A NOTE ON TERMINATION OF FLIPS

VALERY ALEXEEV

The purpose of this short note is to discuss the following

Key Lemma 0.1. Let

$$(Y^0, B^0) \dashrightarrow (Y^1, B^1) \dashrightarrow (Y^2, B^2) \dashrightarrow \ldots$$

be a sequence of birational transformations such that

(1) Each $(Y^n, B^n = \sum_{i=1}^N b_i^n B_i^n)$ is a Q-factorial terminal pair with $0 < b_i^n < 1$. (2) Each

$$Y^n \xrightarrow{\psi_{n+1}^-} W^{n+1} \xleftarrow{\psi_{n+1}^+} Y^{n+1}$$

- is a flip with respect to the divisor B^n .
- (3) B_i^n is a birational transform of B_i^0 ; (4) $B^{n+1} \leq B^n$, i.e. $b_i^{n+1} \leq b_i^n$ for all n and i.

Fix a real number $s \in [0,1)$. Then a valuation v with the center $C(v, Y^{n+1})$ in the flipped locus and discrepancy

$$a(v; Y^{n+1}, B^n) = 1 - s$$
 or $a(v; Y^{n+1}, B^{n+1}) = 1 - s$

cannot appear infinitely many times.

As explained in [Kaw03], termination of 4-dimensional klt flips follows from this Lemma by using backtracking and crepant descent, see Section 2 below. We were unable to prove Key Lemma in full generality. Here, we establish it if one of the following addional conditions holds:

(1) either
$$\inf b_i^n > 0$$
,

(2) or $s \neq 0$.

In particular, this provides a new proof for termination of terminal (and canonical) 4-dimensional pairs with constant B^n , which is the main result of [Fuj04]; it also gives an effective bound on the number of (1, 2)- and (2, 2)-flips.

We use the customary notations. In particular, for a discrete rank 1 valuation vof the function field of Y, a(v; Y, B) or simply a_v denotes the discrepancy (not the log discrepancy!) of v with respect to the Q-Cartier divisor $K_Y + B$. The center of a valuation v on a variety W will be denoted by C(v, W). For a flip

$$Y^- \xrightarrow{\psi^-} W \xleftarrow{\psi^+} Y^+$$

the set $\operatorname{Exc} \psi^-$ is called the flipping locus and $\operatorname{Exc} \psi^+$ the flipped locus.

For a complex projective variety D, we denote by $\rho(D)$ the dimension of subspace of $H_{2(\dim D-1)}(D,\mathbb{R})$ generated by algebraic cycles. $\nu: \widetilde{D} \to D$ will denote the normalization of of D.

Whenever two varieties are isomorphic in codimension 1, we may denote birational transforms of divisors by the same letters.

Date: June 8, 2004.

I thank Y.Kawamata for pointing out an error in an earlier over-optimistic version of this note.

1. Creative counting

Our *difficulty* will be a real number $d_{s,f}(W;Y,B)$ which will depend on

- (1) a real number $s \in [0, 1)$,
- (2) a normal variety W on which the centers of valuations will be considered,
- (3) a terminal pair $(Y, B = \sum b_i B_i)$ such that $0 < b_i < 1$, and such that Y and W are isomorphic in codimension 1. Discrepancies will be computed with respect to the divisor $K_Y + B$,
- (4) a decreasing function $f: (0, +\infty) \to \mathbb{R}_{\geq 0}$ satisfying two conditions:
 - (a) f(x) > 0 for x < 1 s and f(x) = 0 for $x \ge 1$.
 - (b) Whenever $0 < \sum m_i b_i < 1$ for some $m_i \in \mathbb{Z}_{\geq 0}$, one has

$$f(1-\sum m_i b_i) - \sum m_i f(1-b_i) \ge 0.$$

For example, one can take f(x) = 1 - x for x < 1 - s and f(x) = 0 for $x \ge 1 - s$. We will define another function $g: (0, 1) \to \mathbb{R}_{\ge 0}$ by the formula

$$g(b) = \sum_{k=1}^{\infty} f\bigl(k(1-b)\bigr)$$

It easily follows that there are only finitely many nonzero terms in this sum and that g is an increasing function. The meaning of these conditions will be clear from the proof of the next two lemmas.

Let $\nu : \coprod \widetilde{B}_i \to \bigcup B_i$ be the normalization of the divisor Supp *B*. Then the preimage $\widetilde{C} = \nu^{-1}(C)$ splits into the union of irreducible components with $\widetilde{C}_{i,\alpha} \subset \widetilde{B}_i$.

Definition 1.1.

$$d_{s,f}(W;Y,B) = \sum g(b_i)\rho(\widetilde{B}_i) + \sum_{v; \text{ codim } C(v,W)>2} f(a_v) + \\ + \sum_{\text{irr.}C\subset W; \text{codim } C=2} \left[\sum_{v; C(v,W)=C} f(a_v) - \sum_{\widetilde{C}_{i,\alpha}} g(b_i) \right]$$

We set $d_{s,f}(Y,B) := d_{s,f}(Y;Y,B)$.

Remark 1.2. For $f(x) = \max(1 - x, 0)$ this definition is a version of Shokurov's "stringy" invariant ρ^2 in [Sho03] except that we take into account higher "echos" (which is necessary).

Lemma 1.3. $d_{s,f}(W;Y,B)$ is well defined, i.e. only finitely many summands are nonzero.

Proof. Let C be a codimension-2 subvariety of Y whose generic point lies in $B \setminus \text{Sing } B$, namely on a component B_i . The only possible valuations with C(v, Y) = C and a(v; Y, B) < 1 are obtained as follows. The divisor E_1 corresponds to the blowup of C (minus the singularities), E_2 to the blowup the intersection of E_1 with the strict preimage of B_i , E_3 to the blowup the intersection of E_2 with the strict preimage of B_i etc.

We will call E_k the *k*-th echo of B_i along *C*. The discrepancy of the corresponding valuation is $a_v = k(1-b_i)$. There are infinitely many codimension-2 subvarieties *C* of $B \setminus \text{Sing } B$ but according to our definition of g(b) the corresponding summand in $d_{s,f}$ is zero.

It is well known that there are only finitely many non-echo valuations of a terminal pair (Y, B) with $a_v < 1$. This proves that $d_{s,f}(Y; Y, B)$ is well-defined. Finally, W and Y differ in finitely many codimension-2 subvarieties, so $d_{s,f}(W; Y, B)$ is also well-defined.

Lemma 1.4. $d_{s,f}(Y,B) \ge 0$.

Proof. Clearly, $\sum g(b_i)\rho(\tilde{B}_i) \geq 0$, so we only need to prove that the contributions from codimension-2 subvarieties are nonnegative. This is a computation that can be done assuming that B_i 's are curves on a nonsingular surface Y, intersecting at a point C. Moreover, we can and will treat analytic branches of B_i 's as different divisors.

Let b_1 be a maximal coefficient among b_i . Note that $b_i < 1/2$ for i > 1 because the pair (Y, B) is terminal. Therefore, for i > 1 one has $g(b_i) = f(1 - b_i)$. The discrepancy of the exceptional divisor E_1 of the first blowup is $1 - \sum m_i b_i$. Inductively, the discrepancy of the exceptional divisor E_k obtained by blowing up the intersection of E_{k-1} and the strict transform of B_1 is $\leq 1 - \sum m_i b_i + (k-1)(1-b_1)$. Therefore:

$$\sum_{v; C(v,W)=C} f(a_v) - \sum_{\tilde{C}_{i,\alpha}} g(b_i) \ge$$

$$\ge f(1 - \sum m_i b_i) + \sum_{k=1}^{\infty} f(1 - kb_1 - \sum m_i b_i) - \sum m_i g(b_i) =$$

$$= f(1 - \sum m_i b_i) - \sum m_i f(1 - b_i) +$$

$$+ \sum_{k=2}^{\infty} f\left(1 - \sum m_i b_i + (k - 1)(1 - b_1)\right) - f\left(k(1 - b_1)\right)$$

The first half of the last expression is nonnegative by our condition (4b), and the second half is nonnegative because f is decreasing.

Lemma 1.5. Suppose $\psi : Y \to W$ is a birational morphism which is an isomorphism in codimension 1. Then

$$d_{s,f}(Y;Y,B) = d_{s,f}(W;Y,B)$$

Proof. The expression $\sum g(b_i)\rho(\tilde{B}_i)$ drops by $\sum_{\tilde{C}_{i,\alpha}} g(b_i)$, where the sum goes over codimension-2 subvarieties of Y such that $\operatorname{codim} \psi(C) > 2$. This is true because on a normal variety exceptional divisors are linearly independent in homology. The last part of $d_{s,f}$ increases by the same amount. So they cancel out.

For the next statement, we use the setup of Key Lemma.

Lemma 1.6. (1) $d_{s,f}(Y^n, B^n) \ge d_{s,f}(Y^{n+1}, B^n)$ and the strict inequality holds if there exists a valuation with the center $C(v, Y^{n+1})$ in the flipped locus and $a(v; Y^{n+1}, B^n) = 1 - s$.

VALERY ALEXEEV

- (2) There exists n_0 such that for $n \ge n_0$, $d_{s,f}(Y^{n+1}, B^n) \ge d_{s,f}(Y^{n+1}, B^{n+1})$ and the strict inequality holds if there exists a valuation with the center $C(v, Y^{n+1})$ in the flipped locus and $a(v; Y^{n+1}, B^{n+1}) = 1 - s$.
- (3) If there exists $\epsilon > 0$ such that $f(x) \ge \epsilon$ for all x < 1 s and f(a) = 0 for $x \ge 1 s$ then Key Lemma follows.

Proof. (1) By the last lemma, we have

$$d_{s,f}(Y^n, B^n) = d_{s,f}(W^{n+1}; Y^n, B^n)$$

$$d_{s,f}(Y^{n+1}, B^n) = d_{s,f}(W^{n+1}; Y^{n+1}, B^n)$$

On the other hand, one has

$$d_{s,f}(W^{n+1};Y^n,B^n) \ge d_{s,f}(W^{n+1};Y^{n+1},B^n)$$

because $a(v; Y^n, B^n) \leq a(v; Y^{n+1}, B^n)$ by the basic property of flips. If there is a valuation with a = 1 - s then one of the terms $f(a_v)$ in $d_{s,f}$ disappears and the inequality becomes strict.

(2) follows similarly because $a(v; Y^{n+1}, B^{n+1}) \leq a(v; Y^{n+1}, B^n)$. The condition $n \geq n_0$ is needed to make sure that the same number of echos is counted in the definition of g(b), i.e. that

$$k(1-b_i^n) < 1-s \quad \Longleftrightarrow \quad k(1-b_i^{n+1}) < 1-s$$

(3) Indeed, every time $f(a_v)$ dissapears, the difficulty decreases at least by ϵ , and this cannot happen infinitely many times since $d_{s,f}(Y^n, B^n) \ge 0$ by Lemma 1.4. \Box

Corollary 1.7. Key Lemma holds if $s \neq 0$.

Proof. Indeed, we can take f(x) = 1 - x for x < 1 - s, f(x) = 0 for $x \ge 1 - s$ and $\epsilon = s$.

Corollary 1.8. Key Lemma holds if $m = \inf b_i^n > 0$.

Proof. Indeed, for s = 0 we can take the function

$$f(x) = \begin{cases} 1 - x, & x \le 1 - m \\ m, & 1 - m \le x < 1 \\ 0, & x \ge 1 \end{cases}$$

and $\epsilon = m$.

Corollary 1.9. The previous two corollaries hold with flipped locus replaced by flipping locus.

Proof. Change the function f(x) at one point, so that f(s) > 0, resp. f(m) > 0. \Box

Corollary 1.10. For any $\epsilon > 0$, the number of irreducible components C of

$$\operatorname{Sing}\left(\bigcup_{b_i > \epsilon} B_i^n\right)$$

with $\operatorname{codim}_{Y^n} C = 2$ and their multiplicities are bounded by a function of (Y^0, B^0) . *Proof.* Take $s = \epsilon$ and a function f(x) which satisfies a stronger inequality than (4b) if only $b_i > \epsilon$ are considered, namely:

$$f(1-\sum m_i b_i) - \sum m_i f(1-b_i) \ge (\sum m_i - 1)\epsilon$$

The proof of Lemma 1.4 shows that every codimension-2 component C with $\sum m_i > 1$ contributes at least $(\sum m_i - 1)\epsilon$ to $d_{\epsilon,f}$. Therefore, the number of such components and $(\text{mult}_C(\cup_{b_i \geq \epsilon} B_i^n) - 1)$ are bounded by $d_{\epsilon,f}(Y^0, B^0)/\epsilon$.

4

2. Termination of 4-dimensional klt flips

The following reduction argument is contained in [Kaw03]. Suppose

$$(X^0, D) \dashrightarrow (X^1, D) \dashrightarrow (X^2, D) \dashrightarrow \dots$$

is a sequence of klt flips for a fixed divisor $D = \sum d_j D_j$. Using only termination of \mathbb{Q} -factorial terminal flips (known by [Fuj04]), existence of \mathbb{Q} -factorial terminal flips (a recent work of Shokurov) and induction on the number e(X, D) of discrepancies that are ≤ 0 , one proves that this sequence can be covered by a sequence of flips as in Key Lemma so that for some $0 = \lambda(0) < \lambda(1) < \ldots$ the pair $(Y^{\lambda(n)}, B^{\lambda(n)})$ is a crepant \mathbb{Q} -factorial terminalization of (X^n, D) , possibly after truncating the sequence (cf. Backtracking Method and Crepant Descent in [K+92, Ch.6]; the method originates in [Kaw88]).

Further, one proves that after truncating the sequence the flipped locus does not contain any codimension-2 components of Sing X^n .

If the flipped locus contains a codimension-2 subvariety C then the same is true for one of the covering flips upstairs, and the corresponding discrepancy is $a_v = 1-s$, $s = \sum n_j d_j$ for some $n_j \in \mathbb{Z}_{\geq 0}$. Since there are only finitely many numbers s of this form in the interval [0, 1), Key Lemma implies that after truncation the flipped locus no longer contains any components of codimension 2.

After this point, the flipping locus also cannot contain components of codimension 2 infinitely many times since then the rank of $H_{2(\dim X^n-2)}(X^n)$ drops.

Finally, if dim $X^n = 4$ then every flip is of type (2, 1), (1, 2) or (2, 2), so either the flipping or the flipped locus must contain a codimension-2 subvariety. This proves the termination.

Since we were unable to prove Key Lemma in full generality, we only have the following corrolaries:

Corollary 2.1. For $n \ge n_0$, the flipped and flipping loci of Y^n do not contain a codimension-2 subvariety $C \subset \text{Supp } D$.

Corollary 2.2. Suppose that 0 is not an accumulation point from below of the discrepancies of klt pairs (X, D) with d_j in a fixed set and with a fixed number e(X, D) of discrepancies that are ≤ 0 . Then 4-dimensional klt flips terminate.

References

- [Kaw88] Y. Kawamata, The crepant blowing-up of 3-dimensional canonical singularities and its application to the degeneration of surfaces, Annals of Math. 127 (1988), 93–163.
- [Kaw03] Y. Kawamata, Termination of log flips in dimension 4, arXiv: math.AG/0302168v5 (2003), Preprint (withdrawn).
- [K+92] J. Kollár et al., Flips and abundance for algebraic threefolds, Astérisque 211 (1992), 1–258.
- [Fuj04] O. Fujino, Termination of 4-fold canonical flips, Publ. RIMS, Kyoto Univ., 40 (2004), 231–237.
- [Sho03] V.V. Shokurov, Letters of a Birationalist, V: Termination of flips, Preprint (2003).