP .V/;

as required. �

Proposition 2.2. If the shape operator SP is O for all P 2 M , then M is a subset of a plane.

Proof. Since the directional derivative of the unit normal n is 0 in every direction at every point P , we

have nu D nv D 0 for any (local) parametrization x.u; v/ of M . By Proposition 2.4 of the Appendix, it

follows that n is constant. (This is why we assume our surfaces are connected.) �

Example 2. Let M be a sphere of radius a centered at the origin. Then n D 1

a
x.u; v/, so for any P ,

we have SP .xu/ D �nu D �
1

a
xu and SP .xv/ D �nv D �

1

a
xv , so SP is �1=a times the identity map on

the tangent plane TPM . O

It does not seem an easy task to give the matrix of the shape operator with respect to the basis fxu; xvg.
But, in general, the proof of Proposition 2.1 suggests that we define the second fundamental form, as follows.

If U;V 2 TPM , we set

IIP .U;V/ D SP .U/ � V:
Note that the formula (�) on p. 45 shows that the curvature of the normal slice in direction V (with kVk D 1)

is, in our new notation, given by

˙� D �DVn.P / � V D SP .V/ �V D IIP .V;V/:

As we did at the end of the previous section, we wish to give a matrix representation when we’re working

with a parametrized surface. As we saw in the proof of Proposition 2.1, we have

` D IIP .xu; xu/D �Dxu
n � xu D xuu � n

m D IIP .xu; xv/D �Dxu
n � xv D xvu � n D xuv � n D IIP .xv; xu/

n D IIP .xv; xv/D �Dxv
n � xv D xvv � n:
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(By the way, this explains the presence of the minus sign in the original definition of the shape operator.)

We then write

IIP D
"

` m

m n

#

D
"

xuu � n xuv � n
xuv � n xvv � n

#

:

If, as before, U D axu C bxv and V D cxu C dxv , then

IIP .U;V/ D IIP .axu C bxv; cxu C dxv/

D acIIP .xu; xu/C ad IIP .xu; xv/C bcIIP .xv; xu/C bd IIP .xv; xv/

D `.ac/Cm.bc C ad/C n.bd/:

In the event that fxu; xvg is an orthonormal basis for TPM , we see that the matrix IIP represents the

shape operator SP . But it is not difficult to check (see Exercise 2) that, in general, the matrix of the linear

map SP with respect to the basis fxu; xvg is given by

I�1
P IIP D

"

E F

F G

#�1 "

` m

m n

#

:

Remark. We proved in Proposition 2.1 that SP is a symmetric linear map. This means that its matrix

representation with respect to an orthonormal basis (or, more generally, orthogonal basis with vectors of

equal length) will be symmetric: In this case the matrix IP is a scalar multiple of the identity matrix and the

matrix product remains symmetric.

By the Spectral Theorem, Theorem 1.3 of the Appendix, SP has two real eigenvalues, traditionally

denoted k1.P /, k2.P /.

Definition. The eigenvalues of SP are called the principal curvatures of M at P . Corresponding

eigenvectors are called principal directions. A curve in M is called a line of curvature if its tangent vector

at each point is a principal direction.

Recall that it also follows from the Spectral Theorem that the principal directions are orthogonal, so we can

always choose an orthonormal basis for TPM consisting of principal directions. Having done so, we can

then easily determine the curvatures of normal slices in arbitrary directions, as follows.

Proposition 2.3 (Euler’s Formula). Let e1; e2 be unit vectors in the principal directions at P with

corresponding principal curvatures k1 and k2. Suppose V D cos �e1 C sin �e2 for some � 2 Œ0; 2�/, as

pictured in Figure 2.3. Then IIP .V;V/ D k1 cos2 � C k2 sin2 � .

e1

e2

V

FIGURE 2.3

Proof. This is a straightforward computation: Since SP .ei / D ki ei for i D 1; 2, we have

IIP .V;V/ D SP .V/ �V D SP .cos �e1 C sin �e2/ � .cos �e1 C sin �e2/
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D .cos �k1e1 C sin �k2e2/ � .cos �e1 C sin �e2/ D k1 cos2 � C k2 sin2 � ;

as required. �

On a sphere, all normal slices have the same (nonzero) curvature. On the other hand, if we look carefully

at Figure 2.2, we see that certain normal slices of a saddle surface are true lines. This leads us to make the

following

Definition. If the normal slice in direction V has zero curvature, i.e., if IIP .V;V/ D 0, then we call V

an asymptotic direction.4 A curve inM is called an asymptotic curve if its tangent vector at each point is an

asymptotic direction.

Example 3. If a surface M contains a line, that line is an asymptotic curve. For the normal slice in

the direction of the line contains the line (and perhaps other things far away), which, of course, has zero

curvature. O

Corollary 2.4. There is an asymptotic direction at P if and only if k1k2 � 0.

Proof. k2 D 0 if and only if e2 is an asymptotic direction. Now suppose k2 ¤ 0. If V is a unit

asymptotic vector making angle � with e1, then we have k1 cos2 �Ck2 sin2 � D 0, and so tan2 � D �k1=k2,

so k1k2 � 0. Conversely, if k1k2 < 0, take � with tan � D ˙
p

�k1=k2, and then V is an asymptotic

direction. �

Example 4. We consider the helicoid, as pictured in Figure 1.2. It is a ruled surface and so the rulings

are asymptotic curves. What is quite less obvious is that the family of helices on the surface are also

asymptotic curves. But, as we see in Figure 2.4, the normal slice tangent to the helix at P has an inflection

P

FIGURE 2.4

point at P , and therefore the helix is an asymptotic curve. We ask the reader to check this by calculation in

Exercise 5. O

4Of course, V ¤ 0 here. See Exercise 22 for an explanation of this terminology.
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It is also an immediate consequence of Proposition 2.3 that the principal curvatures are the maximum

and minimum (signed) curvatures of the various normal slices. Assume k2 � k1. Then

k1 cos2 � C k2 sin2 � D k1.1� sin2 �/C k2 sin2 � D k1 C .k2 � k1/ sin2 � � k1

(and, similarly, � k2). Moreover, as the Spectral Theorem tells us, the maximum and minimum occur at

right angles to one another. Looking back at Figure 2.2, where the slices are taken at angles in increments

of �=8, we see that the normal slices that are “most curved” appear in the third and seventh frames; the

asymptotic directions appear in the second and fourth frames. (Cf. Exercise 8.)

Next we come to one of the most important concepts in the geometry of surfaces:

Definition. The product of the principal curvatures is called the Gaussian curvature: K D det SP D
k1k2. The average of the principal curvatures is called the mean curvature: H D 1

2
trSP D 1

2
.k1 C k2/.

We say M is a minimal surface if H D 0 and flat if K D 0.

Note that whereas the signs of the principal curvatures change if we reverse the direction of the unit normal

n, the Gaussian curvature K, being the product of both, is independent of the choice of unit normal. (And

the sign of the mean curvature depends on the choice.)

Example 5. It follows from our comments in Example 1 that both a plane and a cylinder are flat surfaces:

In the former case, SP D O for all P , and, in the latter, det SP D 0 for all P since the shape operator is

singular. O

Example 6. Consider the saddle surface x.u; v/ D .u; v; uv/. We compute:

xu D .1; 0; v/ xuu D .0; 0; 0/
xv D .0; 1; u/ xuv D .0; 0; 1/

n D 1p
1C u2 C v2

.�v;�u; 1/ xvv D .0; 0; 0/;

and so

E D 1C v2; F D uv; G D 1C u2 ; and ` D n D 0;m D 1p
1C u2 C v2

:

Thus, with P D x.u; v/, we have

IP D
"

1C v2 uv

uv 1C u2

#

and IIP D
1p

1C u2 C v2

"

0 1

1 0

#

;

so the matrix of the shape operator with respect to the basis fxu; xvg is given by

SP D I�1
P IIP D

1

.1C u2 C v2/3=2

"

�uv 1C u2

1C v2 �uv

#

:

(Note that this matrix is, in general, not symmetric.)

With a bit of calculation, we determine that the principal curvatures (eigenvalues) are

k1 D
�uv C

p

.1C u2/.1C v2/

.1C u2 C v2/3=2
and k2 D

�uv �
p

.1C u2/.1C v2/

.1C u2 C v2/3=2
;
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and K D detSP D �1=.1C u2 C v2/2. Note from the form of IIP that the u- and v-curves are asymptotic

curves, as should be evident from the fact that these are lines. With a bit more work, we determine that the

principal directions, i.e., the eigenvectors of SP , are the vectors
p

1C u2xu ˙
p

1C v2xv :

(It is worth checking that these vectors are, in fact, orthogonal.) The corresponding curves in the uv-plane

have tangent vectors
�p
1C u2;˙

p
1C v2

�

and must therefore be solutions of the differential equation

dv

du
D ˙
p
1C v2

p
1C u2

:

If we substitute v D sinh q,
R

dv=
p
1C v2 D

R

dq D q D arcsinh v, so, separating variables, we obtain
Z

dvp
1C v2

D ˙
Z

dup
1C u2

I i.e., arcsinh v D ˙ arcsinh uC c:

Since sinh.x C y/ D sinh x cosh y C cosh x sinh y, we obtain

v D sinh.˙ arcsinh uC c/ D ˙.cosh c/uC .sinh c/
p

1C u2:

When c D 0, we get v D ˙u (as should be expected on geometric grounds). As c varies through nonzero

values, we obtain a family of hyperbolas. Some typical lines of curvature on the saddle surface are indicated

in Figure 2.5. O

FIGURE 2.5

Definition. Fix P 2 M . We say P is an umbilic5 if k1 D k2. If k1 D k2 D 0, we say P is a planar

point. If K D 0 but P is not a planar point, we say P is a parabolic point. If K > 0, we say P is an elliptic

point, and if K < 0, we say P is a hyperbolic point.

Example 7. On the “outside” of a torus (see Figure 1.3), all the normal slices curve in the same direction,

so these are elliptic points. Now imagine laying a plane on top of a torus; it is tangent to the torus along

the “top circle,” and so the unit normal to the surface stays constant as we move around this curve. For

any point P on this circle and V tangent to the circle, we have SP .V/ D �DVn D 0, so V is a principal

direction with corresponding principal curvature 0. Thus, these are parabolic points. On the other hand,

consider a point P on the innermost band of the torus. At such a point the surface looks saddle-like; that is,

with the unit normal as pictured in Figure 2.6, the horizontal circle (going around the inside of the torus) is a

5From the Latin umbilı̄cus, navel.
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n

FIGURE 2.6

line of curvature with positive principal curvature, and the vertical circle is a line of curvature with negative

principal curvature. Thus, the points on the inside of the torus are hyperbolic points. O

Remark. Gauss’s original interpretation of Gaussian curvature was the following: Imagine a small

curvilinear rectangle P at P 2M with sides h1 and h2 along principal directions. Then, since the principal

directions are eigenvectors of the shape operator, the image of P under the Gauss map is nearly a small

curvilinear rectangle at n.P / 2 † with sides k1h1 and k2h2. Thus, K D k1k2 is the factor by which n

distorts signed area as it maps M to †. (Note that for a cylinder, the rectangle collapses to a line segment;

for a saddle surface, orientation is reversed by n and so the Gaussian curvature is negative.)

Let’s close this section by revisiting our discussion of the curvature of normal slices. Suppose ˛ is an

arclength-parametrized curve lying on M with ˛.0/ D P and ˛0.0/ D V. Then the calculation in formula

(�) on p. 45 shows that

IIP .V;V/ D �N � nI
i.e., IIP .V;V/ gives the component of the curvature vector �N of ˛ normal to the surface M at P , which

we denote by �n and call the normal curvature of ˛ at P . What is remarkable about this formula is that it

shows that the normal curvature depends only on the direction of ˛ at P and otherwise not on the curve.

(For the case of the normal slice, the normal curvature is, up to a sign, all the curvature.) What’s more, �n

can be computed just from the second fundamental form II of M . We immediately deduce the following

Proposition 2.5 (Meusnier’s Formula). Let ˛ be a curve on M passing through P with unit tangent

vector V. Then

IIP .V;V/ D �n D � cos�;

where � is the angle between the principal normal, N, of ˛ and the surface normal, n, at P .

In particular, if ˛ is an asymptotic curve, then its normal curvature is 0 at each point. This means that,

so long as � ¤ 0, its principal normal is always orthogonal to the surface normal, i.e., always tangent to the

surface.

Example 8. Let’s now investigate a very interesting surface, called the pseudosphere, as shown in

Figure 2.7. It is the surface of revolution obtained by rotating the tractrix (see Example 2 of Chapter 1,

Section 1) about the x-axis, and so it is parametrized by

x.u; v/ D .u � tanh u; sech u cos v; sech u sin v/; u > 0; v 2 Œ0; 2�/:

Note that the circles (of revolution) are lines of curvature: Either apply Exercise 15 or observe, directly, that

the only component of the surface normal that changes as we move around the circle is normal to the circle
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n Nx

y

z

FIGURE 2.7

in the plane of the circle. Similarly, the various tractrices are lines of curvature: In the plane of one tractrix,

the surface normal and the curve normal agree.

Now, by Exercise 1.2.5, the curvature of the tractrix is � D 1= sinh u; since N D �n along this curve,

we have k1 D �n D �1= sinh u. Now what about the circles? Here we have � D 1= sech u D cosh u,

but this is not the normal curvature. The angle � between N and n is the supplement of the angle � we

see in Figure 1.9 of Chapter 1 (to see why, see Figure 2.8). Thus, by Meusnier’s Formula, Proposition 2.5,

n N
tanh u

1

FIGURE 2.8

we have k2 D �n D � cos � D .cosh u/.tanh u/ D sinh u. Amazingly, then, we have K D k1k2 D
.�1= sinh u/.sinh u/ D �1. O

Example 9. Let’s now consider the case of a general surface of revolution, parametrized as in Example

2 of Section 1, by

x.u; v/ D
�

f .u/ cos v; f .u/ sin v; g.u/
�

;

where f 0.u/2 C g0.u/2 D 1. Recall that the u-curves are called meridians and the v-curves are called

parallels. Then

xu D
�

f 0.u/ cos v; f 0.u/ sin v; g0.u/
�

xv D
�

�f .u/ sin v; f .u/ cos v; 0
�

n D
�

�g0.u/ cos v;�g0.u/ sin v; f 0.u/
�

xuu D
�

f 00.u/ cos v; f 00.u/ sin v; g00.u/
�

xuv D
�

�f 0.u/ sin v; f 0.u/ cos v; 0
�

xvv D
�

�f .u/ cos v;�f .u/ sin v; 0
�

;
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and so we have

E D 1; F D 0; G D f .u/2; and ` D f 0.u/g00.u/ � f 00.u/g0.u/; m D 0; n D f .u/g0.u/:

By Exercise 2.2.1, then k1 D f 0.u/g00.u/ � f 00.u/g0.u/ and k2 D g0.u/=f .u/. Thus,

K D k1k2 D
�

f 0.u/g00.u/ � f 00.u/g0.u/
�g0.u/

f .u/
D �f

00.u/

f .u/
;

since from f 0.u/2 C g0.u/2 D 1 we deduce that f 0.u/f 00.u/C g0.u/g00.u/ D 0, and so

f 0.u/g0.u/g00.u/ � f 00.u/g0.u/2 D �.f 0.u/2 C g0.u/2/f 00.u/ D �f 00.u/:

Note, as we observed in the special case of Example 8, that on every surface of revolution, the meridians

and the parallels are lines of curvature. O

EXERCISES 2.2

*1. Check that if there are no umbilic points and the parameter curves are lines of curvature, then F D
m D 0 and we have the principal curvatures k1 D `=E and k2 D n=G. Conversely, prove that if

F D m D 0, then the parameter curves are lines of curvature.

]2. a. Show that the matrix representing the linear map SP WTPM ! TPM with respect to the basis

fxu; xvg is

I�1
P IIP D

"

E F

F G

#�1 "

` m

m n

#

:

(Hint: Write SP .xu/ D axu C bxv and SP .xv/ D cxu C dxv , and use the definition of `, m, and

n to get a system of linear equations for a, b, c, and d .)

b. Deduce that K D `n �m2

EG � F 2
.

3. Compute the second fundamental form IIP of the following parametrized surfaces. Then calculate the

matrix of the shape operator, and determine H and K.

a. the cylinder: x.u; v/ D .a cosu; a sinu; v/

*b. the torus: x.u; v/ D ..aC b cosu/ cos v; .aC b cosu/ sin v; b sinu/ (0 < b < a)

c. the helicoid: x.u; v/ D .u cos v; u sin v; bv/

*d. the catenoid: x.u; v/ D a.coshu cos v; cosh u sin v; u/

e. the Mercator parametrization of the sphere: x.u; v/ D .sechu cos v; sech u sin v; tanh u/

f. Enneper’s surface: x.u; v/ D .u � u3=3C uv2; v � v3=3C u2v; u2 � v2/

4. Find the principal curvatures, the principal directions, and asymptotic directions (when they exist) for

each of the surfaces in Exercise 3. Identify the lines of curvature and asymptotic curves when possible.

*5. Prove by calculation that any one of the helices ˛.t/ D .a cos t; a sin t; bt/ is an asymptotic curve on

the helicoid given in Example 1(b) of Section 1. Also, calculate how the surface normal n changes as

one moves along a ruling, and use this to explain why the rulings are asymptotic curves as well.
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*6. Calculate the first and second fundamental forms of the pseudosphere (see Example 8) and check our

computations of the principal curvatures and Gaussian curvature.

7. Show that a ruled surface has Gaussian curvature K � 0.

8. a. Prove that the principal directions bisect the asymptotic directions at a hyperbolic point. (Hint:

Euler’s Formula.)

b. Prove that if the asymptotic directions ofM are orthogonal, thenM is minimal. Prove the converse

assuming M has no planar points.

9. Let �n.�/ denote the normal curvature in the direction making angle � with the first principal direction.

a. Show that H D 1

2�

Z 2�

0

�n.�/d� .

b. Show that H D 1

2

�

�n.�/C �n

�

� C �

2

��

for any � .

c. (More challenging) Show that, more generally, for any � and m � 3, we have

H D 1

m

�

�n.�/C �n

�

� C 2�

m

�

C � � � C �n

�

� C 2�.m � 1/
m

�
�

.

10. Consider the ruled surface M given by x.u; v/ D .v cosu; v sin u; uv/, v > 0.

a. Describe this surface geometrically.

b. Find the first and second fundamental forms and the Gaussian curvature of M .

c. Check that the v-curves are lines of curvature.

d. Proceeding somewhat as in Example 6, show that the other lines of curvature are given by the

equation v
p
1C u2 D c for various constants c. Show that these curves are the intersection of M

with the spheres x2 C y2 C z2 D c2. (It might be fun to use Mathematica to see this explicitly.)

11. The curve ˛.t/ D x.u.t/; v.t// may arise by writing
dv

du
D v0.t/

u0.t/
and solving a differential equation to

relate u and v either explicitly or implicitly.

a. Show that ˛ is an asymptotic curve if and only if `.u0/2 C 2mu0v0 C n.v0/2 D 0. Thus, if

`C 2mdv
du
C n

�
dv
du

�2 D 0, then ˛ is an asymptotic curve.

b. Show that ˛ is a line of curvature if and only if

ˇ
ˇ
ˇ
ˇ
ˇ

Eu0 C Fv0 Fu0 CGv0

`u0 Cmv0 mu0 C nv0

ˇ
ˇ
ˇ
ˇ
ˇ
D 0. Give the appropri-

ate condition in terms of dv=du.

c. Deduce that an alternative condition for ˛ to be a line of curvature is that
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

.v0/2 �u0v0 .u0/2

E F G

` m n

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D 0:

12. a. Apply Meusnier’s Formula to a latitude circle on a sphere of radius a to calculate the normal

curvature.

b. Apply Meusnier’s Formula to prove that the curvature of any curve lying on a sphere of radius a

satisfies � � 1=a.

13. Prove or give a counterexample: If M is a surface with Gaussian curvature K > 0, then the curvature

of any curve C �M is everywhere positive. (Remember that, by definition, � � 0.)
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]14. Suppose that for every P 2 M , the shape operator SP is some scalar multiple of the identity, i.e.,

SP .V/ D k.P /V for all V 2 TPM . (Here the scalar k.P / may well depend on the point P .)

a. Differentiate the equations

Dxu
n D nu D � kxu

Dxv
n D nv D � kxv

appropriately to determine ku and kv and deduce that k must be constant.

b. We showed in Proposition 2.2 that M is planar when k D 0. Show that when k ¤ 0, M is (a

portion of) a sphere.

15. a. Prove that ˛ is a line of curvature in M if and only if .nı˛/0.t/ D �k.t/˛0.t/, where k.t/ is the

principal curvature at ˛.t/ in the direction ˛0.t/. (More colloquially, differentiating along the curve

˛, we just write n0 D �k˛0.)

b. Suppose two surfacesM andM � intersect along a curve C . Suppose C is a line of curvature inM .

Prove that C is a line of curvature in M � if and only if the angle between M and M � is constant

along C . (In the proof of(H, be sure to include the case that M and M � intersect tangentially

along C .)

16. Prove or give a counterexample:

a. If a curve is both an asymptotic curve and a line of curvature, then it must be planar. (Hint: Along

an asymptotic curve that is not a line, how is the Frenet frame related to the surface normal?)

b. If a curve is planar and an asymptotic curve, then it must be a line.

17. a. How is the Frenet frame along an asymptotic curve related to the geometry of the surface?

b. Suppose K.P / < 0. If C is an asymptotic curve with �.P / ¤ 0, prove that its torsion satisfies

j�.P /j D
p

�K.P /. (Hint: If we choose an orthonormal basis fU;Vg for TP .M/ with U tangent

to C , what is the matrix for SP ? See the Remark on p. 47.)

18. Continuing Exercise 17, show that ifK.P / < 0, then the two asymptotic curves have torsion of opposite

signs at P .

19. Suppose U � R
3 is open and xWU ! R

3 is a smooth map (of rank 3) so that xu, xv , and xw are always

orthogonal. Then the level surfaces u D const, v D const, w D const form a triply orthogonal system

of surfaces.

a. Show that the spherical coordinate mapping x.u; v;w/ D .u sin v cosw;u sin v sinw;u cos v/

(u > 0, 0 < v < � , 0 < w < 2�) furnishes an example.

b. Prove that the curves of intersection of any pair of surfaces from different systems (e.g., v D const

and w D const) are lines of curvature in each of the respective surfaces. (Hint: Differentiate the

various equations xu � xv D 0, xv � xw D 0, xu � xw D 0 with respect to the missing variable. What

are the shape operators of the various surfaces?)

20. In this exercise we analyze the surfaces of revolution that are minimal. It will be convenient to work

with a meridian as a graph (y D h.u/, z D u) when using the parametrization of surfaces of revolution

given in Example 9.
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a. Use Exercise 1.2.4 and Proposition 2.5 to show that the principal curvatures are

k1 D �
h00

.1C h02/3=2
and k2 D

1

h
� 1p

1C h02
:

b. Deduce that H D 0 if and only if h.u/h00.u/ D 1C h0.u/2.

c. Solve the differential equation. (Hint: Either substitute z.u/ D ln h.u/ or introduce w.u/ D h0.u/,

find dw=dh, and integrate by separating variables.) You should find that h.u/ D 1
c

cosh.cuC b/
for some constants b and c.

21. By choosing coordinates in R
3 appropriately, we may arrange that P is the origin, the tangent plane

TPM is the xy-plane, and the x- and y-axes are in the principal directions at P .

a. Show that in these coordinates M is locally the graph z D f .x; y/ D 1
2
.k1x

2 C k2y
2/C �.x; y/,

where lim
x;y!0

�.x; y/

x2 C y2
D 0. (You may start with Taylor’s Theorem: If f is C2, we have

f .x; y/ D f .0; 0/C fx.0; 0/x C fy.0; 0/y C
1
2

�

fxx.0; 0/x
2 C 2fxy.0; 0/xy C fyy.0; 0/y

2
�

C �.x; y/;

where lim
x;y!0

�.x; y/

x2 C y2
D 0.)

b. Show that if P is an elliptic point, then a neighborhood of P in M \ TPM is just the origin itself.

What happens in the case of a parabolic point?

c. (More challenging) Show that if P is a hyperbolic point, a neighborhood of P in M \ TPM is

a curve that crosses itself at P and whose tangent directions at P are the asymptotic directions.

(Hints: Work in coordinates .x; u/ with y D ux. Show that in the xu-plane the curve has the

equation 0 D g.x; u/ D 1
2
.k1 C k2u

2/ C h.x; u/, where h.0; u/ D 0 for all u, so it consists

of two (C1) curves, one passing through .0;
p

�k1=k2/ and the other through .0;�
p

�k1=k2/.

Show, moreover, that if two curves pass through the same point .0; u0/ in the xu-plane, then the

corresponding curves in the xy-plane are tangent at .0; 0/.6)

22. Let P 2 M be a non-planar point, and if K � 0, choose the unit normal so that `; n � 0.

a. We define the Dupin indicatrix to be the conic in TPM defined by the equation IIP .V;V/ D 1.

Show that if P is an elliptic point, the Dupin indicatrix is an ellipse; if P is a hyperbolic point,

the Dupin indicatrix is a hyperbola; and if P is a parabolic point, the Dupin indicatrix is a pair of

parallel lines.

b. Show that ifP is a hyperbolic point, the asymptotes of the Dupin indicatrix are given by IIP .V;V/ D
0, i.e., the set of asymptotic directions.

c. Suppose M is represented locally near P as in Exercise 21. Show that for small positive values

of c, the intersection of M with the plane z D c “looks like” the Dupin indicatrix. How can you

make this statement more precise?

23. Suppose the surface M is given near P as a level surface of a smooth function F WR3 ! R with

rF.P / ¤ 0. A line L � R
3 is said to have (at least) k-point contact with M at P if, given any

linear parametrization ˛ of L with ˛.0/ D P , the function F D F ı˛ vanishes to order k � 1, i.e.,

6Here we have “blown up” the origin in order to keep track of the different tangent directions. The blowing-up construction is

widely used in topology and algebraic geometry.
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F.0/ D F0.0/ D � � � D F.k�1/.0/ D 0. (Such a line is to be visualized as the limit of lines that intersect

M at P and at k � 1 other points that approach P .)

a. Show thatL has 2-point contact withM at P if and only ifL is tangent toM at P , i.e.,L � TPM .

b. Show that L has 3-point contact with M at P if and only if L is an asymptotic direction at P .

(Hint: It may be helpful to follow the setup of Exercise 21.)

c. (Challenge) Assume P is a hyperbolic point. What does it mean for L to have 4-point contact with

M at P ?

3. The Codazzi and Gauss Equations and the Fundamental Theorem of Surface Theory

We now wish to proceed towards a deeper understanding of Gaussian curvature. We have to this point

considered only the normal components of the second derivatives xuu, xuv , and xvv . Now let’s consider

them in toto. Since fxu; xv ;ng gives a basis for R3, there are functions � u
uu, � v

uu, � u
uv D � u

vu, � v
uv D � v

vu,

� u
vv, and � v

vv so that

xuu D � u
uuxu C � v

uuxv C `n
xuv D � u

uvxu C � v
uvxv Cmn(�)

xvv D � u
vvxu C � v

vvxv C nn:

(Note that xuv D xvu dictates the symmetries � �
uv D � �

vu.) The functions � �
�� are called Christoffel

symbols.

Example 1. Let’s compute the Christoffel symbols for the usual parametrization of the sphere (see

Example 1(d) on p. 37). By straightforward calculation we obtain

xu D .cosu cos v; cos u sin v;� sin u/

xv D .� sinu sin v; sinu cos v; 0/

xuu D .� sinu cos v;� sinu sin v;� cosu/ D �x.u; v/

xuv D .� cosu sin v; cosu cos v; 0/

xvv D .� sinu cos v;� sinu sin v; 0/ D � sinu.cos v; sin v; 0/:

(Note that the u-curves are great circles, parametrized by arclength, so it is no surprise that the acceleration

vector xuu is inward-pointing of length 1. The v-curves are latitude circles of radius sinu, so, similarly, the

acceleration vector xvv points inwards towards the center of the respective circle.)

xu

xvv

n

sin u

sin u cos u

u

u

FIGURE 3.1
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Since xuu lies entirely in the direction of n, we have � u
uu D � v

uu D 0. Now, by inspection, xuv D
cotuxv , so � u

uv D 0 and � v
uv D cotu. Last, as we can see in Figure 3.1, we have xvv D � sinu cosuxu �

sin2 un, so � u
vv D � sinu cosu and � v

vv D 0. O

Now, dotting the equations in (�) with xu and xv gives

xuu � xu D � u
uuE C � v

uuF

xuu � xv D � u
uuF C � v

uuG

xuv � xu D � u
uvE C � v

uvF

xuv � xv D � u
uvF C � v

uvG

xvv � xu D � u
vvE C � v

vvF

xvv � xv D � u
vvF C � v

vvG:

Now observe that

xuu � xu D 1
2
.xu � xu/u D 1

2
Eu

xuv � xu D 1
2
.xu � xu/v D 1

2
Ev

xuv � xv D 1
2
.xv � xv/u D 1

2
Gu

(�)
xuu � xv D .xu � xv/u � xu � xuv D Fu � 1

2
Ev

xvv � xu D .xu � xv/v � xuv � xv D Fv � 1
2
Gu

xvv � xv D 1
2
.xv � xv/v D 1

2
Gv

Thus, we can rewrite our equations as follows:
"

E F

F G

#"

� u
uu

� v
uu

#

D
"

1
2
Eu

Fu � 1
2
Ev

#

H)
"

� u
uu

� v
uu

#

D
"

E F

F G

#�1 "
1
2
Eu

Fu � 1
2
Ev

#

"

E F

F G

#"

� u
uv

� v
uv

#

D
"

1
2
Ev

1
2
Gu

#

H)
"

� u
uv

� v
uv

#

D
"

E F

F G

#�1 "
1
2
Ev

1
2
Gu

#

(�)

"

E F

F G

#"

� u
vv

� v
vv

#

D
"

Fv � 1
2
Gu

1
2
Gv

#

H)
"

� u
vv

� v
vv

#

D
"

E F

F G

#�1 "

Fv � 1
2
Gu

1
2
Gv

#

:

What is quite remarkable about these formulas is that the Christoffel symbols, which tell us about the

tangential component of the second derivatives x��, can be computed just from knowing E, F , and G, i.e.,

the first fundamental form.

Example 2. Let’s now recompute the Christoffel symbols of the unit sphere and compare our answers

with Example 1. Since E D 1, F D 0, and G D sin2 u, we have
"

� u
uu

� v
uu

#

D
"

1 0

0 csc2 u

#"

0

0

#

D
"

0

0

#

"

� u
uv

� v
uv

#

D
"

1 0

0 csc2 u

#"

0

sin u cosu

#

D
"

0

cotu

#
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"

� u
vv

� v
vv

#

D
"

1 0

0 csc2 u

#"

� sin u cosu

0

#

D
"

� sinu cos u

0

#

:

Thus, the only nonzero Christoffel symbols are � v
uv D � v

vu D cotu and � u
vv D � sinu cosu, as before.

O

By Exercise 2.2.2, the matrix of the shape operator SP with respect to the basis fxu; xvg is

"

a c

b d

#

D
"

E F

F G

#�1 "

` m

m n

#

D 1

EG � F 2

"

`G �mF mG � nF
�`F CmE �mF C nE

#

:

Note that these coefficients tell us the derivatives of n with respect to u and v:

nu D Dxu
n D �SP .xu/ D �.axu C bxv/

(��)
nv D Dxv

n D �SP .xv/ D �.cxu C dxv/:

We now differentiate the equations (�) again and use equality of mixed partial derivatives. To start, we

have

xuuv D .� u
uu/vxu C � u

uuxuv C .� v
uu/vxv C � v

uuxvv C `vnC `nv

D .� u
uu/vxu C � u

uu

�

� u
uvxu C � v

uvxv Cmn
�

C .� v
uu/vxv C � v

uu

�

� u
vvxu C � v

vvxv C nn/

C `vn � `.cxu C dxv/

D
�

.� u
uu/v C � u

uu�
u

uv C � v
uu�

u
vv � `c

�

xu C
�

.� v
uu/v C � u

uu�
v

uv C � v
uu�

v
vv � `d

�

xv

C
�

� u
uumC � v

uunC `v

�

n;

and, similarly,

xuvu D
�

.� u
uv/u C � u

uv�
u

uu C � v
uv�

u
uv �ma

�

xu C
�

.� v
uv/u C � u

uv�
v

uu C � v
uv�

v
uv �mb

�

xv

C
�

`� u
uv Cm� v

uv Cmu

�

n:

Since xuuv D xuvu, we compare the indicated components and obtain:

.xu/W .� u
uu/v C � v

uu�
u

vv � `c D .� u
uv/u C � v

uv�
u

uv �ma
.}/ .xv/W .� v

uu/v C � u
uu�

v
uv C � v

uu�
v

vv � `d D .� v
uv/u C � u

uv�
v

uu C � v
uv�

v
uv �mb

.n/ W `v Cm� u
uu C n� v

uu D mu C `� u
uv Cm� v

uv :

Analogously, comparing the indicated components of xuvv D xvvu, we find:

.xu/W .� u
uv/v C � u

uv�
u

uv C � v
uv�

u
vv �mc D .� u

vv/u C � u
vv�

u
uu C � v

vv�
u

uv � na
.xv/W .� v

uv/v C � u
uv�

v
uv �md D .� v

vv/u C � u
vv�

v
uu � nb

.n/ W mv Cm� u
uv C n� v

uv D nu C `� u
vv Cm� v

vv :

The two equations coming from the normal component give us the

Codazzi equations

`v �mu D `� u
uv Cm

�

� v
uv � � u

uu

�

� n� v
uu

mv � nu D `� u
vv Cm

�

� v
vv � � u

uv

�

� n� v
uv :
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Using K D `n �m2

EG � F 2
and the formulas above for a, b, c, and d , the four equations involving the xu and

xv components yield the

Gauss equations

EK D
�

� v
uu

�

v
�
�

� v
uv

�

u
C � u

uu�
v

uv C � v
uu�

v
vv � � u

uv�
v

uu �
�

� v
uv

�2

FK D
�

� u
uv

�

u
�
�

� u
uu

�

v
C � v

uv�
u

uv � � v
uu�

u
vv

FK D
�

� v
uv

�

v
�
�

� v
vv

�

u
C � u

uv�
v

uv � � u
vv�

v
uu

GK D
�

� u
vv

�

u
�
�

� u
uv

�

v
C � u

vv�
u

uu C � v
vv�

u
uv �

�

� u
uv

�2 � � v
uv�

u
vv :

For example, to derive the first, we use the equation (}) above:

�

� v
uu

�

v
�
�

� v
uv

�

u
C � u

uu�
v

uv C � v
uu�

v
vv � � u

uv�
v

uu �
�

� v
uv

�2 D `d �mb

D 1

EG � F 2

�

`.�mF C nE/Cm.`F �mE/
�

D E.`n�m2/

EG � F 2
D EK:

In an orthogonal parametrization (F D 0), we leave it to the reader to check in Exercise 3 that

(�) K D � 1

2
p
EG

�� Evp
EG

�

v
C
� Gup

EG

�

u

�

:

One of the crowning results of local differential geometry is the following

Theorem 3.1 (Gauss’s Theorema Egregium). The Gaussian curvature is determined by only the first

fundamental form I. That is, K can be computed from just E, F , G, and their first and second partial

derivatives.

Proof. From any of the Gauss equations, we see that K can be computed by knowing any one of E,

F , and G, together with the Christoffel symbols and their derivatives. But the equations (�) show that the

Christoffel symbols (and hence any of their derivatives) can be calculated in terms of E, F , and G and their

partial derivatives. �

Corollary 3.2. If two surfaces are locally isometric, their Gaussian curvatures at corresponding points

are equal.

For example, the plane and cylinder are locally isometric, and hence the cylinder (as we well know)

is flat. We now conclude that since the Gaussian curvature of a sphere is nonzero, a sphere cannot be

locally isometric to a plane. Thus, there is no way to map the earth “faithfully” (preserving distance)—even

locally—on a piece of paper. In some sense, the Mercator projection (see Exercise 2.1.13) is the best we can

do, for, although it distorts distances, it does preserve angles.

The Codazzi and Gauss equations are rather opaque, to say the least. We obtained the convenient

equation (�) for the Gaussian curvature from the Gauss equations. To give a bit more insight into the

meaning of the Codazzi equations, we have the following

Lemma 3.3. Suppose x is a parametrization for which the u- and v-curves are lines of curvature, with

respective principal curvatures k1 and k2. Then we have

(?) .k1/v D
Ev

2E
.k2 � k1/ and .k2/u D

Gu

2G
.k1 � k2/:
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Proof. By Exercise 2.2.1, ` D k1E, n D k2G, and F D m D 0. By the first Codazzi equation and the

equations (�) on p. 58, we have

.k1/vE C k1Ev D `v D k1E�
u

uv � k2G�
v

uu D 1
2
Ev.k1 C k2/;

and so

.k1/v D
Ev

2E
.k2 � k1/:

The other formula follows similarly from the second Codazzi equation. �

Let’s now apply the Codazzi equations to prove a rather striking result about the general surface with

K D 0 everywhere.

Proposition 3.4. Suppose M is a flat surface with no planar points. Then M is a ruled surface whose

tangent plane is constant along the rulings.

Proof. SinceM has no planar points, we can choose k1 D 0 and k2 ¤ 0 everywhere. Then by Theorem

3.3 of the Appendix, there is a local parametrization ofM so that the u-curves are the first lines of curvature

and the v-curves are the second lines of curvature. This means first of all that F D m D 0. (See Exercise

2.2.1.) Now, since k1 D 0, for any P 2 M we have SP .xu/ D 0, and so nu D 0 everywhere and n is

constant along the u-curves. We also observe that ` D II.xu; xu/ D �SP .xu/ � xu D 0.

We now want to show that the u-curves are in fact lines. Since k1 D 0 everywhere, .k1/v D 0 and,

since k2 ¤ k1, we infer from Lemma 3.3 that Ev D 0. From the equations (�) it now follows that � v
uu D 0.

Thus,

xuu D � u
uuxu C � v

uuxv C `n D � u
uuxu

is just a multiple of xu. Thus, the tangent vector xu never changes direction as we move along the u-curves,

and this means that the u-curves must be lines. In conclusion, we have a ruled surface whose tangent plane

is constant along rulings. �

Remark. Flat ruled surfaces are often called developable. (See Exercise 10 and Exercise 2.1.12.) The

terminology comes from the fact that they can be rolled out—or “developed”—onto a plane.

Next we prove a striking global result about compact surfaces. (Recall that a subset of R3 is compact

if it is closed and bounded. The salient feature of compact sets is the maximum value theorem: A contin-

uous real-valued function on a compact set achieves its maximum and minimum values.) We begin with a

straightforward

Proposition 3.5. Suppose M � R
3 is a compact surface. Then there is a point P 2M withK.P / > 0.

Proof. Because M is compact, the continuous function f .x/ D kxk achieves its maximum at some

point of M , and so there is a point P 2 M farthest from the origin (which may or may not be inside M ),

as indicated in Figure 3.2. Let f .P / D R. As Exercise 1.2.7 shows, the curvature of any curve ˛ � M

at P is at least 1=R. Applying this to any normal section of M at P and choosing the unit normal n

to be inward-pointing, we deduce that every normal curvature of M at P is at least 1=R. It follows that

K.P / � 1=R2 > 0. (That is, M is at least as curved at P as the circumscribed sphere of radius R tangent

to M at P .) �
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0
P

M

FIGURE 3.2

The reader is asked in Exercise 19 to find surfaces of revolution of constant curvature. There are,

interestingly, many nonobvious examples. However, if we restrict ourselves to smooth, compact surfaces,

we have the following beautiful

Theorem 3.6 (Liebmann). If M is a smooth, compact surface of constant Gaussian curvature K, then

K > 0 and M must be a sphere of radius 1=
p
K.

We will need the following

Lemma 3.7 (Hilbert). Suppose P is not an umbilic point and k1.P / > k2.P /. Suppose k1 has a local

maximum at P and k2 has a local minimum at P . Then K.P / � 0.

Proof. We work in a “principal” coordinate parametrization7 near P , so that the u-curves are lines of

curvature with principal curvature k1 and the v-curves are lines of curvature with principal curvature k2.

Since k1 ¤ k2 and .k1/v D .k2/u D 0 at P , it follows from Lemma 3.3 that Ev D Gu D 0 at P .

Differentiating the equations (?), and remembering that .k1/u D .k2/v D 0 at P as well, we have at P :

.k1/vv D
Evv

2E
.k2 � k1/ � 0 (because k1 has a local maximum at P )

.k2/uu D
Guu

2G
.k1 � k2/ � 0 (because k2 has a local minimum at P ),

and so Evv � 0 and Guu � 0 at P . Using the equation (�) for the Gaussian curvature on p. 60, we see

similarly that at P

K D � 1

2EG

�

Evv C Guu

�

;

as all the remaining terms involve Ev and Gu. So we conclude that K.P / � 0, as desired. �

Proof of Theorem 3.6. By Proposition 3.5, there is a point where M is positively curved, and since the

Gaussian curvature is constant, we must have K > 0. If every point is umbilic, then by Exercise 2.2.14, we

know that M is a sphere. If there is some non-umbilic point, the larger principal curvature, k1, achieves its

maximum value at some point P because M is compact. Then, since K D k1k2 is constant, the function

k2 D K=k1 must achieve its minimum at P . Since P is necessarily a non-umbilic point (why?), it follows

from Lemma 3.7 that K.P / � 0, which is a contradiction. �

7Since locally there are no umbilic points, the existence of such a parametrization is an immediate consequence of Theorem

3.3 of the Appendix.
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Remark. H. Hopf proved a stronger result, which requires techniques from complex analysis: IfM is a

compact surface topologically equivalent to a sphere and having constant mean curvature, then M must be

a sphere.

We conclude this section with the analogue of Theorem 3.1 of Chapter 1.

Theorem 3.8 (Fundamental Theorem of Surface Theory). Uniqueness: Two parametrized surfaces

x; x�WU ! R
3 are congruent (i.e., differ by a rigid motion) if and only if I D I� and II D ˙II�. Ex-

istence: Moreover, given differentiable functions E, F , G, `, m, and n with E > 0 and EG � F 2 > 0 and

satisfying the Codazzi and Gauss equations, there exists (locally) a parametrized surface x.u; v/ with the

respective I and II.

Proof. The existence statement requires some theorems from partial differential equations beyond our

reach at this stage. The uniqueness statement, however, is much like the proof of Theorem 3.1 of Chapter

1. (The main technical difference is that we no longer are lucky enough to be working with an orthonormal

basis at each point, as we were with the Frenet frame.)

First, suppose x� D ‰ıx for some rigid motion ‰WR3 ! R
3 (i.e., ‰.x/ D AxC b for some b 2 R

3

and some 3�3 orthogonal matrix A). Since a translation doesn’t change partial derivatives, we may assume

that b D 0. Now, since orthogonal matrices preserve length and dot product, we have E� D kx�
uk2 D

kAxuk2 D kxuk2 D E, etc., so I D I�. If detA > 0, then n� D An, whereas if detA < 0, then n� D �An

(see Exercise A.1.6). Thus, `� D x�
uu �n� D Axuu � .˙An/ D ˙`, the positive sign holding when detA > 0

and the negative when detA < 0. Thus, II� D II if detA > 0 and II� D �II if detA < 0.

Conversely, suppose I D I� and II D ˙II�. By composing x� with a reflection, if necessary, we may

assume that II D II�. Now we need the following

Lemma 3.9. Suppose ˛ and ˛� are smooth functions on Œ0; b�, v1v2v3 and v�
1v�

2v�
3 are smoothly varying

bases for R3, also defined on Œ0; b�, so that

vi .t/ � vj .t/ D v�
i .t/ � v�

j .t/ D gij .t/; i; j D 1; 2; 3;

˛0.t/ D
3
X

iD1

pi .t/vi .t/ and ˛�0.t/ D
3
X

iD1

pi .t/v
�
i .t/;

v0
j .t/ D

3
X

iD1

qij vi .t/ and v�
j

0.t/ D
3
X

iD1

qij v�
i .t/; j D 1; 2; 3:

(Note that the coefficient functions pi and qij are the same for both the starred and unstarred equations.)

If ˛.0/ D ˛�.0/ and vi .0/ D v�
i .0/, i D 1; 2; 3, then ˛.t/ D ˛�.t/ and vi .t/ D v�

i .t/ for all t 2 Œ0; b�,
i D 1; 2; 3.

Fix a point u0 2 U . By composing x� with a rigid motion, we may assume that at u0 we have x D x�,

xu D x�
u, xv D x�

v , and n D n� (why?). Choose an arbitrary u1 2 U , and join u0 to u1 by a path u.t/,

t 2 Œ0; b�, and apply the lemma with ˛ D xıu, v1 D xuıu, v2 D xvıu, v3 D nıu, pi D u0
i , and the qij

prescribed by the equations (�) and (��). Since I D I� and II D II�, the same equations hold for ˛� D x�ıu,

and so x.u1/ D x�.u1/ as desired. That is, the two parametrized surfaces are identical. �
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Proof of Lemma 3.9. Introduce the matrix function of t

M.t/ D

2

6
4

j j j
v1.t/ v2.t/ v3.t/

j j j

3

7
5 ;

and analogously for M �.t/. Then the displayed equations in the statement of the Lemma can be written as

M 0.t/ D M.t/Q.t/ and M �0.t/ DM �.t/Q.t/:

On the other hand, we have M.t/TM.t/ D G.t/. Since the vi .t/ form a basis for R
3 for each t , we

know the matrix G is invertible. Now, differentiating the equation G.t/G�1.t/ D I yields .G�1/0.t/ D
�G�1.t/G0.t/G�1.t/, and differentiating the equation G.t/ DM.t/TM.t/ yields G0.t/ D M 0.t/TM.t/C
M.t/TM 0.t/ D Q.t/TG.t/CG.t/Q.t/. Now consider

.M �G�1M T/0.t/ DM �0.t/G.t/�1M.t/T CM �.t/.G�1/0.t/M.t/T CM �.t/G.t/�1M 0.t/T

DM �.t/Q.t/G.t/�1M.t/T CM �.t/
�

�G.t/�1G0.t/G.t/�1
�

M.t/T

CM �.t/G.t/�1Q.t/TM.t/T

DM �.t/Q.t/G.t/�1M.t/T �M �.t/G.t/�1Q.t/TM.t/T �M �.t/Q.t/G.t/�1M.t/T

CM �.t/G.t/�1Q.t/TM.t/T D O:

Since M.0/ D M �.0/, we have M �.0/G.0/�1M.0/T D M.0/M.0/�1M.0/T�1M.0/T D I , and so

M �.t/G.t/�1M.t/T D I for all t 2 Œ0; b�. It follows that M �.t/ D M.t/ for all t 2 Œ0; b�, and so

˛�0.t/ � ˛0.t/ D 0 for all t as well. Since ˛�.0/ D ˛.0/, it follows that ˛�.t/ D ˛.t/ for all t 2 Œ0; b�, as

we wished to establish. �

EXERCISES 2.3

1. Calculate the Christoffel symbols for a cone, x.u; v/ D .u cos v; u sin v; u/, both directly (as in Example

1) and by using the formulas (�).

2. Calculate the Christoffel symbols for the following parametrized surfaces. Then check in each case that

the Codazzi equations and the first Gauss equation hold.

a. the plane, parametrized by polar coordinates: x.u; v/ D .u cos v; u sin v; 0/

b. a helicoid: x.u; v/ D .u cos v; u sin v; v/
]c. a cone: x.u; v/ D .u cos v; u sin v; cu/, c ¤ 0

]*d. a surface of revolution: x.u; v/ D
�

f .u/ cos v; f .u/ sin v; g.u/
�

, with f 0.u/2 C g0.u/2 D 1

3. Use the first Gauss equation to derive the formula (�) given on p. 60 for Gaussian curvature.

4. Check the Gaussian curvature of the sphere using the formula (�) on p. 60.

5. Check that for a parametrized surface with E D G D �.u; v/ and F D 0, the Gaussian curvature is

given by K D � 1
2�
r2.ln�/. (Here r2f D @2f

@u2
C @2f

@v2
is the Laplacian of f .)

6. Prove there is no compact minimal surface M � R
3.
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7. Decide whether there is a parametrized surface x.u; v/ with

a. E D G D 1, F D 0, ` D 1 D �n, m D 0
b. E D G D 1, F D 0, ` D eu D n, m D 0
c. E D 1, F D 0, G D cos2 u, ` D cos2 u, m D 0, n D 1

8. a. Modify the proof of Theorem 3.6 to prove that a smooth, compact surface withK > 0 and constant

mean curvature is a sphere.

b. Give an example to show that the result of Lemma 3.7 fails if we assume k1 has a local minimum

and k2 has a local maximum at P .

9. Give examples of (locally) non-congruent parametrized surfaces x and x� with

a. I D I�

b. II D II� (Hint: Try reparametrizing some of our simplest surfaces.)

10. Let x.u; v/ D ˛.u/ C vˇ.u/ be a parametrization of a ruled surface. Prove that the tangent plane

is constant along rulings (i.e., the surface is flat) if and only if ˛0.u/, ˇ.u/, and ˇ0.u/ are linearly

dependent for every u. (Hint: When is SP .xv/ D 0? Alternatively, consider xu�xv and apply Exercise

A.2.1.)

11. Prove that ˛ is a line of curvature in M if and only if the ruled surface formed by the surface normals

along ˛ is flat. (Hint: See Exercise 10.)

12. Show that the Gaussian curvature of the parametrized surfaces

x.u; v/ D .u cos v; u sin v; v/

y.u; v/ D .u cos v; u sin v; lnu/

is the same for each .u; v/, and yet the first fundamental forms Ix and Iy do not agree. (Thus, we might

expect that the converse of Corollary 3.2 is false; it takes slightly more work to show that there can be

no local isometry.)

13. Suppose that through each point of a surface M there is a planar asymptotic curve with nonzero cur-

vature. Prove that M must be a (subset of a) plane. (Hint: Start with Exercise 2.2.17a and apply

Proposition 3.4.)

14. Suppose that the surface M is doubly ruled by orthogonal lines (i.e., through each point ofM there pass

two orthogonal lines).

a. Using the Gauss equations, prove that K D 0.

b. Now deduce that M must be a plane.

(Hint: As usual, assume that, locally, the families of lines are u- and v-curves.)

15. Prove that the only minimal ruled surface with no planar points is the helicoid. (Hint: Consider the

curves orthogonal to the rulings. Use Exercises 2.2.8b, 14, and 1.2.20.)

16. Suppose M is a surface with no umbilic points and one constant principal curvature k1 ¤ 0. Prove that

M is (a subset of) a tube of radius r D 1=jk1j about a curve. That is, there is a curve ˛ so that M is

(a subset of) the union of circles of radius r in each normal plane, centered along the curve. (Hints: As
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usual, work with a parametrization where the u-curves are lines of curvature with principal curvature

k1 and the v-curves are lines of curvature with principal curvature k2. Use Lemma 3.3 to show that the

u-curves have curvature jk1j and are planar. Then define ˛ appropriately and check that it is a regular

curve.)

17. If M is a surface with both principal curvatures constant, prove that M is (a subset of) either a sphere,

a plane, or a right circular cylinder. (Hint: See Exercise 2.2.14, Proposition 3.4, and Exercise 16.)

18. Consider the parametrized surfaces

x.u; v/ D .� cosh u sin v; cosh u cos v; u/ (a catenoid)

y.u; v/ D .u cos v; u sin v; v/ (a helicoid).

a. Compute the first and second fundamental forms of both surfaces, and check that both surfaces are

minimal.

b. Find the asymptotic curves on both surfaces.

c. Show that we can locally reparametrize the helicoid in such a way as to make the first fundamental

forms of the two surfaces agree; this means that the two surfaces are locally isometric. (Hint: See

p. 39. Replace u with sinh u in the parametrization of the helicoid. Why is this legitimate?)

d. Why are they not globally isometric?

e. (for the student who’s seen a bit of complex variables) As a hint to what’s going on here, let

z D u C iv and Z D x C iy, and check that, continuing to use the substitution from part c,

Z D .sin iz; cos iz; z/. Understand now how one can obtain a one-parameter family of isometric

surfaces interpolating between the helicoid and the catenoid.

19. Find all the surfaces of revolution of constant curvature

a. K D 0
b. K D 1
c. K D �1
(Hint: There are more than you might suspect. But your answers will involve integrals you cannot

express in terms of elementary functions.)

4. Covariant Differentiation, Parallel Translation, and Geodesics

Now we turn to the “intrinsic” geometry of a surface, i.e., the geometry that can be observed by an

inhabitant (for example, a very thin ant) of the surface, who can only perceive what happens along (or, say,

tangential to) the surface. Anyone who has studied Euclidean geometry knows how important the notion of

parallelism is (and classical non-Euclidean geometry arises when one removes Euclid’s parallel postulate,

which stipulates that given any line L in the plane and any point P not lying on L, there is a unique line

through P parallel to L). It seems quite intuitive to say that, working just in R
3, two vectors V (thought of

as being “tangent at P ”) and W (thought of as being “tangent at Q”) are parallel provided that we obtain W

when we move V “parallel to itself” from P to Q; in other words, if W D V. But what would an inhabitant

of the sphere say? How should he compare a tangent vector at one point of the sphere to a tangent vector
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Are V and W parallel?

P Q

V W

FIGURE 4.1

at another and determine if they’re “parallel”? (See Figure 4.1.) Perhaps a better question is this: Given

a curve ˛ on the surface and a vector field X defined along ˛, should we say X is parallel if it has zero

derivative along ˛?

We already know how an inhabitant differentiates a scalar function f WM ! R, by considering the

directional derivative DVf for any tangent vector V 2 TPM . We now begin with a

Definition. We say a function XWM ! R
3 is a vector field on M if

(1) X.P / 2 TPM for every P 2M , and

(2) for any parametrization xWU !M , the function XıxWU ! R
3 is (continuously) differentiable.

Now, we can differentiate a vector field X on M in the customary fashion: If V 2 TPM , we choose a

curve ˛ with ˛.0/ D P and ˛0.0/ D V and set DVX D .Xı˛/0.0/. (As usual, the chain rule tells us this is

well-defined.) But the inhabitant of the surface can only see that portion of this vector lying in the tangent

plane. This brings us to the

Definition. Given a vector field X and V 2 TPM , we define the covariant derivative

rVX D .DVX/k D the projection of DVX onto TPM

D DVX � .DVX � n/n:

Given a curve ˛ in M , we say the vector field X is covariant constant or parallel along ˛ if r˛0.t/X D 0

for all t . (This means that D˛0.t/X D .Xı˛/0.t/ is a multiple of the normal vector n.˛.t//.)

For many of our applications, we will actually want the covariant derivative along a curve of a vector

field X defined only on that curve. The definition above still makes good sense: If X is defined only at

points of ˛.t/, is (continuously) differentiable as a function of t mapping to R
3, and has the property that

X.˛.t// 2 T˛.t/M for every t , then we set

r˛0.t/X D
�

.X ı ˛/0.t/
�k
:

Example 1. Let M be a sphere and let ˛ be a great circle in M . The derivative of the unit tangent

vector of ˛ points towards the center of the circle, which is in this case the center of the sphere, and thus is

completely normal to the sphere. Therefore, the unit tangent vector field of ˛ is parallel along ˛. Observe

that the constant vector field .0; 0; 1/ is parallel along the equator z D 0 of a sphere centered at the origin.

Is this true of any other constant vector field? O
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Example 2. A fundamental example requires that we revisit the Christoffel symbols. Given a parametrized

surface xWU !M , we have

rxu
xu D .xuu/

k D � u
uuxu C � v

uuxv

rxv
xu D .xuv/

k D � u
uvxu C � v

uvxv D rxu
xv ; and

rxv
xv D .xvv/

k D � u
vvxu C � v

vvxv : O

The first result we prove is the following

Proposition 4.1. Let I be an interval in R with 0 2 I . Given a curve ˛W I ! M with ˛.0/ D P and

X0 2 TPM , there is a unique parallel vector field X defined along ˛ with X.P / D X0.

Proof. Assuming ˛ lies in a parametrized portion xWU ! M , set ˛.t/ D x.u.t/; v.t// and write

X.˛.t// D a.t/xu.u.t/; v.t// C b.t/xv.u.t/; v.t//. Then ˛0.t/ D u0.t/xu C v0.t/xv (where the the cum-

bersome argument .u.t/; v.t// is understood). So, by the product rule and chain rule, we have

r˛0.t/X D
�

.Xı˛/0.t/
�k D

�
d

dt

�

a.t/xu.u.t/; v.t//C b.t/xv.u.t/; v.t//
�
�k

D a0.t/xu C b0.t/xv C a.t/
�
d

dt
xu.u.t/; v.t//

�k
C b.t/

�
d

dt
xv.u.t/; v.t//

�k

D a0.t/xu C b0.t/xv C a.t/
�

u0.t/xuu C v0.t/xuv

�k C b.t/
�

u0.t/xvu C v0.t/xvv

�k

D a0.t/xu C b0.t/xv C a.t/
�

u0.t/.� u
uuxu C � v

uuxv/C v0.t/.� u
uvxu C � v

uvxv/
�

C b.t/
�

u0.t/.� u
vuxu C � v

vuxv/C v0.t/.� u
vvxu C � v

vvxv/
�

D
�

a0.t/C a.t/.� u
uuu

0.t/C � u
uvv

0.t//C b.t/.� u
vuu

0.t/C � u
vvv

0.t//
�

xu

C
�

b0.t/C a.t/.� v
uuu

0.t/C � v
uvv

0.t//C b.t/.� v
vuu

0.t/C � v
vvv

0.t//
�

xv :

Thus, to say X is parallel along the curve ˛ is to say that a.t/ and b.t/ are solutions of the linear system of

first order differential equations

a0.t/C a.t/.� u
uuu

0.t/C � u
uvv

0.t//C b.t/.� u
vuu

0.t/C � u
vvv

0.t// D 0
(|)

b0.t/C a.t/.� v
uuu

0.t/C � v
uvv

0.t//C b.t/.� v
vuu

0.t/C � v
vvv

0.t// D 0:

By Theorem 3.2 of the Appendix, this system has a unique solution on I once we specify a.0/ and b.0/,

and hence we obtain a unique parallel vector field X with X.P / D X0. �

Definition. If ˛ is a path fromP toQ, we refer to X.Q/ as the parallel translate of X.P / D X0 2 TPM

along ˛, or the result of parallel translation along ˛.

Remark. The system of differential equations (|) that defines parallel translation shows that it is “in-

trinsic,” i.e., depends only on the first fundamental form of M , despite our original extrinsic definition. In

particular, parallel translation in locally isometric surfaces will be identical.

Example 3. Fix a latitude circle u D u0 (u0 ¤ 0; �) on the unit sphere (see Example 1(d) on p. 37) and

let’s calculate the effect of parallel-translating the vector X0 D xv starting at the point P given by u D u0,

v D 0, once around the circle, counterclockwise. We parametrize the curve by u.t/ D u0, v.t/ D t ,



÷4. COVARIANT DIFFERENTIATION, PARALLEL TRANSLATION, AND GEODESICS 69

0 � t � 2� . Using our computation of the Christoffel symbols of the sphere in Example 1 or 2 of Section

3, we obtain from (|) the differential equations

a0.t/ D sinu0 cosu0b.t/; a.0/ D 0
b0.t/ D � cotu0a.t/; b.0/ D 1:

We solve this system by differentiating the second equation again and substituting the first:

b00.t/ D � cot u0a
0.t/ D � cos2 u0b.t/; b.0/ D 1:

Recalling that every solution of the differential equation y00.t/ C k2y.t/ D 0 is of the form y.t/ D
c1 cos.kt/C c2 sin.kt/, c1; c2 2 R, we see that the solution is

a.t/ D sinu0 sin
�

.cosu0/t
�

; b.t/ D cos
�

.cosu0/t
�

:

Note that kX.˛.t//k2 D Ea.t/2C 2Fa.t/b.t/CGb.t/2 D sin2 u0 for all t . That is, the original vector X0

rotates as we parallel translate it around the latitude circle, and its length is preserved. As we see in Figure

4.2, the vector rotates clockwise as we proceed around the latitude circle (in the upper hemisphere). But

P

X02π cos u0

u0

FIGURE 4.2

this makes sense: If we just take the covariant derivative of the vector field tangent to the circle, it points

upwards (cf. Figure 3.1), so the vector field must rotate clockwise to counteract that effect in order to remain

parallel. Since b.2�/ D cos.2� cos u0/, we see that the vector turns through an angle of �2� cos u0. O

Example 4 (Foucault pendulum). Foucault observed in 1851 that the swing plane of a pendulum located

on the latitude circle u D u0 precesses with a period of T D 24= cos u0 hours. We can use the result of

Example 3 to explain this. We imagine the earth as fixed and “transport” the swinging pendulum once around

the circle in 24 hours. If we make the pendulum very long and the swing rather short, the motion will be

“essentially” tangential to the surface of the earth. If we move slowly around the circle, the forces will be

“essentially” normal to the sphere: In particular, letting R denote the radius of the earth (approximately

3960 mi), the tangential component of the centripetal acceleration is (cf. Figure 3.1)

.R sinu0/ cos u0

�
2�

24

�2

� 2�2R

242
� 135:7 mi/hr2 � 0:0553 ft/sec2 � 0:17%g:
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Thus, the “swing vector field” is, for all practical purposes, parallel along the curve. Therefore, it turns

through an angle of 2� cos u0 in one trip around the circle, so it takes
2�

.2� cosu0/=24
D 24

cosu0
hours to

return to its original swing plane. O

Our experience in Example 3 suggests the following

Proposition 4.2. Parallel translation preserves lengths and angles. That is, if X and Y are parallel vector

fields along a curve ˛ from P toQ, then kX.P /k D kX.Q/k and the angle between X.P / and Y.P / equals

the angle between X.Q/ and Y.Q/ (assuming these are nonzero vectors).

Proof. Consider f .t/ D X.˛.t// � Y.˛.t//. Then

f 0.t/ D .Xı˛/0.t/ � .Yı˛/.t/C .Xı˛/.t/ � .Yı˛/0.t/

D D˛0.t/X � YC X �D˛0.t/Y
.1/
=D r˛0.t/X �YC X � r˛0.t/Y

.2/
=D 0:

Note that equality (1) holds because X and Y are tangent to M and hence their dot product with any vector

normal to the surface is 0. Equality (2) holds because X and Y are assumed parallel along ˛. It follows that

the dot product X � Y remains constant along ˛. Taking Y D X, we infer that kXk (and similarly kYk) is

constant. Knowing that, using the famous formula cos � D X � Y=kXkkYk for the angle � between X and

Y, we infer that the angle remains constant. �

Now we change gears somewhat. We saw in Exercise 1.1.8 that the shortest path joining two points

in R
3 is a line segment and in Exercise 1.3.1 that the shortest path joining two points on the unit sphere

is a great circle. One characterization of the line segment is that it never changes direction, so that its unit

tangent vector is parallel (so no distance is wasted by turning). (What about the sphere?) It seems plausible

that the mythical inhabitant of our general surface M might try to travel from one point to another in M ,

staying in M , by similarly not turning; that is, so that his unit tangent vector field is parallel along his path.

Physically, this means that if he travels at constant speed, any acceleration should be normal to the surface.

This leads us to the following

Definition. We say a parametrized curve ˛ in a surface M is a geodesic if its tangent vector is parallel

along the curve, i.e., if r˛0˛0 D 0.

Recall that since parallel translation preserves lengths, ˛ must have constant speed, although it may not

be arclength-parametrized. In general, we refer to an unparametrized curve as a geodesic if its arclength

parametrization is in fact a geodesic.

In general, given any arclength-parametrized curve ˛ lying on M , we defined its normal curvature at

the end of Section 2. Instead of using the Frenet frame, it is natural to consider the Darboux frame for ˛,

which takes into account the fact that ˛ lies on the surface M . (Both are illustrated in Figure 4.3.) We take

the right-handed orthonormal basis fT;n � T;ng; note that the first two vectors give a basis for TPM . We

can decompose the curvature vector

�N D
�

�N � .n � T/
„ ƒ‚ …

�g

�

.n � T/C
�

�N � n
„ƒ‚…

�n

�

n:

As we saw before, �n gives the normal component of the curvature vector; �g gives the tangential com-

ponent of the curvature vector and is called the geodesic curvature. This terminology arises from the fact
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T

n
n×T

NN

B

The Frenet and Darboux frames

FIGURE 4.3

that ˛ is a geodesic if and only if its geodesic curvature vanishes. (When � D 0, the principal normal is

not defined, and we really should write ˛00 in the place of �N. If the acceleration vanishes at a point, then

certainly its normal and tangential components are both 0.)

Example 5. We saw in Example 1 that every great circle on a sphere is a geodesic. Are there others?

Let ˛ be a geodesic on a sphere centered at the origin. Since �g D 0, the acceleration vector ˛00.s/ must be

a multiple of ˛.s/ for every s, and so ˛00 � ˛ D 0. Therefore ˛0 � ˛ D A is a constant vector, so ˛ lies in

the plane passing through the origin with normal vector A. That is, ˛ is a great circle. O

Remark. We saw in Example 3 that a vector rotates clockwise at a constant rate as we parallel translate

along the latitude circle of the sphere. If we think about the unit tangent vector T moving counterclockwise

along this curve, its covariant derivative along the curve points up the sphere, as shown in Figure 4.4, i.e.,

“to the left.” Thus, we must compensate by steering “to the right” in order to have no net turning (i.e., to

FIGURE 4.4

make the covariant derivative zero). Of course, this makes sense also because, according to Example 5, the

geodesic that passes through P in the same direction heads “downhill,” to the right.

Using the equations (|), let’s now give the equations for the curve ˛.t/ D x.u.t/; v.t// to be a geodesic.

Since X D ˛0.t/ D u0.t/xu C v0.t/xv , we have a.t/ D u0.t/ and b.t/ D v0.t/, and the resulting equations

are

u00.t/C � u
uuu

0.t/2 C 2� u
uvu

0.t/v0.t/C � u
vvv

0.t/2 D 0
(||)

v00.t/C � v
uuu

0.t/2 C 2� v
uvu

0.t/v0.t/C � v
vvv

0.t/2 D 0:

The following result is a consequence of basic results on differential equations (see Theorem 3.1 of the

Appendix).
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Proposition 4.3. Given a point P 2M and V 2 TPM , V ¤ 0, there exist " > 0 and a unique geodesic

˛W .�"; "/!M with ˛.0/ D P and ˛0.0/ D V.

Example 6. We now use the equations (||) to solve for geodesics analytically in a few examples.

(a) Let x.u; v/ D .u; v/ be the obvious parametrization of the plane. Then all the Christoffel symbols

vanish and the geodesics are the solutions of

u00.t/ D v00.t/ D 0;

so we get the lines ˛.t/ D .u.t/; v.t// D .a1t C b1; a2t C b2/, as expected. Note that ˛ does in

fact have constant speed.

(b) Using the standard spherical coordinate parametrization of the sphere, we obtain (see Example 1 or

2 of Section 3) the equations

(�) u00.t/ � sinu.t/ cos u.t/v0.t/2 D 0 D v00.t/C 2 cot u.t/u0.t/v0.t/:

Well, one obvious set of solutions is to take u.t/ D t , v.t/ D v0 (and these, indeed, give the

great circles through the north pole). Integrating the second equation in (�) we obtain ln v0.t/ D
�2 ln sinu.t/C const, so

v0.t/ D c

sin2 u.t/

for some constant c. Substituting this in the first equation in (�) we find that

u00.t/ � c
2 cosu.t/

sin3 u.t/
D 0I

multiplying both sides by u0.t/ (the “energy trick” from physics) and integrating, we get

u0.t/2 D C 2 � c2

sin2 u.t/
; and so u0.t/ D ˙

s

C 2 � c2

sin2 u.t/

for some constant C . Switching to Leibniz notation for obvious reasons, we obtain

dv

du
D v0.t/

u0.t/
D ˙ c csc2 up

C 2 � c2 csc2 u
I thus, separating variables gives

dv D ˙ c csc2 udup
C 2 � c2 csc2 u

D ˙ c csc2 udu
p

.C 2 � c2/ � c2 cot2 u
:

Now we make the substitution c cotu D
p
C 2 � c2 sinw; then we have

dv D ˙ c csc2 udu
p

.C 2 � c2/ � c2 cot2 u
D �dw;

and so, at long last, we have w D ˙v C a for some constant a. Thus,

c cot u D
p
C 2 � c2 sinw D

p
C 2 � c2 sin.˙v C a/ D

p
C 2 � c2.sin a cos v ˙ cos a sin v/;

and so, finally, we have the equation

c cos uC
p
C 2 � c2 sin u.A cos v C B sin v/ D 0;

which we should recognize as the equation of a great circle! (Here’s a hint: This curve lies on the

plane
p
C 2 � c2.Ax C By/C cz D 0.) O
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We can now give a beautiful geometric description of the geodesics on a surface of revolution.

Proposition 4.4 (Clairaut’s relation). The geodesics on a surface of revolution satisfy the equation

(}) r cos� D const;

where r is the distance from the axis of revolution and � is the angle between the geodesic and the parallel.

Conversely, any (constant speed) curve satisfying (}) that is not a parallel is a geodesic.

Proof. For the surface of revolution parametrized as in Example 9 of Section 2, we haveE D 1, F D 0,

G D f .u/2, � v
uv D � v

vu D f 0.u/=f .u/, � u
vv D �f .u/f 0.u/, and all other Christoffel symbols are 0 (see

Exercise 2.3.2d.). Then the system (||) of differential equations becomes

u00 � ff 0.v0/2 D 0(�1)

v00 C 2f 0

f
u0v0 D 0:(�2)

Rewriting the equation (�2) and integrating, we obtain

v00.t/

v0.t/
D �2f

0.u.t//u0.t/

f .u.t//

ln v0.t/ D �2 ln f .u.t//C const

v0.t/ D c

f .u.t//2
;

so along a geodesic the quantity f .u/2v0 D Gv0 is constant. We recognize this as the dot product of the

tangent vector of our geodesic with the vector xv , and so we infer that kxvk cos � D r cos � is constant.

(Recall that, by Proposition 4.2, the tangent vector of the geodesic has constant length.)

To this point we have seen that the equation (�2) is equivalent to the condition r cos� D const, provided

we assume k˛0k2 D u02 CGv02 is constant as well. But if

u0.t/2 CGv0.t/2 D u0.t/2 C f .u.t//2v0.t/2 D const;

we differentiate and obtain

u0.t/u00.t/C f .u.t//2v0.t/v00.t/C f .u.t//f 0.u.t//u0.t/v0.t/2 D 0I

substituting for v00.t/ using (�2), we find

u0.t/
�

u00.t/ � f .u.t//f 0.u.t//v0.t/2
�

D 0:

In other words, provided u0.t/ ¤ 0, a constant-speed curve satisfying (�2) satisfies (�1) as well. (See

Exercise 6 for the case of the parallels.) �

Remark. We can give a simple physical interpretation of Clairaut’s relation. Imagine a particle with

mass 1 constrained to move along a surface. If no external forces are acting, then the particle moves along

a geodesic and, moreover, angular momentum is conserved (because there are no torques). In the case

of our surface of revolution, the vertical component of the angular momentum L D ˛ � ˛0 is—surprise,

surprise!—f 2v0, which we’ve shown is constant. Perhaps some forces normal to the surface are required

to keep the particle on the surface; then the particle still moves along a geodesic (why?). Moreover, since

.˛ � n/ � .0; 0; 1/ D 0, the resulting torques still have no vertical component.
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Returning to our original motivation for geodesics, we now consider the following scenario. Choose

P 2 M arbitrary and a geodesic  through P , and draw a curve C0 through P orthogonal to . We now

choose a parametrization x.u; v/ so that x.0; 0/ D P , the u-curves are geodesics orthogonal to C0, and the

v-curves are the orthogonal trajectories of the u-curves, as pictured in Figure 4.5. (It follows from Theorem

C0

P

Q

FIGURE 4.5

3.3 of the Appendix that we can do this on some neighborhood of P .)

In this parametrization we have F D 0 and E D E.u/ (see Exercise 13). Now, if ˛.t/ D x.u.t/; v.t//,

a � t � b, is any path from P D x.0; 0/ to Q D x.u0; 0/, we have

length.˛/ D
Z b

a

q

E.u.t//u0.t/2 CG.u.t/; v.t//v0.t/2dt �
Z b

a

p

E.u.t//ju0.t/jdt

�
Z u0

0

p

E.u/du;

which is the length of the geodesic arc  from P to Q. Thus, we have deduced the following.

Proposition 4.5. For any point Q on  contained in this parametrization, any path from P to Q con-

tained in this parametrization is at least as long as the length of the geodesic segment. More colloquially,

geodesics are locally distance-minimizing.

Example 7. Why is Proposition 4.5 a local statement? Well, consider a great circle on a sphere, as

shown in Figure 4.6. If we go more than halfway around, we obviously have not taken the shortest path.

O

P

Qshortest

longer

FIGURE 4.6

Remark. It turns out that any surface can be endowed with a metric (or distance measure) by defining

the distance between any two points to be the infimum (usually, the minimum) of the lengths of all piecewise-

C
1 paths joining them. (Although the distance measure is different from the Euclidean distance as the

surface sits in R
3, the topology—notion of “neighborhood”—induced by this metric structure is the induced

topology that the surface inherits as a subspace of R3.) It is a consequence of the Hopf-Rinow Theorem (see

M. doCarmo, Differential Geometry of Curves and Surfaces, Prentice Hall, 1976, p. 333, or M. Spivak, A
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Comprehensive Introduction to Differential Geometry, third edition, volume 1, Publish or Perish, Inc., 1999,

p. 342) that in a surface in which every parametrized geodesic is defined for all time (a “complete” surface),

every two points are in fact joined by a geodesic of least length. The proof of this result is quite tantalizing:

To find the shortest path from P to Q, one walks around the “geodesic circle” of points a small distance

from P and finds the point R on it closest to Q; one then proves that the unique geodesic emanating from

P that passes through R must eventually pass through Q, and there can be no shorter path.

We referred earlier to two surfacesM andM � as being globally isometric (e.g., in Example 6 in Section

1). We can now give the official definition: There should be a function f WM !M � that establishes a one-

to-one correspondence and preserves distance—for any P;Q 2 M , the distance between P and Q in M

should be equal to the distance between f .P / and f .Q/ in M �.

EXERCISES 2.4

1. Determine the result of parallel translating the vector .0; 0; 1/ once around the circle x2 C y2 D a2,

z D 0, on the right circular cylinder x2 C y2 D a2.

2. Prove that �2 D �2
g C �2

n .

3. Suppose ˛ is a non-arclength-parametrized curve. Using the formula (��) on p. 14, prove that the

velocity vector of ˛ is parallel along ˛ if and only if �g D 0 and � 0 D 0.

*4. Find the geodesic curvature �g of a latitude circle u D u0 on the unit sphere (see Example 1(d) on

p. 37)

a. directly

b. by applying the result of Exercise 2

5. Consider the right circular cone with vertex angle 2� parametrized by

x.u; v/ D .u tan� cos v; u tan � sin v; u/; 0 < u � u0; 0 � v � 2�:

Find the geodesic curvature �g of the circle u D u0 by using trigonometric considerations. Check that

your answer agrees with the curvature of the circle you get by unrolling the cone to form a “pacman”

figure, as shown on the left in Figure 4.7. (For a proof that these curvatures should agree, see Exercise

2.1.10 and Exercise 3.1.7.)

6. Check that the parallel u D u0 is a geodesic on the surface of revolution parametrized as in Proposition

4.4 if and only if f 0.u0/ D 0. Give a geometric interpretation of and explanation for this result.

7. Use the equations (|), as in Example 3, to determine through what angle a vector turns when it is

parallel-translated once around the circle u D u0 on the cone x.u; v/ D .u cos v; u sin v; cu/, c ¤ 0.

(See Exercise 2.3.2c.)

8. a. Prove that if the surfaces M and M � are tangent along the curve C , parallel translation along C is

the same in both surfaces.
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b. Use the result of part a to determine the effect of parallel translation around the latitude circle u D
u0 on the unit sphere (once again, see Example 1(d) on p. 37), using only geometry, trigonometry,

and Figure 4.7. (Note the Remark on p. 68.)

FIGURE 4.7

*9. What curves lying on a sphere have constant geodesic curvature?

10. Use the equations (||) to find the geodesics on parametrized surface x.u; v/ D .eu cos v; eu sin v; 0/.

(Hint: Aim for dv=du. Use the second equation in (||) and the fact that geodesics must have constant

speed.)

11. Use the equations (||) to find the geodesics on the plane parametrized by polar coordinates. (Hint:

Examine Example 6(b).)

12. Prove or give a counterexample:

a. A curve is both an asymptotic curve and a geodesic if and only if it is a line.

b. If a curve is both a geodesic and a line of curvature, then it must be planar.

]13. a. Suppose F D 0 and the u-curves are geodesics. Use the equations (||) to prove that E is a

function of u only.

b. Suppose F D 0 and the u- and v-curves are geodesics. Prove that the surface is flat.

14. Suppose F D 0 and the u-curves are geodesics. Prove that the length of the u-curve from u D u0 to

u D u1 is independent of v. (See Figure 4.8.)

FIGURE 4.8

15. a. Prove that an arclength-parametrized curve ˛ on a surface M with � ¤ 0 is a geodesic if and only

if n D ˙N.

b. Let ˛ be a space curve, and let M be the ruled surface generated by its binormals. Prove that the

curve is a geodesic on M .

16. a. Suppose a geodesic is planar and has � ¤ 0 at P . Prove that its tangent vector at P must be a

principal direction. (Hint: Use Exercise 15.)
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b. Prove that if every geodesic of a (connected) surface is planar, then the surface is contained in a

plane or a sphere.

17. Show that the geodesic curvature at P of a curve C in M is equal (in absolute value) to the curvature at

P of the projection of C into TPM .

*18. Use Clairaut’s relation, Proposition 4.4, to analyze the geodesics on each of the surfaces pictured in

Figure 4.9. In particular, other than the meridians, in each case which geodesics are unbounded (i.e., go

off to infinity)?

(a) (b)

FIGURE 4.9

19. Check using Clairaut’s relation, Proposition 4.4, that great circles are geodesics on a sphere. (Hint: The

result of Exercise A.1.3 may be useful.)

20. Let M be a surface and P 2M . We say U;V 2 TPM are conjugate if IIP .U;V/ D 0.

a. Let C � M be a curve (with the property that its tangent vector is never a principal direction with

principal curvature 0). Define the envelope M � of the tangent planes toM along C to be the ruled

surface whose generator at P 2 C is the limiting position asQ! P of the intersection line of the

tangent planes to M at P and Q. Prove that the generator at P is conjugate to the tangent line to

C at P .

b. Prove that if C is nowhere tangent to an asymptotic direction, then M � is smooth (at least near C ).

Prove, moreover, that M � is tangent to M along C and is a developable (flat ruled) surface.

c. Apply part b to give a geometric way of computing parallel translation. In particular, do this for a

latitude circle on the sphere. (Cf. Exercise 8.)

21. Suppose that on a surfaceM the parallel translation of a vector from one point to another is independent

of the path chosen. Prove that M must be flat. (Hint: Fix an orthonormal basis eo
1; e

o
2 for TPM and

define vector fields e1; e2 by parallel translating. Choose coordinates so that the u-curves are always

tangent to e1 and the v-curves are always tangent to e2. See Exercise 13.)

22. Use the Clairaut relation, Proposition 4.4, to describe the geodesics on the torus as parametrized in

Example 1(c) of Section 1. (Start with a geodesic starting at and making angle �0 with the outer

parallel. Your description should distinguish between the cases 0 < cos �0 � a�b
aCb

and cos �0 >
a�b
aCb

.

Which geodesics never cross the outer parallel at all? Also, remember that through each point there is a

unique geodesic in each direction.)
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23. Use the proof of the Clairaut relation, Proposition 4.4, to show that a unit-speed geodesic on a surface

of revolution is given in terms of the standard parametrization in Example 9 of Section 2 by

v D c
Z

du

f .u/
p

f .u/2 � c2
C const:

Now deduce that in the case of a non-arclength parametrization we obtain

v D c
Z p

f 0.u/2 C g0.u/2

f .u/
p

f .u/2 � c2
duC const:

*24. Use Exercise 23 to give equations of the geodesics on the pseudosphere (see Example 8 of Section 2).

Deduce, in particular, that the only geodesics that are unbounded are the meridians.

25. Use Exercise 23 to show that any geodesic on the paraboloid z D x2 C y2 that is not a meridian

intersects every meridian. (Hint: Show that it cannot approach a meridian asymptotically.)

26. Let M be the hyperboloid x2 C y2 � z2 D 1, and let C be the circle x2 C y2 D 1, z D 0.

a. Use Clairaut’s relation, Proposition 4.4, to show that, with the exception of the circle C , every

geodesic on M is unbounded.

b. Show that there are geodesics that approach the circle C asymptotically. (Hint: Use Exercise 23.)

27. Let C be a parallel (with u D u0) in a surface of revolution M . Suppose a geodesic  approaches C

asymptotically.

a. Use Clairaut’s relation, Proposition 4.4, to show that  must approach “from above” (i.e., with

r > r0 D f .u0/).

b. Use Exercise 23 to show that C must itself be a geodesic. (Hint: Consider the Taylor expansion

f .u/ D f .u0/C f 0.u0/.u � u0/C 1
2
f 00.u0/.u � u0/

2 C : : :.)
c. Give an alternative argument for the result of part b by using the fact that the metric discussed in

the Remark on p. 74 is a continuous function of the pair of points. You will also need to use the

fact that when points are sufficiently close, there is a unique shortest geodesic joining them.

28. Consider the surface z D f .u; v/. A curve ˛ whose tangent vector at each point P D .u; v; f .u; v//

projects to a scalar multiple of rf .u; v/ is a curve of steepest ascent (why?). Suppose such a curve ˛

is also a geodesic.

a. Prove that the projection of ˛ into the uv-plane is, suitably reparametrized, a geodesic in the uv-

plane. (Hint: What is the projection of ˛00?)

b. Deduce that ˛ is also a line of curvature. (Hint: See Exercise 16 when ˛ is not a line. The case of

a line can be deduced from the computation in part c.)

c. Show that if all the curves of steepest ascent are geodesics, then f satisfies the partial differential

equation fufv.fvv � fuu/ C fuv.f
2

u � f 2
v / D 0. (Hint: When are the integral curves of rf

lines?)

d. Show that if all the curves of steepest ascent are geodesics, the level curves of f are parallel (see

Exercise 1.2.24). (Hint: Show that krf k is constant along level curves.)

e. Give a characterization of the surfaces with the property that all curves of steepest ascent are

geodesics.



CHAPTER 3

Surfaces: Further Topics

The first section is required reading, but the remaining sections of this chapter are independent of one

another.

1. Holonomy and the Gauss-Bonnet Theorem

Let’s now pursue the discussion of parallel translation that we began in Chapter 2. Let M be a surface

and ˛ a closed curve in M . We begin by fixing a smoothly-varying orthonormal basis e1; e2 (a so-called

framing) for the tangent planes of M in an open set of M containing ˛, as shown in Figure 1.1 below. Now

e1

e1

e1

e1

e1

e2

e2

e2

e2
e2 α

FIGURE 1.1

we make the following

Definition. Let ˛ be a closed curve in a surface M . The angle through which a vector turns relative to

the given framing as we parallel translate it once around the curve ˛ is called the holonomy1 around ˛.

For example, if we take a framing around ˛ by using the unit tangent vectors to ˛ as our vectors e1, then, by

the definition of a geodesic, there there will be zero holonomy around a closed geodesic (why?). For another

example, if we use the framing on (most of) the sphere given by the tangents to the lines of longitude and

lines of latitude, the computation in Example 3 of Section 4 of Chapter 2 shows that the holonomy around a

latitude circle u D u0 of the unit sphere is �2� cos u0.

To make this more precise, for ease of understanding, let’s work in an orthogonal parametrization2 and

define a framing by setting

e1 D
xup
E

and e2 D
xvp
G
:

Since (much as in the case of curves) e1 and e2 give an orthonormal basis for the tangent space of our

surface at each point, all the intrinsic curvature information (such as given by the Christoffel symbols)

1from holo-+-nomy, the study of the whole
2As usual, away from umbilic points, we can apply Theorem 3.3 of the Appendix to obtain a parametrization where the u- and

v-curves are lines of curvature.

79
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is encapsulated in knowing how e1 twists towards e2 as we move around the surface. In particular, if

˛.t/ D x.u.t/; v.t//, a � t � b, is a parametrized curve, we can set

�12.t/ D
d

dt

�

e1.u.t/; v.t//
�

� e2.u.t/; v.t//;

which we may write more casually as e0
1.t/ � e2.t/, with the understanding that everything must be done in

terms of the parametrization. We emphasize that �12 depends in an essential way on the parametrized curve

˛. Perhaps it’s better, then, to write

�12 D r˛0e1 � e2 :

Note, moreover, that the proof of Proposition 4.2 of Chapter 2 shows that r˛0e2 �e1 D ��12 and r˛0e1 �e1 D
r˛0e2 � e2 D 0. (Why?)

Remark. Although the notation seems cumbersome, it reminds us that �12 is measuring how e1 twists

towards e2 as we move along the curve ˛. This notation will fit in a more general context in Section 3.

Let’s now derive an explicit formula for the function �12.

Proposition 1.1. In an orthogonal parametrization with e1 D xu=
p
E and e2 D xv=

p
G, we have

�12 D
1

2
p
EG

�

�Evu
0 CGuv

0�.

Proof. The key point is to take full advantage of the orthogonality of xu and xv .

�12 D
d

dt

�
xup
E

�

� xvp
G

D 1p
EG

�

xuuu
0 C xuvv

0� � xv

(since the term that would arise from differentiating
p
E will involve xu � xv D 0)

D 1

2
p
EG

�

�Evu
0 CGuv

0�;

by the formulas (�) on p. 58. �

Suppose now that ˛ is a closed curve and we are interested in the holonomy around ˛. If e1 happens

to be parallel along ˛, then the holonomy will, of course, be 0. If not, let’s consider X.t/ to be the parallel

translation of e1 along ˛.t/ and write X.t/ D cos .t/e1C sin .t/e2, taking  .0/ D 0. Then X is parallel

along ˛ if and only if

0 D r˛0X D r˛0.cos e1 C sin e2/

D cos r˛0e1 C sin r˛0e2 C .� sin e1 C cos e2/ 
0

D cos �12e2 � sin �12e1 C .� sin e1 C cos e2/ 
0

D .�12 C  0/.� sin e1 C cos e2/:

Thus, X is parallel along ˛ if and only if  0.t/ D ��12.t/. We therefore conclude:

Proposition 1.2. The holonomy around the closed curve C equals � D �
Z b

a

�12.t/dt .



÷1. HOLONOMY AND THE GAUSS-BONNET THEOREM 81

Remark. Note that the angle  is measured from e1 in the direction of e2. Whether the vector turns

counterclockwise or clockwise from our external viewpoint depends on the orientation of the framing.

Example 1. Back to our example of the latitude circle u D u0 on the unit sphere. Then e1 D xu and

e2 D .1= sin u/xv . If we parametrize the curve by taking v D t , 0 � t � 2� , then we have (see Example 1

of Chapter 2, Section 3)

r˛0e1 D r˛0xu D .xuv/
k D cotu0xv D cosu0e2 ;

and so �12 D cos u0. Therefore, the holonomy around the latitude circle (oriented counterclockwise) is

� D �
Z 2�

0

cosu0dt D �2� cos u0, confirming our previous results.

Note that if we wish to parametrize the curve by arclength (as will be important shortly), we take

s D .sinu0/v, 0 � s � 2� sinu0. Then, with respect to this parametrization, we have �12.s/ D cot u0.

(Why?)

For completeness, we can use Proposition 1.1 to calculate �12 as well: With E D 1, G D sin2 u,

u D u0, and v.s/ D s= sin u0, we have �12 D
1

2 sin u0

�

2 sin u0 cosu0 �
1

sinu0

�

D cotu0, as before. O

Suppose now that ˛ is an arclength-parametrized curve and let’s write ˛.s/ D x.u.s/; v.s// and T.s/ D
˛0.s/ D cos �.s/e1Csin �.s/e2, s 2 Œ0; L�, for a C1 function �.s/ (cf. Lemma 3.6 of Chapter 1), as indicated

in Figure 1.2. A formula fundamental for the rest of our work is the following:

e1

e2

FIGURE 1.2

Proposition 1.3. When ˛ is an arclength-parametrized curve, the geodesic curvature of ˛ is given by

�g.s/ D �12.s/C � 0.s/ D 1

2
p
EG

�

�Evu
0.s/CGuv

0.s/
�

C � 0.s/:

Proof. Recall that �g D �N � .n � T/ D T0 � .n � T/. Now, since T D cos �e1 C sin �e2, n � T D
� sin �e1 C cos �e2 (why?), and so

�g D rTT � .� sin �e1 C cos �e2/

D rT.cos �e1 C sin �e2/ � .� sin �e1 C cos �e2/

D
�

cos �rTe1 C sin �rTe2

�

� .� sin �e1 C cos �e2/C
�

.� sin �/� 0.� sin �/C .cos �/� 0.cos �/
�

D .cos2 � C sin2 �/.�12 C � 0/ D �12 C � 0;

as required. Now the result follows by applying Proposition 1.1 when ˛ is arclength-parametrized. �
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Remark. The first equality in Proposition 1.3 should not be surprising in the least. Curvature of a

plane curve measures the rate at which its unit tangent vector turns relative to a fixed reference direction.

Similarly, the geodesic curvature of a curve in a surface measures the rate at which its unit tangent vector

turns relative to a parallel vector field along the curve; � 0 measures its turning relative to e1, which is itself

turning at a rate given by �12, so the geodesic curvature is the sum of those two rates.

Now suppose that ˛ is a closed curve bounding a region R D x.R0/ � M . We denote the boundary of

R by @R. Note that @R D x.@R0/. Then by Green’s Theorem (see Theorem 2.6 of the Appendix), we have

Z L

0

�12.s/ds D
Z L

0

1

2
p
EG

�

�Evu
0.s/C Guv

0.s/
�

ds D
Z

@R0

1

2
p
EG

�

�EvduCGudv
�

D
“

R0

�� Ev

2
p
EG

�

v
C
� Gu

2
p
EG

�

u

�

dudv

(�)

D
“

R0

1

2
p
EG

�� Evp
EG

�

v
C
� Gup

EG

�

u

�p
EGdudv

„ ƒ‚ …

dA

D �
“

R

KdA

by the formula (�) for Gaussian curvature on p. 60. (Recall from the end of Section 1 of Chapter 2 that the

element of surface area on a parametrized surface is given by dA D kxu�xvkdudv D
p
EG � F 2dudv.)

We now see that Gaussian curvature and holonomy are intimately related:

Corollary 1.4. When R is a region with smooth boundary and lying in an orthogonal parametrization,

the holonomy around @R is � D
’

RKdA.

Proof. This follows immediately from Proposition 1.2 and the formula (�) above. �

We conclude further from Proposition 1.3 that
Z

@R

�gds D
Z

@R

�12ds C �.L/ � �.0/
„ ƒ‚ …

��

;

so the total angle through which the tangent vector to @R turns is given by

�� D
Z

@R

�gds C
“

R

KdA:

Now, when R is simply connected (i.e., can be continuously deformed to a point), it is not too surprising

that �� D 2� . Intuitively, as we shrink the curve to a point, e1 becomes almost constant along the curve,

but the tangent vector must make one full rotation (as a consequence of the Hopf Umlaufsatz, Theorem 3.5

of Chapter 1). Since �� is an integral multiple of 2� that varies continuously as we deform the curve, it

must stay equal to 2� throughout.

Corollary 1.5. If R is a simply connected region lying in an orthogonal parametrization and whose

boundary curve is a geodesic, then
’

RKdA D �� D 2� .

Example 2. We take R to be the upper hemisphere and use the usual spherical coordinates parametriza-

tion. Then the unit tangent vector along @R is e2 everywhere, so �� D 0, in contradiction with Corollary
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1.5. Alternatively, C D @R is a geodesic, so there should be zero holonomy around C (computed with

respect to this framing).

How do we resolve this paradox? Well, although we’ve been sloppy about this point, the spherical

coordinates parametrization actually fails at the north pole (since xv D 0). Indeed, there is no framing of

the upper hemisphere with e2 everywhere tangent to the equator. However, the reader can rest assured that

there is some orthogonal parametrization of the upper hemisphere, e.g., by stereographic projection from

the south pole (cf. Example 1(e) in Section 1 of Chapter 2). O

Remark. In more advanced courses, the holonomy around the closed curve ˛ is interpreted as a rota-

tion of the tangent plane of M at ˛.0/. That is, what matters is � .mod 2�/, i.e., the change in angle

disregarding multiples of 2� . This quantity does not depend on the choice of framing e1; e2.

We now set to work on one of the crowning results of surface theory.

Theorem 1.6 (Local Gauss-Bonnet). Suppose R is a simply connected region with piecewise smooth

boundary and lying in an orthogonal parametrization. If C D @R has exterior angles �j , j D 1; : : : ; `, then

Z

@R

�gds C
“

R

KdAC
X̀

j D1

�j D 2�:

C

FIGURE 1.3

Note, as we indicate in Figure 1.3, that we measure exterior angles so that j�j j � � for all j .

Proof. If @R is smooth, then from our earlier discussion we infer that
Z

@R

�gds C
“

R

KdA D �� D 2�:

But when @R has corners, the unit tangent vector turns less by the amount
P`

j D1 �j , so the result follows.

(Technically, what we need is the correction of the Hopf Umlaufsatz when the curve has corners. See

Exercise 1.3.13.) �

Corollary 1.7. For a geodesic triangle (i.e., a region whose boundary consists of three geodesic seg-

ments) R with interior angles �1, �2, �3, we have
’

RKdA D .�1 C �2 C �3/ � � , the angle excess.

Proof. Since the boundary consists of geodesic segments, the geodesic curvature integral drops out, and

we are left with
“

R

KdA D 2� �
3
X

j D1

�j D 2� �
3
X

j D1

.� � �j / D
3
X

j D1

�j � �;

as required. �
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Remark. It is worthwhile to consider the three special cases K D 0, K D 1, K D �1, as pictured in

Figure 1.4. When M is flat, the sum of the angles of a triangle is � , as in the Euclidean case. When M

FIGURE 1.4

is positively curved, it takes more than � for the triangle to close up, and when M is negatively curved, it

takes less. Intuitively, this is because geodesics seem to “bow out” when K > 0 and “bow in” when K < 0

(cf. Exercise 3.2.17).

Example 3. Let’s consider Theorem 1.6 in the case of a spherical cap, as shown in Figure 1.5. Using

the usual spherical coordinates parametrization, we have 0 � u � u0. By Proposition 1.3 and Example 1,

FIGURE 1.5

since � D �=2 along the v-curve, we have �g D �12.s/ D cotu0 (cf. also Exercise 2.4.4). Therefore, we

have “

R

KdA D 2� �
Z

@R

�gds D 2�.1 � cosu0/;

which checks, of course, since K D 1 and the area of this cap is indeed
Z 2�

0

Z u0

0

sinududv D 2�.1 � cosu0/: O

Remark. Notice that the sign of �g depends on both the orientation of ˛ and the orientation of the

surface. If we rescale the surface by a factor of c, then the integral
R

@R �gds does not change, as the

arclength changes by a factor of c and the geodesic curvature by a factor of 1=c. Similarly, the integral
’

R KdA does not change when we rescale the surface: Area changes by a factor of c2 and Gaussian

curvature changes by a factor of 1=c2.

We now come to one of the crowning results of modern-day mathematics, one which has led to much

subsequent research and generalization. We say a surface M � R
3 is oriented if we have chosen a con-

tinuous unit normal field defined everywhere on M . We now consider a compact, oriented surface with
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n

FIGURE 1.6

piecewise-smooth boundary, as pictured in Figure 1.6. T. Radó proved in 1925 that any such surface M can

be triangulated. That is, we may write M D
mS

�D1

�� where

(i) �� is the image of a triangle under an (orientation-preserving) orthogonal parametrization;

(ii) �� \�� (� ¤ �) is either empty, a single vertex, or a single edge;

(iii) when �� \ �� consists of a single edge, the orientations of the edge are opposite in �� and

��; and

(iv) at most one edge of �� is contained in the boundary of M .

We now make a standard

Definition. Given a triangulation T of a surface M with V vertices, E edges, and F faces, we define

the Euler characteristic �.M;T/ D V �E C F .

Example 4. We can triangulate a disk as shown in Figure 1.7, obtaining � D 1. Without being so

V−E+F = 5−8+4 = 1

∆1∆2

∆3 ∆4

V−E+F = 9−18+10 = 1

FIGURE 1.7

pedantic as to require that each�� be the image of a triangle under an orthogonal parametrization, we might

just think of the disk as a single triangle with its edges puffed out; then we would have � D V �E C F D
3� 3C 1 D 1, as well. We leave it to the reader to triangulate a sphere and check that �.†;T/ D 2. O

Remark. It’s important to note that by choosing the orientations on the “triangles” �� compatibly,

we get an orientation on the boundary of M . That is, a choice of n on M determines which direction we

proceed on @M . This is precisely the case any time one deals with Green’s Theorem (or its generalization

to oriented surfaces, Stokes’s Theorem). Nevertheless, following up on the Remark on p. 84, the sign of �g

on @M is independent of the choice of orientation on M , for, if we change n to �n, the orientation on @M

switches and n � T stays the same.

The beautiful result to which we’ve been headed is now the following
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Theorem 1.8 (Global Gauss-Bonnet). Let M be a compact, oriented surface with piecewise-smooth

boundary, equipped with a triangulation T as above. If �k, k D 1; : : : ; `, are the exterior angles of @M , then

Z

@M

�gds C
“

M

KdAC
X̀

kD1

�k D 2��.M;T/:

Proof. As we illustrate in Figure 1.8, we will distinguish vertices on the boundary and in the interior,

denoting the respective total numbers by Vb and Vi . Similarly, we distinguish among edges on the boundary,

edges in the interior, and edges that join a boundary vertex to an interior vertex; we denote the respective

FIGURE 1.8

numbers of these by Eb , Ei , and Eib. Now observe that

“

M

KdA D
m
X

�D1

“

��

KdA

since all the orientations are compatible, and

Z

@R

�gds D
m
X

�D1

Z

@��

�gds

because the line integrals over interior and interior/boundary edges cancel in pairs (recall that �g changes

sign when we reverse the orientation of the curve). Let ��j , j D 1; 2; 3, denote the exterior angles of the

“triangle” ��. Then, applying Theorem 1.6 to ��, we have

Z

@��

�gds C
“

��

KdAC
3
X

j D1

��j D 2�;

and now, summing over the triangles, we obtain

Z

@M

�gds C
“

M

KdAC
m
X

�D1

3
X

j D1

��j D 2�m D 2�F :
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Now we must do some careful accounting: Letting ��j denote the respective interior angles of triangle ��,

we have
X

interior
vertices

��j D
X

interior
vertices

.� � ��j / D �.2Ei CEib/ � 2�Vi(�)

inasmuch as each interior edge contributes two interior vertices, whereas each interior/boundary edge con-

tributes just one, and the interior angles at each interior vertex sum to 2� . Next,

X

boundary
vertices

��j D �Eib C
X̀

kD1

�k :(��)

To see this, we reason as follows. Given a boundary vertex v, denote by a superscript .v/ the relevant angle

or number for which the vertex v is involved. Note first of all that any boundary vertex v is contained in

E
.v/

ib
C 1 faces. Moreover, for a fixed boundary vertex v,

X

�
.v/

�j
D

8

<

:

�; v a smooth boundary vertex

� � �k ; v a corner of @M with exterior angle �k

:

Thus,

X

boundary
vertices

��j D
X

boundary
vertices v

.� � ��j / D
X

boundary
vertices v

�.E
.v/

ib
C 1/ �

� X

v smooth

��j C
X

v corner

��j

�

D �Eib C
X̀

kD1

�k :

Adding equations (�) and (��) yields

X

�;j

��j D
X

interior
vertices

��j C
X

boundary
vertices

��j D 2�.Ei CEib � Vi /C
X̀

kD1

�k :

At long last, therefore, our reckoning concludes:

Z

@M

�gds C
“

M

KdAC
X̀

kD1

�k D 2�
�

F � .Ei CEib/C Vi

�

D 2�
�

F � .Ei CEib CEb/C .Vi C Vb/
�

D 2�.V �E C F /
D 2��.M;T/:

(Note that because the boundary curve @M is closed, we have Vb D Eb .) �

We now derive some interesting conclusions:

Corollary 1.9. The Euler characteristic �.M;T/ does not depend on the triangulation T of M .

Proof. The left-hand side of the equality in Theorem 1.8 has nothing whatsoever to do with the trian-

gulation. �
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It is therefore legitimate to denote the Euler characteristic by �.M/, with no reference to the triangulation.

It is proved in a course in algebraic topology that the Euler characteristic is a “topological invariant”; i.e., if

we deform the surface M in a bijective, continuous manner (so as to obtain a homeomorphic surface), the

Euler characteristic does not change. We therefore deduce:

Corollary 1.10. The quantity

Z

@M

�gds C
“

M

KdAC
X̀

kD1

�k

is a topological invariant, i.e., does not change as we deform the surface M .

In particular, in the event that @M D ; (so many people refer to the surface M as a closed surface), we

have

Corollary 1.11. When M is a compact, oriented surface without boundary, we have
“

M

KdA D 2��.M/:

It is very interesting that the total curvature does not change as we deform the surface, for example, as shown

in Figure 1.9. In a topology course, one proves that any compact, oriented surface without boundary must

FIGURE 1.9

have the topological type of a sphere or of a g-holed torus for some positive integer g. Thus (cf. Exercise

4), the possible Euler characteristics of such a surface are 2, 0, �2, �4, ...; moreover, the integral
’

M KdA

determines the topological type of the surface.

We conclude this section with a few applications of the Gauss-Bonnet Theorem.

Example 5. SupposeM is a surface of nonpositive Gaussian curvature. Then there cannot be a geodesic

2-gon R on M that bounds a simply connected region. For if there were, by Theorem 1.6 we would have

0 �
“

R

KdA D 2� � .�1 C �2/ > 0;

which is a contradiction. (Note that the exterior angles must be strictly less than � because there is a unique

(smooth) geodesic with a given tangent direction.) O

Example 6. Suppose M is topologically equivalent to a cylinder and its Gaussian curvature is negative.

Then there is at most one simple closed geodesic in M . Note, first, as indicated in Figure 1.10, that if

there is a simple closed geodesic ˛, either it must separate M into two unbounded pieces or else it bounds
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R

FIGURE 1.10

a disk R, in which case we would have 0 >
’

RKdA D 2��.R/ D 2� , which is a contradiction. On

the other hand, suppose there were two. If they don’t intersect, then they bound a cylinder R and we get

0 >
’

R KdA D 2��.R/ D 0, which is a contradiction. If they do intersect, then we we have a geodesic

2-gon bounding a simply connected region, which cannot happen by Example 5. O

EXERCISES 3.1

1. Compute the holonomy around the parallel u D u0 (and indicate which direction the rotation occurs

from the viewpoint of an observer away from the surface down the x-axis) on

*a. the torus x.u; v/ D
�

.aC b cosu/ cos v; .aC b cosu/ sin v; b sinu
�

b. the paraboloid x.u; v/ D .u cos v; u sin v; u2/

c. the catenoid x.u; v/ D .cosh u cos v; cosh u sin v; u/

*2. Determine whether there can be a (smooth) closed geodesic on a surface when

a. K > 0

b. K D 0
c. K < 0

If the closed geodesic can bound a simply connected region, give an example.

3. Calculate the Gaussian curvature of a torus (as parametrized in Example 1(c) of Section 1 of Chapter 2)

and verify Corollary 1.11.

4. a. Triangulate a cylinder, a sphere, a torus, and a two-holed torus; verify that � D 0, 2, 0, and �2,

respectively. Pay particular attention to condition (ii) in the definition of triangulation.

b. Prove by induction that a g-holed torus has � D 2 � 2g.

5. Suppose M is a compact, oriented surface without boundary that is not of the topological type of a

sphere. Prove that there are points in M where Gaussian curvature is positive, zero, and negative.

6. Consider a surface with K > 0 that is topologically a cylinder. Prove that there cannot be two disjoint

simple closed geodesics both going around the neck of the surface.

7. Suppose M and M � are locally isometric and compatibly oriented. Use Proposition 1.3 to prove that if

˛ and ˛� are corresponding arclength-parametrized curves, then their geodesic curvatures are equal at

corresponding points.
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8. Consider the paraboloid M parametrized by x.u; v/ D .u cos v; u sin v; u2/, 0 � u, 0 � v � 2� .

Denote by Mr that portion of the paraboloid defined by 0 � u � r .

a. Calculate the geodesic curvature of the boundary circle and compute

Z

@Mr

�gds.

b. Calculate �.Mr/.

c. Use the Gauss-Bonnet Theorem to compute

“

Mr

KdA. Find the limit as r ! 1. (This is the

total curvature of the paraboloid.)

d. Calculate K directly (however you wish) and compute

“

M

KdA explicitly.

e. Explain the relation between the total curvature and the image of the Gauss map of M .

9. Consider the pseudosphere (with boundary) M parametrized as in Example 8 of Chapter 2, Section 2,

but here we take u � 0. Denote by Mr that portion defined by 0 � u � r . (Note that we are including

the boundary circle u D 0.)

a. Calculate the geodesic curvature of the circle u D u0 and compute

Z

@Mr

�gds. Watch out for the

orientations of the two circles.

b. Calculate �.Mr/.

c. Use the Gauss-Bonnet Theorem to compute

“

Mr

KdA. Find the limit as r ! 1. (This is the

total curvature of the pseudosphere.)

d. Calculate the area of Mr directly, and use this to deduce the value of

“

M

KdA.

e. Explain the relation between the total curvature and the image of the Gauss map of M .

10. Give a different version of the accounting to prove Theorem 1.8 as follows.

a. Show that 3F D 2.Ei C Eib/C Eb, and conclude that 3F D 2E � Vb .

b. Show that
P

interior vertices ��j D 2�Vi and
P

boundary vertices ��j D �Vb �
P
�k.

c. Conclude that
P

�;j ��j D 3�F �
P

�;j ��j D 2�.E � V /C
P
�k and complete the proof of the

theorem.

11. a. Use Corollary 1.4 to prove that M is flat if and only if the holonomy around all (“small”) closed

curves that bound a region in M is zero.

b. Show that even on a flat surface, holonomy can be nontrivial around certain curves.

12. Reprove the result of part a of Exercise 2.3.14 by considering the holonomy around a (sufficiently small)

quadrilateral formed by four of the lines. Does the result hold if there are two families of geodesics in

M always intersecting at right angles?

13. In this exercise we explore what happens when we try to apply the Gauss-Bonnet Theorem to the

simplest non-smooth surface, a right circular cone. Let R denote the surface given in Exercise 2.4.5 and

@R its boundary curve.

a. Show that if we make R by gluing the edges of a circular sector (“pacman”) of central angle ˇ,

as indicated in Figure 1.11, then

Z

@R

�gds D 2� sin� D ˇ. We call ˇ the cone angle of R at its

vertex.

b. Show that Theorem 1.6 holds for R if we add 2� � ˇ to
’

RKdA.
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FIGURE 1.11

c. Show that we obtain the same result by “smoothing” the cone point, as pictured in Figure 1.12.

(Hint: Interpret
’

RKdA as the area of the image of the Gauss map.)

FIGURE 1.12

Remark. It is not hard to give an explicit C2 such smoothing. For example, construct a C
2 convex

function f on Œ0; 1� with f .0/ D f 0.0/ D 0, f .1/ D f 0.1/ D 1, and f 00.1/ D 0.

14. Suppose ˛ is a closed space curve with � ¤ 0. Assume that the normal indicatrix (i.e., the curve traced

out on the unit sphere by the principal normal) is a simple closed curve in the unit sphere. Prove then

that it divides the unit sphere into two regions of equal area. (Hint: Apply the Gauss-Bonnet Theorem

to one of those regions.)

15. Suppose M � R
3 is a compact, oriented surface with no boundary with K > 0. It follows that M is

topologically a sphere (why?). Prove that M is convex; i.e., for each P 2 M , M lies on only one side

of the tangent plane TPM . (Hint: Use the Gauss-Bonnet Theorem and Gauss’s original interpretation

of curvature indicated in the remark on p. 51 to show the Gauss map must map onto † (because † is

connected) and then deduce that it maps one-to-one. Then show that if M lies on both sides of some

TPM , the tangent planes must be parallel at three distinct points.)

2. An Introduction to Hyperbolic Geometry

Hilbert proved in 1901 that there is no surface (without boundary) in R
3 with constant negative curvature

with the property that it is a closed subset of R
3 (i.e., every Cauchy sequence of points in the surface

converges to a point of the surface). The pseudosphere fails the latter condition. Nevertheless, it is possible

to give a definition of an “abstract surface” (not sitting inside R
3) together with a first fundamental form.

As we know, this will be all we need to calculate Christoffel symbols, curvature (Theorem 3.1 of Chapter

2), geodesics, and so on.

Definition. The hyperbolic plane H is defined to be the half-plane f.u; v/ 2 R
2 W v > 0g, equipped

with the first fundamental form I given by E D G D 1=v2, F D 0.
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Now, using the formulas (�) on p. 58, we find that

� u
uu D

Eu

2E
D 0 � v

uu D �
Ev

2G
D 1

v

� u
uv D

Ev

2E
D �1

v
� v

uv D
Gu

2G
D 0

� u
vv D �

Gu

2E
D 0 � v

vv D
Gv

2G
D �1

v
:

Using the formula (�) for Gaussian curvature on p. 60, we find

K D � 1

2
p
EG

�� Evp
EG

�

v
C
� Gup

EG

�

u

�

D �v
2

2

�

� 2
v3
� v2

�

v
D �v

2

2
� 2
v2
D �1:

Thus, the hyperbolic plane has constant curvature �1. Note that it is a consequence of Corollary 1.7 that the

area of a geodesic triangle in H is equal to � � .�1 C �2 C �3/.
What are the geodesics in this surface? Using the equations (||) on p. 71, we obtain the equations

u00 � 2
v
u0v0 D v00 C 1

v
.u02 � v02/ D 0:

Obviously, the vertical rays u D const give us solutions (with v.t/ D c1e
c2t ). Next we seek geodesics with

u0 ¤ 0, so we start with
dv

du
D v0

u0 and apply the chain rule judiciously:

d2v

du2
D d

du

�
v0

u0

�

D u0v00 � u00v0

u02 � 1
u0

D 1

u03

�

u0
�
1

v

�
�

v02 � u02� � v0
�
2

v
u0v0

��

D �1
v

 

1C
�
v0

u0

�2
!

D �1
v

 

1C
�
dv

du

�2
!

:

This means we are left with the differential equation

v
d2v

du2
C
�
dv

du

�2

D d

du

�

v
dv

du

�

D �1;

and integrating this twice gives us the solutions

u2 C v2 D auC b:

That is, the geodesics in H are the vertical rays and the semicircles centered on the u-axis, as pictured

in Figure 2.1. Note that any semicircle centered on the u-axis intersects each vertical line at most one

time. It now follows that any two points P;Q 2 H are joined by a unique geodesic. If P and Q lie on

a vertical line, then the vertical ray through them is the unique geodesic joining them. If P and Q do not

lie on a vertical line, let C be the intersection of the perpendicular bisector of PQ and the u-axis; then the

semicircle centered at C is the unique geodesic joining P and Q.

Example 1. Given P;Q 2 H, we would like to find a formula for the (geodesic) distance d.P;Q/

between them. Let’s start with P D .u0; a/ and Q D .u0; b/, with 0 < a < b. Parametrizing the line

segment from P to Q by u D u0, v D t , a � t � b, we have

d.P;Q/ D
Z b

a

q

Eu0.t/2 CGv0.t/2dt D
Z b

a

dt

t
D ln

b

a
:
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u

v

FIGURE 2.1

Note that, fixing Q and letting P approach the u-axis, d.P;Q/ ! 1; thus, it is reasonable to think of

points on the u-axis as “virtual” points at infinity.

In general, we parametrize the arc of a semicircle .u0 C r cos t; r sin t/, �1 � t � �2, going from P to

u

v

P

Q

A B

r

FIGURE 2.2

Q, as shown in Figure 2.2. Then we have

d.P;Q/ D
ˇ
ˇ
ˇ
ˇ
ˇ

Z �2

�1

q

Eu0.t/2 CGv0.t/2dt

ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ

Z �2

�1

rdt

r sin t

ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ

Z �2

�1

dt

sin t

ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ
ln

 

1C cos �1

sin �1

,

1C cos �2

sin �2

!ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ln

 

2 cos.�1=2/

2 sin.�1=2/

,

2 cos.�2=2/

2 sin.�2=2/

!ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ln

�
AP

BP

.AQ

BQ

�ˇ
ˇ
ˇ
ˇ
;

where the lengths in the final formula are Euclidean. (See Exercise 12 for the connection with cross ratio.)

O

It follows from the first part of Example 1 that the curves v D a and v D b are a constant distance apart

(measured along geodesics orthogonal to both), like parallel lines in Euclidean geometry. These curves are

classically called horocycles. As we see in Figure 2.3, these curves are the curves orthogonal to the family

of the “vertical geodesics.” If, instead, we consider all the geodesics passing through a given point Q “at

infinity” on v D 0, as we ask the reader to check in Exercise 5, the orthogonal trajectories will be curves in

H represented by circles tangent to the u-axis at Q.

Example 2. Let’s calculate the geodesic curvature of the horocycle v D a, oriented to the right. We

start by parametrizing the curve by ˛.t/ D .t; a/. Then ˛0.t/ D .1; 0/. Note that �.t/ D k˛0.t/k D
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Q

FIGURE 2.3

p

E.1/2 CG.0/2 D 1=a. By Proposition 1.1,

�12 D
1

2
q

1
a4

.2a�3 � 1/ D 1

a
:

(Here e1 D v.1; 0/ and e2 D v.0; 1/ at the point .u; v/ 2 H. Why?) To calculate the geodesic curvature,

we wish to apply Proposition 1.3, which requires differentiation with respect to arclength, so we’ll use the

chain rule as in Chapter 1, multiplying the t-derivative by 1=�.t/ D a. Note, also, that ˛0 makes the constant

angle � D 0 with e1, so � 0 D 0. Thus,

�g D
1

�.t/
�12 D a �

1

a
D 1;

as required. (Note that if we move to the left, the sign changes and �g D �1.) O

We ask the reader to do the analogous calculations for the circles tangent to the u-axis in Exercise 6.

Moreover, as we ask the reader to check in Exercise 7, every curve in H of constant geodesic curvature

�g D ˙1 is a horocycle.

Remark. It seems somewhat surprising to find in Example 2 that �12 D 1=a, as e1 certainly doesn’t

appear to be turning as we move along the path. However, as we discussed in the Remark on p. 71, at any

point of v D a the geodesic with the same tangent vector is a semicircle heading “to the right,” and so this

means that e1 is turning to the left, i.e., towards e2.

The isometries of the Euclidean plane form a group, the Euclidean group E.2/; the isometries of the

sphere likewise form a group, the orthogonal group O.3/. Each of these is a 3-dimensional Lie group.

Intuitively, there are three degrees of freedom because we must specify where a point P goes (two degrees

of freedom) and where a single unit tangent vector at that point P goes (one more degree of freedom). We

might likewise expect the isometries of H to form a 3-dimensional group. And indeed it is. We deal with

just the orientation-preserving isometries here.

We consider H � C by letting .u; v/ correspond to z D uC iv, and we consider the collection of linear

fractional transformations

T .z/ D az C b
cz C d ; a; b; c; d 2 R; ad � bc D 1:

We must now check several things:

(i) Composition of functions corresponds to multiplication of the 2 � 2 matrices

�
a b

c d

�

with

determinant 1, so we obtain a group.
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(ii) T maps H bijectively to H.

(iii) T is an isometry of H.

We leave it to the reader to check the first two in Exercise 8, and we check the third here. Given the point

z D u C iv, we want to compute the lengths of the vectors Tu and Tv at the image point T .z/ D x C iy
and see that the two vectors are orthogonal. Note that

az C b
cz C d D

.az C b/.cz C d/
jcz C d j2 D

�

a.uC iv/C b
��

c.u � iv/C d
�

jcz C d j2

D
�

ac.u2 C v2/C .ad C bc/uC bd
�

C i
�

.ad � bc/v
�

jcz C d j2 ;

so y D v

jcz C d j2 . Now we have3

xu C iyu D �ixv C yv D T 0.z/ D .cz C d/a � .az C b/c
.cz C d/2 D 1

.cz C d/2 ;

so we have

QE D x2
u C y2

u

y2
D 1

y2
jT 0.z/j2 D 1

y2
� 1

jcz C d j4 D
1

v2
D E;

and, similarly, QG D x2
v C y2

v

y2
D G. On the other hand,

QF D xuyu C xvyv

y2
D xu.�xv/C xv.xu/

y2
D 0 D F ;

as desired.

Now, as we verify in Exercise 12 or in Exercise 14, linear fractional transformations carry lines and

circles in C to either lines or circles. Since our particular linear fractional transformations preserve the real

axis ([f1g) and preserve angles as well, it follows that vertical lines and semicircles centered on the real

axis map to one another. Thus, our isometries do in fact map geodesics to geodesics (how comforting!).

If we think of H as modeling non-Euclidean geometry, with lines in our geometry being the geodesics,

note that given any line ` and point P … `, there are infinitely many lines passing through P “parallel”

to (i.e., not intersecting) `. As we see in Figure 2.4, there are two special lines through P that “meet ` at

P

FIGURE 2.4

infinity”; the rest are often called ultraparallels.

We conclude with an interesting application. As we saw in the previous section, the Gauss-Bonnet

Theorem gives a deep relation between the total curvature of a surface and its topological structure (Euler

3These are the Cauchy-Riemann equations from basic complex analysis.
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characteristic). We know that if a compact surface M is topologically equivalent to a sphere, then its total

curvature must be that of a round sphere, namely 4� . If M is topologically equivalent to a torus, then (as

the reader checked in Exercise 3.1.3) its total curvature must be 0. We know that there is no way of making

FIGURE 2.5

the torus in R
3 in such a way that it has constant Gaussian curvature K D 0 (why?), but we can construct a

flat torus in R
4 by taking

x.u; v/ D .cosu; sin u; cos v; sin v/; 0 � u; v � 2�:

(We take a piece of paper and identify opposite edges, as indicated in Figure 2.5; this can be rolled into a

cylinder in R
3 but into a torus only in R

4.) So what happens with a 2-holed torus? In that case, �.M/ D �2,

so the total curvature should be �4� , and we can reasonably ask if there’s a 2-holed torus with constant

negative curvature. Note that we can obtain a 2-holed torus by identifying pairs of edges on an octagon, as

a

a

b

b

c

c

d

d

FIGURE 2.6

shown in Figure 2.6.

This leads us to wonder whether we might have regular n-gons R in H. By the Gauss-Bonnet formula,

we would have area.R/ D .n�2/��
P
�j , so it’s obviously necessary that

P
�j < .n�2/� . This shouldn’t

be difficult so long as n � 3. First, let’s convince ourselves that, given any point P 2 H, 0 < ˛ < � , and

0 < ˇ < .� � ˛/=2, we can construct an isosceles triangle with vertex angle ˛ at P and base angle ˇ. We

draw two geodesics emanating from P with angle ˛ between them, as shown in Figure 2.7. Proceeding a

geodesic distance r on each of them to points Q and R, we then obtain an isosceles triangle 4PQR with

vertex angle ˛. Now, the base angle of that triangle approaches .� � ˛/=2 as r ! 0C and approaches 0

as r ! 1. It follows (presuming that the angle varies continuously with r) that for some r , we obtain the

desired base angle ˇ. Let’s now apply this construction with ˛ D 2�=n and ˇ D �=n, n � 5. Repeating

the construction n times (dividing the angle at P into n angles of 2�=n each), we obtain a regular n-gon

with the property that
P
�j D 2� , as shown (approximately?) in Figure 2.8 for the case n D 8. The point

is that because the interior angles add up to 2� , when we identify edges as in Figure 2.6, we will obtain a
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r
r

P

Q
R

FIGURE 2.7

FIGURE 2.8

smooth 2-holed torus with constant curvature K D �1. The analogous construction works for the g-holed

torus, constructing a regular 4g-gon whose interior angles sum to 2� .

EXERCISES 3.2

1. Find the geodesic joining P and Q in H and calculate d.P;Q/.

a. P D .4; 3/, Q D .�3; 4/
*b. P D .1; 2/, Q D .0; 1/

c. P D .20; 7/, Q D .16; 15/

2. Suppose there is a geodesic perpendicular to two geodesics in H. What can you prove about the latter

two?

3. Prove the angle-angle-angle congruence theorem for hyperbolic (geodesic) triangles: If †A Š †A0,

†B Š †B 0, and †C Š †C 0, then 4ABC Š 4A0B 0C 0. (Hint: Use an isometry to move A0 to A, B 0

along the geodesic from A to B , and C 0 along the geodesic from A to C .)

4. a. Verify Local Gauss-Bonnet, Theorem 1.6, for the region R bounded by u D A, u D B , v D a,

and v D b.

b. Verify Local Gauss-Bonnet for the region R bounded by the segment v D a, A � u � B , and the

geodesic joining the two endpoints.
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c. Use Local Gauss-Bonnet (and the analysis of part b) to deduce the result of Example 2.

5. Show that the circles tangent to the u-axis at the origin are the orthogonal trajectories of the family

of geodesics u2 � 2cu C v2 D 0, c 2 R (together with the positive v-axis). (Hint: Remember that

orthogonal lines have slopes that are negative reciprocals. Eliminate c to obtain the differential equation
dv

du
D 2uv

u2 � v2
, and solve this “homogeneous” differential equation by substituting v D uz and getting

a separable differential equation for u and z.)

6. a. Prove that circles tangent to the u-axis have �g D 1.

b. Prove that the horocycles u2Cv2�2av D 0 and u2Cv2�2bv D 0 are a constant geodesic distance

apart. (Hint: Consider the intersections of the two horocycles with a geodesic u2 � 2cuC v2 D 0
orthogonal to them both.)

7. Prove that every curve in H of constant geodesic curvature �g D 1 is either a horizontal line (as in

Example 2) or a circle tangent to the u-axis. (Hints: Assume we start with an arclength parametrization

.u.s/; v.s//, and use Proposition 1.3 to show that we have 1 D u0

v
C � 0 and u02C v02 D v2. Obtain the

differential equation

v
d2v

du2
D
�

1C
�dv

du

�2
�3=2

�
�dv

du

�2
� 1;

and solve this by substituting z D dv=du and getting a separable differential equation for dz=dv.)

8. Let Ta;b;c;d .z/ D
az C b
cz C d , a; b; c; d 2 R, with ad � bc D 1.

a. Suppose a0; b0; c0; d 0 2 R and a0d 0 � b0c0 D 1. Check that

Ta0;b0;c0;d 0 ıTa;b;c;d D Ta0aCb0c;a0bCb0d;c0aCd 0c;c0bCd 0d and

.a0aC b0c/.c0b C d 0d/ � .a0b C b0d/.c0aC d 0c/ D 1:

Show, moreover, that Td;�b;�c;a D T �1
a;b;c;d

. (Note that Ta;b;c;d D T�a;�b;�c;�d . The reader

who’s taken group theory will recognize that we’re defining an isomorphism between the group of

linear fractional transformations and the group SL.2;R/=f˙I g of 2� 2 matrices with determinant

1, identifying a matrix and its additive inverse.)

b. Let T D Ta;b;c;d . Prove that if z D uC iv and v > 0, then T .z/ D x C iy with y > 0. Deduce

that T maps H to itself bijectively.

9. Show that reflection across the geodesic u D 0 is given by r.z/ D �z. Use this to determine the form

of the reflection across a general geodesic.

10. The geodesic circle of radius R centered at P is the set of points Q so that d.P;Q/ D R. Prove that

geodesic circles in H are Euclidean circles. One way to proceed is as follows: The geodesic circle

centered at P D .0; 1/ with radius R D ln a must pass through .0; a/ and .0; 1=a/, and hence ought to

be a Euclidean circle centered at .0; 1
2
.a C 1=a//. Check that all the points on this circle are in fact a

hyperbolic distance R away from P . (Hint: It is probably easiest to work with the cartesian equation of

the circle. Find the equation of the geodesic through P and an arbitrary point of the circle.)

*11. What is the geodesic curvature of a geodesic circle of radius R in H? (See Exercise 10.)
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12. Recall (see, for example, p. 298 and pp. 350–1 of Shifrin’s Abstract Algebra: A Geometric Approach)

that the cross ratio of four numbers A;B;P;Q 2 C [ f1g is defined to be

ŒA W B W P W Q� D Q � A
P � A

.Q � B
P � B :

a. Show that A, B , P , and Q lie on a line or circle if and only if their cross ratio is a real number.

b. Prove that if S is a linear fractional transformation with S.A/ D 0, S.B/ D 1, and S.P / D 1,

then S.Q/ D ŒA W B W P W Q�. Use this to deduce that for any linear fractional transformation T ,

we have ŒT .A/ W T .B/ W T .P / W T .Q/� D ŒA W B W P W Q�.
c. Prove that linear fractional transformations map lines and circles to either lines or circles. (For

which such transformations do lines necessarily map to lines?)

d. Show that if A, B , P , and Q lie on a line or circle, then

jŒA W B W P W Q�j D AQ

AP

.BQ

BP
:

Conclude that d.P;Q/ D j lnŒA W B W P W Q�j, where A, B , P , and Q are as illustrated in Figure

2.2.

e. Check that if T is a linear fractional transformation carrying A to 0, B to1, P to P 0, and Q to

Q0, then d.P;Q/ D d.P 0;Q0/.

13. a. Let O be any point not lying on a circle C and let P and Q be points on the circle C so that

O , P , and Q are collinear. Let T be the point on C so that OT is tangent to C. Prove that

.OP /.OQ/ D .OT /2.

b. Define inversion in the circle of radius R centered at O by sending a point P to the point P 0 on

the ray OP with .OP /.OP 0/ D R2. Show that an inversion in a circle centered at the origin maps

a circle C centered on the u-axis and not passing through O to another circle C
0 centered on the

u-axis. (Hint: For any P 2 C, let Q be the other point on C collinear with O and P , and let Q0 be

the image of Q under inversion. Use the result of part a to show that OP=OQ0 is constant. If C

is the center of C, let C 0 be the point on the u-axis so that C 0Q0kCP . Show that Q0 traces out a

circle C
0 centered at C 0.)

c. Show that inversion in the circle of radius R centered at O maps vertical lines to circles centered

on the u-axis and passing through O and vice-versa.

14. a. Prove that every (orientation-preserving) isometry of H can be written as the composition of linear

fractional transformations of the form

T1.z/ D z C b for some b 2 R; T2.z/ D �
1

z
; and T3.z/ D cz for some c > 0:

(Hint: It’s probably easiest to work with matrices. Show that you have matrices of the form
�
a 0

0 1=a

�

,

�
1 b

0 1

�

,

�
0 �1
1 0

�

, and therefore

�
1 0

b 1

�

, and that any matrix of determinant 1 can be

obtained as a product of such.)

b. Prove that T2 maps circles centered on the u-axis and vertical lines to circles centered on the u-axis

and vertical lines (not necessarily respectively). Either do this algebraically or use Exercise 13.

c. Use the results of parts a and b to prove that isometries of H map geodesics to geodesics.
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15. We say a linear fractional transformation T D Ta;b;c;d is elliptic if it has one fixed point, parabolic if it

has one fixed point at infinity, and hyperbolic if it has two fixed points at infinity.

a. Show that T is elliptic if jaC d j < 2, parabolic if jaC d j D 2, and hyperbolic if jaC d j > 2.

b. Describe the three types of isometries geometrically. (Hint: In particular, what is the relation

between horocycles and parabolic linear fractional transformations?)

16. Suppose4ABC is a hyperbolic right triangle with “hypotenuse” c. Use Figure 2.9 to prove the follow-

ing:

sin†A D sinh a

sinh c
; cos†A D tanh b

tanh c
; cosh c D cosh a cosh b:

(The last is the hyperbolic Pythagorean Theorem.) (Hint: Start by showing, for example, that cosh b D

a

b

c

R

r

A

B

C

ψ
θτ

FIGURE 2.9

csc � , cosh c D .1 � cos cos �/=.sin sin �/, and cos � � cos D sin � cot � . You will need two

equations trigonometrically relating R and r .)

17. Given a point P on a surface M , we define the geodesic circle of radius R centered at P to be the locus

of points whose (geodesic) distance from P is R. Let C.R/ denote its circumference.

a. Show that on the unit sphere

lim
R!0C

2�R � C.R/
�R3

D 1

3
:

b. Show that the geodesic curvature �g of a spherical geodesic circle of radius R is

cotR � 1
R
.1� R2

3
C : : :/.

The Poincaré disk is defined to be the “abstract surface” D D f.u; v/ W u2 C v2 < 1g with the first

fundamental form given, in polar coordinates .r; �/, by E D 4

.1 � r2/2
, F D 0, G D 4r2

.1� r2/2
. This

is called the hyperbolic metric on D.

c. Check that in D the geodesics through the origin are Euclidean line segments; conclude that the

Euclidean circle of radius r centered at the origin is a hyperbolic circle of radius R D ln

�
1C r
1� r

�

,

and so r D tanh
R

2
. (Remark: Other geodesics are semicircles orthogonal to the unit circle, the

“virtual boundary” of D. This should make sense since there is a linear fractional transformation

mapping H to D; by Exercise 12c, it will map semicircles orthogonal to the u-axis to semicircles

orthogonal to the unit circle.)

d. Check that the circumference of the hyperbolic circle is 2� sinhR �
2�.RC R3

6
C : : :/, and so

lim
R!0C

2�R � C.R/
�R3

D �1
3
:
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e. Compute (using a double integral) that the area of a disk of hyperbolic radius R is 4� sinh2 R
2
�

�R2.1C R2

12
C : : :/. Use the Gauss-Bonnet Theorem to deduce that the geodesic curvature �g of

the hyperbolic circle of radius R is cothR � 1
R
.1C R2

3
C : : :/.

18. Here we give another model for hyperbolic geometry, called the Klein-Beltrami model. Consider the fol-

lowing parametrization of the hyperbolic disk: Start with the open unit disk,
˚

x2
1 C x2

2 < 1; x3 D 0
	

, vertically project to the southern hemisphere of the unit sphere, and then

stereographically project (from the north pole) back to the unit disk.

a. Show that this mapping is given in polar coordinates by

x.R; �/ D .r; �/ D
�

R

1C
p
1 �R2

; �

�

:

Compute that the first fundamental form of the Poincaré metric on D (see Exercise 17) is given

in .R; �/ coordinates by QE D 1

.1�R2/2
, QF D 0, QG D R2

1�R2
. (Hint: Compute carefully and

economically!)

b. Compute the distance from .0; 0/ to .a; 0/; compare with the formula for distance in the Poincaré

model.

c. Changing now to Euclidean coordinates .u; v/, show that

OE D 1 � v2

.1 � u2 � v2/2
; OF D uv

.1 � u2 � v2/2
; OG D 1 � u2

.1 � u2 � v2/2
;

whence you derive

� u
uu D

2u

1� u2 � v2
; � v

uu D 0 ;

� u
uv D

v

1� u2 � v2
; � v

uv D
u

1 � u2 � v2
;

� u
vv D 0 ; � v

vv D
2v

1 � u2 � v2
:

d. Use part c to show that the geodesics of the disk using the first fundamental form OI are chords of

the circle u2Cv2 D 1. (Hint: Show (by using the chain rule) that the equations for a geodesic give

d2v=du2 D 0.) Discuss the advantages and disadvantages of this model (compared to Poincaré’s).

e. Check your answer in part d by proving (geometrically?) that chords of the circle map by x to

geodesics in the hyperbolic disk. (See Exercise 2.1.8.)

3. Surface Theory with Differential Forms

We’ve seen that it can be quite awkward to work with coordinates to study surfaces. (For example, the

Codazzi and Gauss Equations in Section 3 of Chapter 2 are far from beautiful.) For those who’ve learned

about differential forms, we can given a quick and elegant treatment that is conceptually quite clean.

We start (much like the situation with curves) with a moving frame e1; e2; e3 on (an open subset of) our

(oriented) surface M . Here ei are vector fields defined on M with the properties that

(i) fe1; e2; e3g gives an orthonormal basis for R3 at each point (so the matrix with those respective

column vectors is an orthogonal matrix);
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(ii) fe1; e2g is a basis for the tangent space of M and e3 D n.

How do we know such a moving frame exists? If xWU ! M is a parametrized surface, we can start with

our usual vectors xu, xv and apply the Gram-Schmidt process to obtain an orthonormal basis. Or, if M

is a surface containing no umbilic points, then we can choose e1 and e2 to be unit vectors pointing in the

principal directions; this approach was tacit in many of our proofs earlier.

If xWM ! R
3 is the inclusion map (which we may choose, in a computational setting, to consider as

the parametrization mapping U ! R
3), then we define 1-forms !1; !2 on M by

dx D !1e1 C !2e2I

i.e., for any V 2 TPM , we have V D !1.V/e1 C !2.V/e2, so !˛.V/ D I.V; e˛/ for ˛ D 1; 2. So far, !1

and !2 keep track of how our point moves around on M . Next we want to see how the frame itself twists,

so we define 1-forms !ij , i; j D 1; 2; 3, by

dei D
3
X

j D1

!ij ej :

Note that since ei � ej D const for any i; j D 1; 2; 3, we have

0 D d.ei � ej / D dei � ej C ei � dej D
� 3
X

kD1

!ikek

�

� ej C
� 3
X

kD1

!jkek

�

� ei

D !ij C !j i ;

so !j i D �!ij for all i; j D 1; 2; 3. (In particular, since ei is always a unit vector, !i i D 0 for all i .) If

V 2 TPM , !ij .V/ tells us how fast ei is twisting towards ej at P as we move with velocity V.

Note, in particular, that the shape operator is embodied in the equation

de3 D !31e1 C !32e2 D �
�

!13e1 C !23e2

�

:

Then for any V 2 TPM we have !13.V/ D II.V; e1/ and !23.V/ D II.V; e2/. Indeed, when we write

!13 D h11!1 C h12!2

!23 D h21!1 C h22!2

for appropriate coefficient functions h˛ˇ , we see that the matrix of the shape operator SP with respect to the

basis fe1; e2g for TPM is nothing but
�

h˛ˇ

�

.

Most of our results will come from the following

Theorem 3.1 (Structure Equations).

d!1 D !12 ^ !2 and d!2 D !1 ^ !12; and

d!ij D
3
X

kD1

!ik ^ !kj for all i; j D 1; 2; 3:

Proof. From the properties of the exterior derivative, we have

0 D d.dx/ D d!1e1 C d!2e2 � !1 ^
� 3
X

j D1

!1j ej

�

� !2 ^
� 3
X

j D1

!2j ej

�
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D
�

d!1 � !2 ^ !21

�

e1 C
�

d!2 � !1 ^ !12

�

e2 �
�

!1 ^ !13 C !2 ^ !23

�

e3 ;

so from the fact that fe1; e2; e3g is a basis for R3 we infer that

d!1 D !2 ^ !21 D �!2 ^ !12 D !12 ^ !2 and d!2 D !1 ^ !12:

Similarly, we obtain

0 D d.dei / D d
� 3
X

kD1

!ikek

�

D
3
X

kD1

�

d!ikek � !ik ^
3
X

j D1

!kj ej

�

D
3
X

j D1

d!ij ej �
3
X

j D1

� 3
X

kD1

!ik ^ !kj

�

ej D
3
X

j D1

�

d!ij �
3
X

kD1

!ik ^ !kj

�

ej ;

so d!ij �
3P

kD1

!ik ^ !kj D 0 for all i; j . �

We also have the following additional consequence of the proof:

Proposition 3.2. The shape operator is symmetric, i.e., h12 D h21.

Proof. From the e3 component of the equation d.dx/ D 0 in the proof of Theorem 3.1 we have

0 D !1 ^ !13 C !2 ^ !23 D !1 ^ .h11!1 C h12!2/C !2 ^ .h21!1 C h22!2/ D .h12 � h21/!1 ^ !2;

so h12 � h21 D 0. �

Recall that V is a principal direction if de3.V/ is a scalar multiple of V. So e1 and e2 are principal

directions if and only if h12 D 0 and we have !13 D k1!1 and !23 D k2!2, where k1 and k2 are, as usual,

the principal curvatures.

It is important to understand how our battery of forms changes if we change our moving frame by

rotating e1; e2 through some angle � (which may be a function).

Lemma 3.3. Suppose e1 D cos �e1C sin �e2 and e2 D � sin �e1C cos �e2 for some function � . Then

we have

!1 D cos �!1 C sin �!2

!2 D � sin �!1 C cos �!2

!12 D !12 C d�
!13 D cos �!13 C sin �!23

!23 D � sin �!13 C cos �!23

Note, in particular, that !1 ^ !2 D !1 ^ !2 and !13 ^ !23 D !13 ^ !23.

Proof. We leave this to the reader in Exercise 1. �

It is often convenient when we study curves in surfaces (as we did in Sections 3 and 4 of Chapter 2)

to use the Darboux frame, a moving frame for the surface adapted so that e1 is tangent to the curve. (See

Exercise 3.) For example, ˛ is a geodesic if and only if in terms of the Darboux frame we have !12 D 0 as

a 1-form on ˛.

Let’s now examine the structure equations more carefully.
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Gauss equation: d!12 D �!13 ^ !23

Codazzi equations: d!13 D !12 ^ !23

d!23 D �!12 ^ !13

Example 1. To illustrate the power of the moving frame approach, we reprove Proposition 3.4 of Chap-

ter 2: Suppose K D 0 and M has no planar points. Then we claim that M is ruled and the tangent plane

of M is constant along the rulings. We work in a principal moving frame with k1 D 0, so !13 D 0.

Therefore, by the first Codazzi equation, d!13 D 0 D !12 ^ !23 D !12 ^ k2!2. Since k2 ¤ 0, we

must have !12 ^ !2 D 0, and so !12 D f!2 for some function f . Therefore, !12.e1/ D 0, and so

de1.e1/ D !12.e1/e2C !13.e1/e3 D 0. It follows that e1 stays constant as we move in the e1 direction, so

following the e1 direction gives us a line. Moreover, de3.e1/ D 0 (since k1 D 0), so the tangent plane to

M is constant along that line. O

The Gauss equation is particularly interesting. First, note that

!13 ^ !23 D .h11!1 C h12!2/ ^ .h12!1 C h22!2/ D .h11h22 � h2
12/!1 ^ !2 D KdA;

where K D det
�

h˛ˇ

�

D detSP is the Gaussian curvature. So, the Gauss equation really reads:

(?) d!12 D �KdA:

(How elegant!) Note, moreover, that, by Lemma 3.3, for any two moving frames e1; e2; e3 and e1; e2; e3, we

have d!12 D d!12 (which is good, since the right-hand side of (?) doesn’t depend on the frame field). Next,

we observe that, because of the first equations in Theorem 3.1, !12 can be computed just from knowing !1

and !2, hence depends just on the first fundamental form of the surface. (If we write !12 D P!1 CQ!2,

then the first equation determines P and the second determines Q.) We therefore arrive at a new proof of

Gauss’s Theorema Egregium, Theorem 3.1 of Chapter 2.

The 1-form !12 is called the connection form and measures the tangential twist of e1. Just as we saw in

Section 1, then, rVe1 is the tangential component of DVe1 D de1.V/ D !12.V/e2 C !13.V/e3, which is,

of course, !12.V/e2. In particular, !12.e1/ recovers the geodesic curvature of the e1-curve.

Example 2. Let’s go back to our usual parametrization of the unit sphere,

x.u; v/ D .sin u cos v; sin u sin v; cos u/; 0 < u < �; 0 < v < 2�:

Then we have

dx D xuduC xvdv D .cos u cos v; cos u sin v;� sin u/
„ ƒ‚ …

e1

duC .� sin v; cos v; 0/
„ ƒ‚ …

e2

.sinudv/:

Note that e1 D xu and e2 D xv=
p
G, as we might expect. So this gives us

!1 D du and !2 D sinudv:

Next, d!1 D 0 and d!2 D cosudu ^ dv D du ^ .cos udv/, so we see from the first structure equations

that !12 D cosudv. It is hard to miss the similarity this bears to the discussion of �12 and Example 1

in Section 1. Now we have d!12 D � sinudu ^ dv D �!1 ^ !2, so, indeed, the sphere has Gaussian

curvature K D 1.
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Let’s now compute the geodesic curvature �g of the latitude circle u D u0. We obtain a Darboux frame

by taking e1 D e2 and e2 D �e1. Now, !12 D �!21 D !12 (this also follows from Lemma 3.3). Then

�g D !12.e1/ D !12.e2/. Now note that !12 D cos udv D cotu!2, so �g D cot u0. O

To illustrate the power of the differential forms approach, we give a proof of the following result (see

Exercise 2.3.16).

Proposition 3.4. Suppose M has no umbilic points and k1 is constant. Then M is (a subset of) a tube

of radius r D 1=jk1j about a regular curve ˛.

Proof. Choose a principal moving frame e1; e2. We have !13 D k1!1 and !23 D k2!2. Differentiating

the first, since k1 is constant, we get !12^!23 D k1!12^!2, so !12^.k2�k1/!2 D 0. Since k2�k1 ¤ 0,

we infer that !12 D �!2 for some scalar function �. Now let e1 D e1, e2, e3 be the Frenet frame of the

e1-curve and apply Exercise 3. Since both !12 D 0 and !13 ¤ 0 when restricted to (pulled back to) an

e1-curve, we infer that cos � D 0 and � D ˙�=2 all along the curve. Then !23 D �!1 D 0 on the e1-curve,

so � D 0 and the curve is planar. But then �!1 D !12 D ˙!13 D ˙k1!1, so � D jk1j is constant and the

e1-curves are circles.

Now consider ˛ D xC 1

k1
e3. Then

d˛ D dxC 1

k1
de3 D !1e1 C !2e2 C

1

k1
.�k1!1e1 � k2!2e2/ D

�

1� k2

k1

�

!2e2;

so ˛ is constant along the e1-curves and d˛ ¤ 0, which means that the image of ˛ is a regular curve, the

center of the tube, as desired. �

From the Gauss equation and Stokes’s Theorem, the Gauss-Bonnet formula follows immediately for an

oriented surfaceM with (piecewise smooth) boundary @M on which we can globally define a moving frame.

That is, we can reprove the Local Gauss-Bonnet formula, Theorem 1.6, quite effortlessly.

Proof. We start with an arbitrary moving frame e1; e2; e3 and take a Darboux frame e1; e2; e3 along

@M . We write e1 D cos �e1 C sin �e2 and e2 D � sin �e1 C cos �e2 (where � is smoothly chosen along

the smooth pieces of @M and the exterior angle �j at Pj gives the “jump” of � as we cross Pj ). Then, by

Stokes’s Theorem and Lemma 3.3, we have
“

M

KdA D �
“

M

d!12 D �
Z

@M

!12 D �
Z

@M

�

!12 � d�
�

D �
Z

@M

�gds C .2� �
X

�j /:

(See Exercise 2.) �

EXERCISES 3.3

1. Prove Lemma 3.3.

2. Let e1; e2; e3 be the Darboux frame along a curve ˛. Show that as a 1-form on ˛, !12 D �g!1. Use

this result to reprove the result of Exercise 3.1.7.

3. Suppose ˛ is a curve lying in the surface M . Let e1; e2; e3 be the Darboux frame along ˛ (i.e., a

moving frame for the surface with e1 tangent to ˛), and let e1 D e1; e2; e3 be the Frenet frame. Then,
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by analogy with Lemma 3.3, e2; e3 are obtained from e2; e3 by rotating through some angle � . Show

that, as 1-forms on ˛, we have:

!12 D �!1 D cos �!12 C sin �!13

!13 D 0 D � sin �!12 C cos �!13

!23 D �!1 D !23 C d� :

*4. Use Exercise 3 to prove Meusnier’s Theorem (Proposition 2.5 of Chapter 2).

5. Use Exercise 3 to prove that if C � M is a line of curvature and the osculating plane of C makes a

constant angle with the tangent plane of M , then C is planar.

6. Use moving frames to redo Exercise 2.2.14. (Hint: Use the Codazzi equations to show that dk ^ !1 D
dk ^ !2 D 0.)

7. Use moving frames to redo Exercise 2.2.15.

*8. Use moving frames to compute the Gaussian curvature of the torus, parametrized as in Example 1(c) of

Chapter 2.

9. The vectors e1 D v.1; 0/ and e2 D v.0; 1/ give a moving frame at .u; v/ 2 H. Set !1 D du=v and

!2 D dv=v.

a. Check that for any V 2 T.u;v/H, !1.V/ D I.V; e1/ and !2.V/ D I.V; e2/.

b. Compute !12 and d!12 and verify that K D �1.

10. Use moving frames to redo

a. Exercise 3.1.8

b. Exercise 3.1.9

11. a. Use moving frames to reprove the result of Exercise 2.3.14.

b. Use moving frames to reprove the result of Exercise 2.4.13. That is, prove that if there are two

families of geodesics in M that are everywhere orthogonal, then M is flat.

c. Suppose there are two families of geodesics in M making a constant angle � . Prove or disprove:

M is flat.

12. Use moving frames to redo Exercise 2.3.17. (See Proposition 3.4.)

13. Recall that locally any 1-form � with d� D 0 can be written in the form � D df for some function f .

a. Prove that if a surface M is flat, then locally we can find a moving frame e1; e2 on M so that

!12 D 0. (Hint: Start with an arbitrary moving frame.)

b. Deduce that if M is flat, locally we can find a parametrization x of M with E D G D 1 and

F D 0. (That is, locally M is isometric to a plane.)

14. (The Bäcklund transform) Suppose M and M are two surfaces in R
3 and f WM ! M is a smooth

bijective function with the properties that

(i) the line from P to f .P / is tangent to M at P and tangent to M at f .P /;

(ii) the distance between P and f .P / is a constant r , independent of P ;
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(iii) the angle between n.P / and n.f .P // is a constant � , independent of P .

Prove that both M and M have constant curvature K D �.sin2 �/=r2. (Hints: Write P D f .P /, and

let e1; e2; e3 (resp. e1; e2; e3) be moving frames at P (resp. P ) with e1 D e1 in the direction of
��!
PP .

Let x and x D f ıx be local parametrizations. How else are x and x related?)

4. Calculus of Variations and Surfaces of Constant Mean Curvature

Every student of calculus is familiar with the necessary condition for a differentiable function f WRn !
R to have a local extreme point (minimum or maximum) at P : We must have rf .P / D 0. Phrased slightly

differently, for every vector V, the directional derivative

DVf .P / D lim
"!0

f .P C "V/� f .P /
"

should vanish. Moreover, if we are given a constraint set M D fx 2 R
n W g1.x/ D 0; g2.x/ D

0; : : : ; gk.x/ D 0g, the method of Lagrange multipliers tells us that at a constrained extreme point P we

must have

rf .P / D
k
X

iD1

�irgi .P /

for some scalars �1; : : : ; �k . (There is also a nondegeneracy hypothesis here that rg1.P /; : : : ;rgk.P / be

linearly independent.)

Suppose we are given a regular parametrized surface xWU ! R
3 and want to find—without the benefit

of the analysis of Section 4 of Chapter 2—a geodesic from P D x.u0; v0/ to Q D x.u1; v1/. Among all

paths ˛W Œ0; 1�!M with ˛.0/ D P and ˛.1/ D Q, we wish to find the shortest. That is, we want to choose

the path ˛.t/ D x.u.t/; v.t// so as to minimize the integral
Z 1

0

k˛0.t/kdt D
Z 1

0

q

E.u.t/; v.t//.u0.t//2 C 2F.u.t/; v.t//u0.t/v0.t/C G.u.t/; v.t//.v0.t//2dt

subject to the constraints that .u.0/; v.0// D .u0; v0/ and .u.1/; v.1// D .u1; v1/, as indicated in Figure

4.1. Now we’re doing a minimization problem in the space of all (C1) curves .u.t/; v.t//with .u.0/; v.0// D

(u0,v0)

(u1,v1) P

Q

FIGURE 4.1

.u0; v0/ and .u.1/; v.1// D .u1; v1/. Even though we’re now working in an infinite-dimensional setting,
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we should not panic. In classical terminology, we have a functional F defined on the space X of C1 curves

uW Œ0; 1�! R
3, i.e.,

(�) F.u/ D
Z 1

0

f .t;u.t/;u0.t//dt :

For example, in the case of the arclength problem, we have

f
�

t; .u.t/; v.t//; .u0.t/; v0.t//
�

D
q

E.u.t/; v.t//.u0.t//2 C 2F.u.t/; v.t//u0.t/v0.t/CG.u.t/; v.t//.v0.t//2:

To say that a particular curve u� is a local extreme point (with fixed endpoints) of the functional F given

in (�) is to say that for any variation �W Œ0; 1�! R
2 with �.0/ D �.1/ D 0, the directional derivative

D�F.u
�/ D lim

"!0

F.u� C "�/ � F.u�/

"
D d

d"

ˇ
ˇ
ˇ
ˇ
"D0

F.u� C "�/

should vanish. This leads us to the

Theorem 4.1 (Euler-Lagrange Equations). If u� is a local extreme point of the functional F given above

in (�), then at u� we have

@f

@u
D d

dt

�
@f

@u0

�

;

evaluating these both at .t;u�.t/;u�0.t//, for all 0 � t � 1.

Proof. Let �W Œ0; 1� ! R
2 be a C

1 curve with �.0/ D �.1/ D 0. Then, using the fact that we can pull

the derivative under the integral sign (see Exercise 1) and then the chain rule, we have

d

d"

ˇ
ˇ
ˇ
ˇ
"D0

F.u� C "�/ D d

d"

ˇ
ˇ
ˇ
ˇ
"D0

Z 1

0

f .t;u�.t/C "�.t/;u�0.t/C "�0.t//dt

D
Z 1

0

@

@"

ˇ
ˇ
ˇ
ˇ
"D0

f .t;u�.t/C "�.t/;u�0.t/C "�0.t//dt

D
Z 1

0

�@f

@u
.t;u�.t/;u�0.t// � �.t/C @f

@u0 .t;u
�.t/;u�0.t// � �0.t/

�

dt

and so, integrating by parts, we have

D
Z 1

0

�@f

@u
� �.t/ � d

dt

�
@f

@u0

�

� �.t/
�

dt C @f

@u0 � �.t/
i1

0

D
Z 1

0

�@f

@u
� d

dt

�
@f

@u0

��

� �.t/dt :

Now, applying Exercise 2, since this holds for all C1 � with �.0/ D �.1/ D 0, we infer that

@f

@u
� d

dt

�
@f

@u0

�

D 0;

as desired. �
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Of course, the Euler-Lagrange equations really give a system of differential equations:

@f

@u
D d

dt

�
@f

@u0

�

(|)
@f

@v
D d

dt

�
@f

@v0

�

:

Example 1. Recall that for the unit sphere in the usual parametrization we have E D 1, F D 0, and

G D sin2 u. To find the shortest path from .u0; v0/ D .u0; v0/ to the point .u1; v1/ D .u1; v0/, we want to

minimize the functional

F.u; v/ D
Z 1

0

q

.u0.t//2 C sin2 u.t/.v0.t//2dt :

Assuming our critical path u� is parametrized at constant speed, the equations (|) give us v0.t/ D const

and u00.t/ D sinu.t/ cos u.t/v0.t/2. (Cf. Example 6(b) in Section 4 of Chapter 2.) O

We now come to two problems that interest us here: What is the surface of least area with a given

boundary curve? And what is the surface of least area containing a given volume? For this we must

consider parametrized surfaces and hence functionals defined on functions of two variables. In particular,

for functions xWD ! R
3 defined on a given domain D � R

2, we consider

F.x/ D
“

D

kxu � xvkdudv:

We seek a function x� so that, for all variations �WD ! R
3 with � D 0 on @D,

D�F.u
�/ D lim

"!0

F.u� C "�/ � F.u�/

"
D d

d"

ˇ
ˇ
ˇ
ˇ
"D0

F.u� C "�/ D 0:

Now we compute: Recalling that
d

dt
kf.t/k D f.t/ � f0.t/

kf.t/k and setting x D x� C "�, we have

d

d"

ˇ
ˇ
ˇ
ˇ
"D0

kxu � xvk D
1

kx�
u � x�

vk
�

.�u � x�
v C x�

u � �v/ � .x�
u � x�

v/
�

D .�u � x�
v C x�

u � �v/ � n:

Next we observe that

.�u � x�
v/ � n D

�

.� � x�
v/ � n

�

u
� .� � x�

uv/ � n � .� � x�
v/ � nu

.x�
u � �v/ � n D

�

.x�
u � �/ � n

�

v
� .x�

uv � �/ � n � .x�
u � �/ � nv ;

and so, adding these equations, we obtain

.�u � x�
v C x�

u � �v/ � n D
�

.� � x�
v/ � n

�

u
C
�

.x�
u � �/ � n

�

v
�
�

.� � x�
v/ � nu C .x�

u � �/ � nv

�

D
�

.� � x�
v/ � n

�

u
�
�

.� � x�
u/ � n

�

v
�
�

.� � x�
v/ � nu C .x�

u � �/ � nv

�

D
�

.� � x�
v/ � n

�

u
�
�

.� � x�
u/ � n

�

v
� � �

�

x�
v � nu C nv � x�

u

�

:

At the last step, we’ve used the identity .U � V/ �W D .W � U/ � V D .V �W/ � U. The appropriate

way to integrate by parts in the two-dimensional setting is to apply Green’s Theorem, Theorem 2.6 of the

Appendix, and so we let P D .� � x�
u/ � n and Q D .� � x�

v/ � n and obtain
“

D

.�u � x�
v C x�

u � �v/ � ndudv
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D
“

D

�
�

.� � x�
v/ � n

�

u
„ ƒ‚ …

Qu

�
�

.� � x�
u/ � n

�

v
„ ƒ‚ …

Pv

�

dudv �
“

D

� �
�

x�
v � nu C nv � x�

u

�

dudv

D
Z

@D

.� � x�
u/ � n

„ ƒ‚ …

P

duC .� � x�
v/ � n

„ ƒ‚ …

Q

dv �
“

D

� �
�

x�
v � nu C nv � x�

u

�

dudv:

Since � D 0 on @D, the line integral vanishes. Using the equations (��) on p. 59, we find that x�
v � nu D

a.x�
u � x�

v/ and nv � x�
u D d.x�

u � x�
v/, so, at long last, we obtain

d

d"

ˇ
ˇ
ˇ
ˇ
"D0

“

D

kxu � xvkdudv D
“

D

.�u � x�
v C x�

u � �v/ � ndudv

D �
“

D

� �
�

x�
v � nu C nv � x�

u

�

dudv

D �
“

D

.aC d/� � .x�
u � x�

v/dudv D �
“

D

2H� � ndA;

since H D 1
2

trSP .

We conclude from this, using a two-dimensional analogue of Exercise 2, the following

Theorem 4.2. Among all (parametrized) surfaces with a given boundary curve, the one of least area is

minimal, i.e., has H D 0.

This result, indeed, is the origin of the terminology.

Next, suppose we wish to characterize those closed surfaces (compact surfaces with no boundary) of

least area containing a given volume V . To make a parametrized surface closed, we require that x.u; v/ D x0

for all .u; v/ 2 @D. But how do we express the volume constraint in terms of x? The answer comes from

the Divergence Theorem and is the three-dimensional analogue of the result of Exercise A.2.5: The volume

enclosed by the parametrized surface x is given by

vol.V / D 1

3

“

D

x � ndA:

Thus, the method of Lagrange multipliers suggests that for a surface of least area there must be a constant �

so that

“

D

.2H��/� �ndA D 0 for all variations � with � D 0 on @D. Once again, using a two-dimensional

analogue of Exercise 2, we see that 2H � � D 0 and hence H must be constant. (Also see Exercise 6.) We

conclude:

Theorem 4.3. Among all (parametrized) surfaces containing a fixed volume, the one of least area has

constant mean curvature.

In particular, a soap bubble should have constant mean curvature. A nontrivial theorem of Alexandrov,

analogous to Theorem 3.6 of Chapter 2, states that a smooth, compact surface of constant mean curvature

must be a sphere. So soap bubbles should be spheres. How do you explain “double bubbles”?

Example 2. If we ask which surfaces of revolution have constant mean curvature H0, the statement of

Exercise 2.2.20a. leads us to the differential equation

h00

.1C h02/3=2
� 1

h.1C h02/1=2
D 2H0:
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(Here the surface is obtained by rotating the graph of h about the coordinate axis.) We can rewrite this

equation as follows:

�hh00 C .1C h02/

.1C h02/3=2
C 2H0h D 0

and, multiplying through by h0,

h0�hh00 C .1C h02/

.1C h02/3=2
C 2H0hh

0 D 0
�

hp
1C h02

�0
C 2H0

�1

2
h2
�0 D 0

hp
1C h02

CH0h
2 D const:(�)

We now show that such functions have a wonderful geometric characterization, as suggested in Figure

4.2. Starting with an ellipse with semimajor axis a and semiminor axis b, we consider the locus of one

FIGURE 4.2

focus as we roll the ellipse along the x-axis. By definition of an ellipse, we have k���!F1Qk C k
���!
F2Qk D 2a,

and by Exercise 7, we have yy2 D b2 (see Figure 4.3). On the other hand, we deduce from Exercise 8

that
���!
F1Q is normal to the curve, and that, therefore, y D k���!F1Qk cos �. Since the “reflectivity” property

of the ellipse tells us that †F1QP1 Š †F2QP2, we have y2 D k
���!
F2Qk cos �. Since cos� D dx=ds and

F2

P2P1

F1

Q

y
y2x

FIGURE 4.3

ds=dx D
p

1C .dy=dx/2, we have

y C b2

y
D y C y2 D 2a cos� D 2adx

ds
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and so

0 D y2 � 2ay dx
ds
C b2 D y2 � 2ay

p

1C y02
C b2 D 0:

Setting H0 D �1=2a, we see that this matches the equation (�) above. O

EXERCISES 3.4

]1. Suppose gW Œ0; 1� � .�1; 1/ ! R is continuous and let G."/ D
Z 1

0

g.t; "/dt . Prove that if
@g

@"
is

continuous, then G0.0/ D
Z 1

0

@g

@"
.t; 0/dt . (Hint: Consider h."/ D

Z "

0

Z 1

0

@g

@"
.t; u/dtdu.)

]2. *a. Suppose f is a continuous function on Œ0; 1� and

Z 1

0

f .t/�.t/dt D 0 for all continuous functions

� on Œ0; 1�. Prove that f D 0. (Hint: Take � D f .)

b. Suppose f is a continuous function on Œ0; 1� and

Z 1

0

f .t/�.t/dt D 0 for all continuous functions

� on Œ0; 1� with �.0/ D �.1/ D 0. Prove that f D 0. (Hint: Take � D  f for an appropriate

continuous function  .)

c. Deduce the same result for C1 functions � .

d. Deduce the same result for vector-valued functions f and �.

3. Use the Euler-Lagrange equations to show that the shortest path joining two points in the Euclidean

plane is a line segment.

4. Use the functional F.u/ D
Z b

a

2�u.t/

q

1C .u0.t//2dt to determine the surface of revolution of least

area with two parallel circles (perhaps of different radii) as boundary. (Hint: You should end up with

the same differential equation as in Exercise 2.2.20.)

5. Prove the analogue of Theorem 4.3 for curves. That is, show that of all closed plane curves enclosing

a given area, the circle has the least perimeter. (Cf. Theorem 3.10 of Chapter 1. Hint: Start with

Exercise A.2.5. Show that the constrained Euler-Lagrange equations imply that the extremizing curve

has constant curvature. Proposition 2.2 of Chapter 1 will help.)

6. Interpreting the integral

Z 1

0

f .t/g.t/dt as an inner product (dot product) hf; gi on the vector space

of continuous functions on Œ0; 1�, prove that if

Z 1

0

f .t/g.t/dt D 0 for all continuous functions g with
Z 1

0

g.t/dt D 0, then f must be constant. (Hint: Write f D hf; 1i1C f ?, where hf ?; 1i D 0.)

7. Prove the pedal property of the ellipse: The product of the distances from the foci to the tangent line of

the ellipse at any point is a constant (in fact, the square of the semiminor axis).

8. The arclength-parametrized curve ˛.s/ rolls without slipping along the x-axis, starting at the point

˛.0/ D 0. A point F is fixed relative to the curve. Let ˇ.s/ be the curve that F traces out. As

indicated in Figure 4.4, let �.s/ be the angle ˛0.s/ makes with the positive x-axis. Denote by R� D
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F F'
Q

Q'

FIGURE 4.4

"

cos � � sin �

sin � cos �

#

the matrix that gives rotation of the plane through angle � .

a. Show that ˇ.s/ D .s; 0/C R��.s/.F � ˛.s//.

b. Show that ˇ0.s/ � R��.s/.F � ˛.s// D 0. That is, as F moves, instantaneously it rotates about the

contact point on the x-axis. (Cf. Exercise A.1.4.)

9. Find the path followed by the focus of the parabola y D x2=2 as the parabola rolls along the x-axis.

The focus is originally at .0; 1=2/. (Hint: See Example 2.)

10. Generalizing Exercise 8, prove that the result remains true if ˛ rolls without slipping along another

smooth curve. (Hint: Parametrize the other curve by .s/, where s is arclength of ˛. Note that if the

rolling starts at ˛.0/ D .0/, then the fact that the curve rolls without slipping tells us that s is likewise

the arclength of  .)



APPENDIX

Review of Linear Algebra and Calculus

1. Linear Algebra Review

Recall that the set fv1; : : : ; vkg of vectors in R
n gives a basis for a subspace V of Rn if and only if

every vector v 2 V can be written uniquely as a linear combination v D c1v1 C � � � C ckvk . In particular,

v1; : : : ; vn will form a basis for Rn if and only if the n � n matrix

A D

2

6
4

j j j
v1 v2 � � � vn

j j j

3

7
5

is invertible, and are said to be positively oriented if the determinant detA is positive. In particular, given

two linearly independent vectors v;w 2 R
3, the set fv;w; v�wg always gives a positively oriented basis for

R
3.

We say e1; : : : ; ek 2 R
n form an orthonormal set in R

n if ei � ej D 0 for all i ¤ j and keik D 1 for all

i D 1; : : : ; k. Then we have the following

Proposition 1.1. If fe1; : : : ; eng is an orthonormal set of vectors in R
n, then they form a basis for Rn

and, given any v 2 R
n, we have v D

nP

iD1

.v � ei /ei .

We say an n � n matrix A is orthogonal if ATA D I . It is easy to check that the column vectors of

A form an orthonormal basis for Rn (and the same for the row vectors). Moreover, from the basic formula

Ax �y D x �ATy we deduce that if e1; : : : ; ek form an orthonormal set of vectors in R
n and A is an orthogonal

n � n matrix, then Ae1; : : : ; Aek are likewise an orthonormal set of vectors.

An important issue for differential geometry is to identify the isometries of R
3 (although the same

argument will work in any dimension). Recall that an isometry of R3 is a function fWR3 ! R
3 so that for

any x; y 2 R
3, we have kf.x/ � f.y/k D kx � yk. We now prove the

Theorem 1.2. Any isometry f of R3 can be written in the form f.x/ D AxCc for some orthogonal 3�3
matrix A and some vector c 2 R

3.

Proof. Let f.0/ D c, and replace f with the function f � c. It too is an isometry (why?) and fixes the

origin. Then kf.x/k D kf.x/ � f.0/k D kx � 0k D kxk, so that f preserves lengths of vectors. Using this

fact, we prove that f.x/ � f.y/ D x � y for all x; y 2 R
3. We have

kf.x/ � f.y/k2 D kx � yk2 D .x � y/ � .x � y/ D kxk2 � 2x � yC kyk2 I

on the other hand, in a similar fashion,

kf.x/ � f.y/k2 D kf.x/k2 � 2f.x/ � f.y/C kf.y/k2 D kxk2 � 2f.x/ � f.y/C kyk2 :

114
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We conclude that f.x/ � f.y/ D x � y, as desired.

We next prove that f must be a linear function. Let fe1; e2; e3g be the standard orthonormal basis for

R
3, and let f.ej / D vj , j D 1; 2; 3. It follows from what we’ve already proved that fv1; v2; v3g is also an

orthonormal basis. Given an arbitrary vector x 2 R
3, write x D

3P

iD1

xi ei and f .x/ D
3P

j D1

yj vj . Then it

follows from Proposition 1.1 that

yi D f.x/ � vi D x � ei D xi ;

so f is in fact linear. The matrix A representing f with respect to the standard basis has as its j th column the

vector vj . Therefore, by our earlier remarks, A is an orthogonal matrix, as required. �

Indeed, recall that if T WRn ! R
n is a linear map and B D fv1; : : : ; vkg is a basis for Rn, then the

matrix for T with respect to the basis B is the matrix whose j th column consists of the coefficients of T .vj /

with respect to the basis B. That is, it is the matrix

A D
�

aij

�

; where T .vj / D
n
X

iD1

aij vi :

Recall that if A is an n � n matrix (or T WRn ! R
n is a linear map), a nonzero vector x is called an

eigenvector if Ax D �x (T .x/ D �x, resp.) for some scalar �, called the associated eigenvalue.

Theorem 1.3. A symmetric 2 � 2 matrix A D
�
a b

b c

�

(or symmetric linear map T WR2 ! R
2) has

two real eigenvalues �1 and �2, and, provided �1 ¤ �2, the corresponding eigenvectors v1 and v2 are

orthogonal.

Proof. Consider the function

f WR2 ! R; f .x/ D Ax � x D ax2
1 C 2bx1x2 C cx2

2 :

By the maximum value theorem, f has a minimum and a maximum subject to the constraint g.x/ D
x2

1 C x2
2 D 1. Say these occur, respectively, at v1 and v2. By the method of Lagrange multipliers, we infer

that there are scalars �i so that rf .vi/ D �irg.vi /, i D 1; 2. By Exercise 5, this means Avi D �i vi , and

so the Lagrange multipliers are actually the associated eigenvalues. Now

�1.v1 � v2/ D Av1 � v2 D v1 �Av2 D �2.v1 � v2/:

It follows that if �1 ¤ �2, we must have v1 � v2 D 0, as desired. �

We recall that, in practice, we find the eigenvalues by solving for the roots of the characteristic polyno-

mial p.t/ D det.A � tI /. In the case of a symmetric 2 � 2 matrix A D
�
a b

b c

�

, we obtain the polynomial

p.t/ D t2 � .aC c/t C .ac � b2/, whose roots are

�1 D
1

2

�

.aC c/ �
q

.a � c/2 C 4b2
�

and �2 D
1

2

�

.aC c/C
q

.a � c/2 C 4b2
�

:
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EXERCISES A.1

]*1. Suppose fv1; v2g gives a basis for R
2. Given vectors x; y 2 R

2, prove that x D y if and only if

x � vi D y � vi , i D 1; 2.

*2. The geometric-arithmetic mean inequality states that

p
ab � aC b

2
for positive numbers a and b;

with equality holding if and only if a D b. Give a one-line proof using the Cauchy-Schwarz inequality:

ju � vj � kukkvk for vectors u and v 2 R
n;

with equality holding if and only if one is a scalar multiple of the other.

3. Let w; x; y; z 2 R
3. Prove that

.w � x/ � .y � z/ D .w � y/.x � z/ � .w � z/.x � y/:

(Hint: Both sides are linear in each of the four variables, so it suffices to check the result on basis

vectors.)

]4. Suppose A.t/ is a differentiable family of 3 � 3 orthogonal matrices. Prove that A.t/�1A0.t/ is always

skew-symmetric.

5. If A D
�
a b

b c

�

is a symmetric 2 � 2 matrix, set f .x/ D Ax � x and check that rf .x/ D 2Ax.

6. Let A be an invertible 3 � 3 matrix. Recall that A�1 D 1

detA
.cofA/>, where cofA is the matrix of

cofactors of A.

a. Let x; y 2 R
3. Show that Ax � Ay D .detA/.A>/�1.x � y/.

b. Conclude that if A is orthogonal,

Ax � Ay D .detA/A.x � y/ D

8

<

:

A.x � y/; if detA > 0;

�A.x � y/; if detA < 0:

2. Calculus Review

Recall that a function f WU ! R defined on an open subset U � R
n is C

k (k D 0; 1; 2; : : : ;1) if

all its partial derivatives of order � k exist and are continuous on U . We will use the notation
@f

@u
and fu

interchangeably, and similarly with higher order derivatives:
@2f

@v@u
D @

@v

�@f

@u

�

is the same as fuv, and so

on.

One of the extremely important results for differential geometry is the following

Theorem 2.1. If f is a C
2 function, then

@2f

@u@v
D @2f

@v@u
(or fuv D fvu).
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The same results apply to vector-valued functions, working with component functions separately.

If f WU ! R is C
1 we can form its gradient by taking the vector rf D

�

fx1
; fx2

; : : : ; fxn

�

of its

partial derivatives. One of the most fundamental formulas in differential calculus is the chain rule:

Theorem 2.2. Suppose f WRn ! R and ˛WR! R
n are differentiable. Then .f ı˛/0.t/ D rf .˛.t// �

˛0.t/.

In particular, if ˛.0/ D P and ˛0.0/ D V 2 R
n, then .f ı˛/0.0/ D rf .P / � V. This is somewhat

surprising, as the rate of change of f along ˛ at P depends only on the tangent vector and on nothing more

subtle about the curve.

Proposition 2.3. DVf .P / D rf .P / � V. Thus, the directional derivative is a linear function of V.

Proof. If we take ˛.t/ D P C tV, then by definition of the directional derivative, DVf .P / D
.f ı˛/0.0/ D rf .P / � V. �

Another important consequence of the chain rule, essential throughout differential geometry, is the following

Proposition 2.4. Suppose S � R
n is a subset with the property that any pair of points of S can be

joined by a C
1 curve. Then a C

1 function f WS ! R with rf D 0 everywhere is a constant function.

Proof. Fix P 2 S and let Q 2 S be arbitrary. Choose a C
1 curve ˛ with ˛.0/ D P and ˛.1/ D Q.

Then .f ı˛/0.t/ D rf .˛.t// � ˛0.t/ D 0 for all t . It is a consequence of the Mean Value Theorem in

introductory calculus that a function gW Œ0; 1� ! R that is continuous on Œ0; 1� and has zero derivative

throughout the interval must be a constant. Therefore, f .Q/ D .f ı˛/.1/ D .f ı˛/.0/ D f .P /. It follows

that f must be constant on S . �

We will also have plenty of occasion to use the vector versions of the product rule:

Proposition 2.5. Suppose f; gWR! R
3 are differentiable. Then we have

.f � g/0.t/ D f0.t/ � g.t/C f.t/ � g0.t/ and

.f � g/0.t/ D f0.t/ � g.t/C f.t/ � g0.t/:

Last, from vector integral calculus, we recall the analogue of the Fundamental Theorem of Calculus in

R
2:

Theorem 2.6 (Green’s Theorem). Let R � R
2 be a region, and let @R denote its boundary curve,

oriented counterclockwise (i.e., so that the region is to its “left”). Suppose P and Q are C
1 functions

throughout R. Then
Z

@R

P.u; v/duCQ.u; v/dv D
“

R

�
@Q

@u
� @P
@v

�

dudv:

Proof. We give the proof here just for the case where R is a rectangle. Take R D Œa; b� � Œc; d �, as

shown in Figure 2.1. Now we merely calculate, using the Fundamental Theorem of Calculus appropriately:

“

R

�
@Q

@u
� @P
@v

�

dudv D
Z d

c

 
Z b

a

@Q

@u
du

!

dv �
Z b

a

 
Z d

c

@P

@v
dv

!

du
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a b

c

d

FIGURE 2.1

D
Z d

c

�

Q.b; v/ �Q.a; v/
�

dv �
Z b

a

�

P.u; d/ � P.u; c/
�

du

D
Z b

a

P.u; c/duC
Z d

c

Q.b; v/dv �
Z b

a

P.u; d/du �
Z d

c

Q.a; v/dv

D
Z

@R

P.u; v/duCQ.u; v/dv;

as required. �

EXERCISES A.2

]1. Suppose fW .a; b/ ! R
n is C

1 and nowhere zero. Prove that f=kfk is constant if and only if f0.t/ D
�.t/f.t/ for some continuous scalar function �. (Hint: Set g D f=kfk and differentiate. Why must

g0 � g D 0?)

2. Suppose ˛W .a; b/ ! R
3 is twice-differentiable and � is a nowhere-zero twice differentiable scalar

function. Prove that ˛, ˛0, and ˛00 are everywhere linearly independent if and only if �˛, .�˛/0, and

.�˛/00 are everywhere linearly independent.

3. Let f; gWR ! R
3 be C

1 vector functions with the property that f.0/ and g.0/ are linearly independent.

Suppose

f0.t/ D a.t/f.t/C b.t/g.t/
g0.t/ D c.t/f.t/ � a.t/g.t/

for some continuous functions a, b, and c. Prove that the parallelogram spanned by f.t/ and g.t/ lies in

a fixed plane and has constant area.

]*4. Prove that for any continuous vector-valued function fW Œa; b�! R
3, we have







Z b

a

f.t/dt






�
Z b

a

kf.t/kdt :

]5. Let R � R
2 be a region. Prove that

area.R/ D
Z

@R

udv D �
Z

@R

vdu D 1

2

Z

@R

�vduC udv:
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3. Differential Equations

Theorem 3.1 (Fundamental Theorem of ODE’s). Suppose U � R
n is open and I � R is an open

interval containing 0. Suppose x0 2 U . If fWU � I ! R
n is continuous and Lipschitz in x (this means

that there is a constant C so that kf.x; t/ � f.y; t/k � Ckx � yk for all x; y 2 U and all t 2 I ), then the

differential equation
dx

dt
D f.x; t/; x.0/ D x0

has a unique solution x D x.t; x0/ defined for all t in some interval I 0 � I . Moreover, If f is Ck , then x is

C
k as a function of both t and the initial condition x0 (defined for t in some interval and x0 in some open

set).

Of special interest to us will be linear differential equations.

Theorem 3.2. Suppose A.t/ is a continuous n�nmatrix function on an interval I . Then the differential

equation
dx

dt
D A.t/x.t/; x0 D x0 ;

has a unique solution on the entire original interval I .

For proofs of these, and related, theorems in differential equations, we refer the reader to any standard

differential equations text (e.g., Hirsch-Smale or Birkhoff-Rota).

Theorem 3.3. Let k � 1. Given two C
k vector fields X and Y that are linearly independent on a

neighborhood U of 0 2 R
2, locally we can choose C

k coordinates .u; v/ on U 0 � U so that X is tangent to

the u-curves (i.e., the curves v D const) and Y is tangent to the v-curves (i.e., the curves u D const).

Proof. We make a linear change of coordinates so that X.0/ and Y.0/ are the unit standard basis vectors.

Let x.t; x0/ be the solution of the differential equation dx=dt D X, x.0/ D x0, given by Theorem 3.1. On

a neighborhood of 0, each point .x; y/ can be written as

.x; y/ D x.t; .0; v//

for some unique t and v, as illustrated in Figure 3.1. If we define the function f.t; v/ D x.t; .0; v// D

X(0)

Y(0)

(0,v)

(u,0)

x(t,(0,v))

y(s,(u,0))

coordinates (u,v)

FIGURE 3.1

.x.t; v/; y.t; v//, we note that ft D X.f.t; v// and fv.0; 0/ D .0; 1/, so the derivative matrix Df.0; 0/ is the
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identity matrix. It follows from the Inverse Function Theorem that (locally) we can solve for .t; v/ as a C
k

function of .x; y/. Note that the level curves of v have tangent vector X, as desired.

Now we repeat this procedure with the vector field Y. Let y.s; y0/ be the solution of the differential

equation dy=ds D Y and write

.x; y/ D y.s; .u; 0//

for some unique s and u. We similarly obtain .s; u/ locally as a C
k function of .x; y/. We claim that .u; v/

give the desired coordinates. We only need to check that on a suitable neighborhood of the origin they

are independent; but from our earlier discussion we have vx D 0, vy D 1 at the origin, and, analogously,

ux D 1 and uy D 0, as well. Thus, the derivative matrix of .u; v/ is the identity at the origin and the

functions therefore give a local parametrization. �

EXERCISES A.3

1. Suppose M.s/ is a differentiable 3 � 3 matrix function of s, K.s/ is a skew-symmetric 3 � 3 matrix

function of s, and

M 0.s/ DM.s/K.s/; M.0/ D O:

Show that M.s/ D O for all s by showing that the trace of .M TM/0.s/ is identically 0.

2. (Gronwall inequality and consequences)

a. Suppose f W Œa; b�! R is differentiable, nonnegative, and f .a/ D c > 0. Suppose gW Œa; b�! R

is continuous and f 0.t/ � g.t/f .t/ for all t . Prove that

f .t/ � c exp

�Z t

a

g.u/du

�

for all t :

b. Conclude that if f .a/ D 0, then f .t/ D 0 for all t .

c. Suppose now vW Œa; b� ! R
n is a differentiable vector function, and M.t/ is a continuous n � n

matrix function for t 2 Œa; b/, and v0.t/ D M.t/v.t/. Apply the result of part b to conclude that if

v.a/ D 0, then v.t/ D 0 for all t . Deduce uniqueness of solutions to linear first order differential

equations for vector functions. (Hint: Let f .t/ D kv.t/k2 and g.t/ D 2nmaxfjmij .t/jg.)
d. Use part c to deduce uniqueness of solutions to linear nth order differential equations. (Hint: Intro-

duce new variables corresponding to higher derivatives.)
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1.1.1 ˛.t/ D
�

1�t2

1Ct2 ;
2t

1Ct2

�

.

1.1.4 We parametrize the curve by ˛.t/ D .t; f .t//, a � t � b, and so length.˛/ D
R b

a k˛0.t/kdt D
R b

a

p

1C .f 0.t//2dt .

1.1.6 ˇ.s/ D
�

1
2
.
p
s2 C 4C s/; 1

2
.
p
s2 C 4 � s/;

p
2 ln..

p
s2 C 4C s/=2/

�

.

1.2.1 c. � D 1

2
p

2
p

1�s2

1.2.3 a. T D 1
2
.
p
1C s;�

p
1 � s;

p
2/, � D 1

2
p

2
p

1�s2
, N D 1=

p
2.
p
1� s;

p
1C s; 0/, B D

1
2
.�
p
1C s;

p
1 � s;

p
2/, � D 1

2
p

2
p

1�s2
; c. T D 1p

2
p

1Ct2
.t;
p
1C t2; 1/, � D � D

1=2.1C t2/, N D 1p
1Ct2

.1; 0;�t/, B D 1p
2

p
1Ct2

.�t;
p
1C t2;�1/

1.2.5 � D 1= sinh t (which we see, once again, is the absolute value of the slope).

1.2.6 B0 D .T �N/0 D T0 �NC T �N0 D .�N/ �NC T � .��TC �B/ D �.T � B/ D �.�N/,

as required.

1.2.9 b. If all the osculating planes pass through the origin, then there are scalar functions � and

� so that 0 D ˛ C �T C �N. Differentiating and using the Frenet formulas, we obtain

0 D T C ��N C �0T C �
�

��T C �B
�

C �0N; collecting terms, we have 0 D
�

1 C �0 �
��
�

T C
�

�� C �0�NC ��B. Since fT;N;Bg is a basis for R3, we infer, in particular, that

�� D 0. (We could also just have taken the dot product of the entire expression with B.)

�.s/ D 0 leads to a contradiction, so we must have � D 0 and so the curve is planar.

1.2.11 We have ˛0�˛00 D ��3B, so ˛0�˛000 D .˛0�˛00/0 D .��3B/0 D .��3/0BC .��3/.���N/,

so .˛0 � ˛000/ � ˛00 D ��2��6. Therefore, � D ˛0 � .˛00 � ˛000/=.�2�6/, and inserting the

formula of Proposition 2.2 gives the result.

1.2.25 a. Consider the unit normal As;t to the plane through P D 0, Q D ˛.s/, and R D ˛.t/.

Choosing coordinates so that T.0/ D .1; 0; 0/, N.0/ D .0; 1; 0/, and B.0/ D .0; 0; 1/, we

apply Proposition 2.6 to obtain

˛.s/ � ˛.t/ D
st.s � t/
12

�

��2
0�0st C : : : ; 2�0�0.s C t/C : : : ;�6�0 C 2�0

0.s C t/ � �3
0st C : : :

�

;

so As;t D
˛.s/ � ˛.t/

k˛.s/ � ˛.t/k ! A D .0; 0;�1/ as s; t ! 0. Thus, the plane through P with

normal A is the osculating plane.

121



122 SELECTED ANSWERS

1.2.25 a. cont. Alternatively, let the equation of the plane through P , Q, and R be As;t � x D 0

(where we choose As;t to vary continuously with length 1). We want to determine A D
lims;t!0 As;t . For fixed s and t , consider the function Fs;t .u/ D As;t �˛.u/. Then Fs;t .0/ D
Fs;t .s/ D Fs;t .t/ D 0, so, by the mean value theorem, there are �1 and �2 so that F 0

s;t .�1/ D
F 0

s;t .�2/ D 0, hence � so that F 00
s;t .�/ D 0. Now F 0

s;t .0/ D As;t � T.0/ and F 00
s;t .0/ D

As;t � �0N.0/. Since �i ! 0 and �! 0 as s; t ! 0, we obtain A � T.0/ D A � N.0/ D 0, so

A D ˙B.0/, as desired.

1.3.4 Let L D length.C /. Then by Theorem 3.5 we have 2� D
R L

0 �.s/ds �
R L

0 cds D cL, so

L � 2�=c.

2.1.3 a. E D a2, F D 0, G D a2 sin2 u; d. E D G D a2 cosh2 u, F D 0

2.1.4 a. 4�2ab

2.1.5 Say all the normal lines pass through the origin. Then there is a function � so that x D �n.

Differentiating, we have xu D �nu C �un and xv D �nv C �vn. Dotting with n, we

get 0 D �u D �v. Therefore, � is a constant and so kxk D const. Alternatively, from the

statement x D �n we proceed as follows. Since n�xu D n�xv D 0, we have x�xu D x�xv D 0.

Therefore, .x � x/u D .x � x/v D 0, so kxk2 is constant.

2.1.7 For x to be conformal, we must have E D G and F D 0; for it to preserve area we must have

1 D
p
EG � F 2, so E D G D 1 and F D 0, which characterizes a local isometry with the

plane. The converse is immediate.

2.1.8 We check that E D G D 4=.1C u2 C v2/2 and F D 0, so the result follows from Exercise

6.

2.1.11 b. One of these is: x.u; v/ D .cos uC v sinu; sin u � v cos u; v/.

2.1.16 a. If a cosh.1=a/ D R, the area is 2�
�

aCR
p
R2 � a2

�

.

2.2.1 If u- and v-curves are lines of curvature, then F D 0 (because principal directions are or-

thogonal away from umbilic points) and m D SP .xu/ � xv D k1xu � xv D 0. Moreover, if

SP .xu/ D k1xu and SP .xv/ D k2xv , we dot with xu and xv , respectively, to obtain ` D Ek1

and n D Gk2. Conversely, setting SP .xu/ D axu C bxv , we infer that if F D m D 0, then

0 D SP .xu/ � xv D Fa C Gb D Gb, and so b D 0. Therefore, xu (and, similarly, xv) is an

eigenvector of SP .

2.2.3 b. ` D b, m D 0, n D cosu.a C b cosu/, SP D
"

1=b 0

0 cos u=.aC b cosu/

#

,

H D 1
2

�
1
b
C cos u

aCb cos u

�

, K D cos u
b.aCb cos u/

; d. ` D �a, m D 0, n D a, SP D
"

�.1=a/ sech2 u 0

0 .1=a/ sech2 u

#

, H D 0, K D �.1=a/2 sech4 u.

2.2.5 We know from Example 1 of Chapter 1, Section 2 that the principal normal of the helix points

along the ruling and is therefore orthogonal to n. As we move along a ruling, n twists in a

plane orthogonal to the ruling, so its directional derivative in the direction of the ruling is

orthogonal to the ruling.
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2.2.6 E D tanh2 u, F D 0, G D sech2 u, �` D sechu tanh u D n, m D 0

2.3.2 d. � v
uv D � v

vu D f 0.u/=f .u/, � u
vv D �f .u/f 0.u/, all others 0.

2.4.4 �g D cotu0; we can also deduce this from Figure 3.1, as the curvature vector �N D
.1= sin u0/N has tangential component �.1= sin u0/ cosu0xu D cotu0.n � T/.

2.4.9 Only circles. By Exercise 2 such a curve will also have constant curvature, and by Meusnier’s

Formula, Proposition 2.5, the angle � between N and n D ˛ is constant. Differentiating

˛ � N D cos� D const yields �.˛ � B/ D 0. Either � D 0, in which case the curve is planar,

or else ˛ � B D 0, in which case ˛ D ˙N, so � D N0 � B D ˙˛0 � B D ˙T � B D 0. (In the

latter case, the curve is a great circle.)

2.4.18 a. Obviously, the meridians are geodesics and the central circle r D r0 is the only parallel

that is a geodesic. Observe that if we have some other geodesic, then r cos� D c and c < r0.

The geodesic with r cos� D c will cross the central circle and then either approach one of

the parallels r D c asymptotically or hit one of the parallels r D c tangentially and bounce

back and forth between those two parallels. In either event, such a geodesic is bounded. (In

fact, if a geodesic approaches a parallel asymptotically, that parallel must be a geodesic; see

Exercise 27.)

2.4.24 The geodesics are of the form cosh2 uC .v C c1/
2 D c2

2 for constants c1 and c2.

3.1.1 a. 2� sin u0

3.1.2 a. yes, yes, b. yes, no [here the answer may depend on whether the surface is non-smooth],

c. yes, no.

3.2.1 b. The semicircle centered at .2; 0/ of radius
p
5; d.P;Q/ D ln

�

.3C
p
5/=2

�

� 0:962.

3.2.11 �g D cothR

3.3.4 We have �n D II.e1; e1/ D �de3.e1/ � e1 D !13.e1/. Since e3 D sin �e2C cos �e3, the cal-

culations of Exercise 3 show that !13 D sin �!12Ccos �!13, so !13.e1/ D sin �!12.e1/ D
� sin � . Here � is the angle between e3 and e3, so this agrees with our previous result.

3.3.8 We have !1 D bdu and !2 D .a C b cosu/dv, so !12 D � sinudv and d!12 D
� cos udu ^ dv D �

�
cosu

b.aC b cosu/

�

!1 ^ !2, so K D cos u

b.aC b cos u/
.

3.4.2 a. Taking � D f gives us
R 1

0 f .t/
2dt D 0. Since f .t/2 � 0 for all t , if f .t0/ ¤ 0, we have

an interval Œt0 � ı; t0 C ı� on which f .t/2 � f .t0/2=2, and so
R 1

0 f .t/
2dt � f .t0/2ı > 0.

3.4.9 y D 1
2

cosh.2x/

A.1.1 Consider z D x � y. Then we know that z � vi D 0, i D 1; 2. Since fv1; v2g is a basis

for R2, there are scalars a and b so that z D av1 C bv2. Then z � z D z � .av1 C bv2/ D
a.z � v1/C b.z � v2/ D 0, so z D 0, as desired.

A.1.2 Hint: Take u D .
p
a;
p
b/ and v D .

p
b;
p
a/.



124 SELECTED ANSWERS

A.2.4 Let v D
R b

a f.t/dt . Note that the result is obvious if v D 0. We have kvk2 D v �
R b

a f.t/dt D
R b

a v � f.t/dt �
R b

a kvkkf.t/kdt D kvk
R b

a kf.t/kdt (using the Cauchy-Schwarz inequality

u � v � kukkvk), so, if v ¤ 0, we have kvk �
R b

a kf.t/kdt , as needed.
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angle excess, 83

arclength, 6

asymptotic curve, 48, 51, 55

asymptotic direction, 48, 54, 56

Bäcklund, 106

Bertrand mates, 21

binormal vector, 11

Bishop frame, 33

C
k, 1, 35, 116

catenary, 5

catenoid, 43, 66

Cauchy-Schwarz inequality, 116

chain rule, 117

characteristic polynomial, 115

Christoffel symbols, 57

Clairaut’s relation, 73, 77, 78

Codazzi equations, 59, 63, 104

compact, 61

cone angle, 90

conformal, 40

connection form, 104

convex, 28, 91

covariant constant, 67

covariant derivative, 67

Crofton’s formula, 25, 33

cross ratio, 99

cubic

cuspidal, 2

nodal, 2

twisted, 3

curvature, 11

curve, simple closed, 26

cycloid, 3

cylindrical projection, 42

Darboux frame, 70, 103, 105

developable, see ruled surface, developable

directrix, 38

Dupin indicatrix, 56

eigenvalue, 115

eigenvector, 115

elliptic point, 50

Euler characteristic, 85

exterior angle, 34, 83

first fundamental form, 39

flat, 49, 60, 61, 65, 77, 84, 90, 104

Foucault pendulum, 69

Frenet formulas, 11

Frenet frame, 11

functional, 108

Gauss equation, 60, 63, 104

Gauss map, 24, 44

Gauss-Bonnet formula, 83, 86, 96, 105

Gauss-Bonnet Theorem, 95

global, 86

local, 83

Gaussian curvature, 49, 51, 53, 57, 60, 82, 104

constant, 62, 92

generalized helix, 15

geodesic, 70

geodesic curvature, 70

globally isometric, 75

gradient, 117

Green’s Theorem, 82, 117

Gronwall inequality, 120

H , 49

helicoid, 36, 48, 65, 66

helix, 3

holonomy, 79, 82

horocycle, 93

hyperbolic plane, 91

Klein-Beltrami model, 101

Poincaré model, 100

hyperbolic point, 50

inversion, 99

involute, 19

125
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isometry, 114

K, 49

k-point contact, 56

knot, 26

Laplacian, 64

line of curvature, 47

linear fractional transformation, 94

locally isometric, 39

mean curvature, 49

meridian, 38, 52

metric, 74

Meusnier’s Formula, 51

minimal surface, 49, 64, 65, 110

moving frame, 101

normal curvature, 51

normal field, 32

normal plane, 17

oriented, 84

orthogonal, 114

orthonormal, 114

osculating circle, 22

osculating plane, 17, 22

osculating sphere, 22

pacman, 42, 75, 90

parabolic point, 50

parallel, 38, 52, 67, 75, 95

parallel translate, 68

parametrization

regular, 1, 35

parametrized by arclength, 7

parametrized curve, 1

pedal property, 112

planar point, 50

Poincaré disk, 100

positively oriented, 114

principal curvature, 47

constant, 65, 66

principal direction, 47, 54

principal normal vector, 11

profile curve, 38

pseudosphere, 51

rectifying plane, 17

reflection, 98

regular, 1

regular parametrization, 35

rigid motion, 23, 63

rotation index, 27

ruled surface, 38

developable, 61, 65, 77

ruling, 38

second fundamental form, 46, 53

shape operator, 45, 53

smooth, 1, 35

spherical coordinates, 37

stereographic projection, 37

support line, 32

surface, 35

surface area, 41

surface of revolution, 37

symmetric, 45

tangent indicatrix, 24

tangent plane, 38

Theorema Egregium, 60, 104

torsion, 11

torus, 36

total curvature, 24, 88

total twist, 32

tractrix, 5, 13

triply orthogonal system, 55

Tschebyschev net, 43

twist, 32

u-, v-curves, 35

ultraparallels, 95

umbilic, 50

unit normal, 39

unit tangent vector, 11

variation, 108

vector field, 67

velocity, 1

vertex, 29

zone, 41


