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Introduction

These notes were written to complement my talks in the workshop “Compactifying
moduli spaces” at Centre de Recerca Matemàtica, Barcelona, May 27 to 31, 2013.
They concern moduli spaces of higher-dimensional stable pairs.

Stable surfaces and their compact moduli were introduced by Kollár and
Shepherd-Barron in [KSB88]; an extension to pairs, and also to stable maps was
given in [Ale96a, Ale96b]. Many crucial pieces, from the correct way of posing the
moduli question to the numerous technical questions, were filled in later by many
people.

These days, a number of introductions into this theory are available, e.g.
[Kol10, Kol]. The aim of these notes is not to provide yet another general intro-
duction. The focus is narrower. The ratio of the number of papers on the one-
dimensional stable curves versus the higher-dimensional case is at least 100 to 1.
Some of the reasons are obvious: of course the one-dimensional case presents much
fewer technical difficulties. But the main reason is that the one-dimensional case
is so much more amenable to combinatorial methods. In contrast, a large part of
the higher-dimensional theory is pure existence theorems. Concrete computations
are so much harder to perform, and there are few completely computed cases.

One large class where explicit computations are possible is the class of
weighted stable hyperplane arrangements (shas). They provide compactifications
for the moduli spaces of log canonical hyperplane arrangements (Pr−1,∑

n
i=1 biBi).

As applications, one also obtains various results about moduli spaces of surfaces of
general type and K3 surfaces, typically by considering Galois covers of P2 ramified
in special configurations of lines.

I will try to explain, as concretely as possible, how to work with such weighted
stable hyperplane arrangements, and how to make computations about them and
their moduli spaces. The whole story is an intricate interplay of Minimal Model
Program, Geometric Invariant Theory, Matroid theory, and polytopal tilings. It
is my hope that this concrete introduction will allow more people to enter this
research field.

Another reason to concentrate on weighted shas is the lessons that one can
learn that may be applied in other cases. These include the idea of complementary
degenerations, and the idea that a stable pair should correspond to some kind of
polytopal or almost polytopal tiling with “integral” vertices. The geography of the
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2 Contents

moduli spaces (as the coefficients bi change) is also expected to be similar in the
general case.

The notes should serve as a supplement to the research papers [Ale08b, AP09]
and to the earlier papers [Ale02], [AB06], [Kap93], [HKT06]. We do not repeat any
proofs. Instead, we introduce the necessary combinatorial tools, state the theorems,
and go in detail through some illuminating examples. One can think of these notes
as a pictorial introduction to the above papers. We also provide results of some
computer-aided computations.

The content of the notes is as follows. In chapter 1 we give a quick and rather
superficial introduction into the general theory of stable pairs and their moduli
spaces, and state what is known.

In chapter 2 we explain the theory of stable toric varieties and pairs. We finish
the chapter by explaining how to reduce the moduli of hyperplane arrangements to
the moduli of stable toric varieties. The matroid polytopes make an appearance,
motivating the next two chapters.

In chapter 3 we introduce as much matroid theory as necessary for our pur-
poses, with a brief detour into regular matroids (important for degenerations of
abelian varieties).

Chapter 4 is devoted to matroid polytopes and tilings. This includes partial
tilings and “cuts”.

In chapter 5 we get to the heart of the theory and state the main results.
We also illustrate it in dimensions 1 and 2, giving complete classification for n ≤ 6
lines.

In chapter 6 we go through some applications: computations for several
classes of surfaces of general type and a special low-dimensional case of K3 surface
pairs.

I would like to thank János Kollár for many useful comments on Chapter 1
of these notes.



Chapter 1

Stable pairs and their moduli

1.1 The curve case

The focus of these lectures is the higher-dimensional case, and it is hoped that the
reader already has some familiarity with the one-dimensional case. So we will be
rather brief.

Definition 1.1.1. Fix n real numbers 0 < bi ≤ 1. A weighted stable curve for the
weight b = (b1, . . . , bn) is a pair (X,B = ∑ biBi) of a reduced connected projective
curve X together with n points Bi ∈X such that:

1. (Singularities) X has at worst double normal crossings as singularities (lo-
cally analytically isomorphic to xy = 0). The points Bi may coincide but
they should be different from the nodes, and the sum of the weights should
satisfy multx(B) = ∑Bi=x bi ≤ 1 for any point x ∈X.

2. (Numerical) The R-divisor KX +B is ample.

The notation KX is a stand-in for the dualizing sheaf ωX which is an invert-
ible sheaf on a nodal curve. The numerical condition is equivalent to saying that
for any irreducible component E ⊂ X the degree of the restriction (KX +B)∣E is
positive:

deg(KX +B)∣E = 2pa(E) − 2 +E.(X −E) + ∑
Bi∈E

bi.

Here, we used the adjunction formula KX ∣E = KE(X −E) and the formula
degKE = 2pa(E) − 2.

This degree is automatically positive if either pa(E) ≥ 2 or pa(E) = 1 and
E.(X −E) > 0. Thus, for a curve X of arithmetic genus g ∶= pa(X) ≥ 2, the only
condition is for the irreducible curves E ≃ P1, and it is:

E.(X −E) + ∑
Bi∈X

bi > 2.

3



4 Chapter 1. Stable pairs and their moduli

Thus, we are adding the weights of “special” points on E, and the points of
intersection of E with the rest of X count with weight 1.

Example 1.1.2. If all the weights are bi = 1 then the points Bi must be distinct, and
on every component ≃ P1 there should be ≥ 3 special points. Thus, (X,B1, . . . ,Bn)
is an ordinary Deligne-Mumford-Knudsen’s n-pointed stable curve.

The following theorem of Hassett [Has03] generalizes Deligne-Mumford [DM69]
and Mumford-Knudsen to the case of arbitrary weights:

Theorem 1.1.3. For any n,b and g ≥ 0 the moduli stack Mg,b of weighted stable
curves of arithmetic genus g is a smooth Deligne-Mumford stack with a projective
moduli space Mg,b .

In the case g = 0, the moduli space is fine, and we can identify M0,b with the
projective scheme M0,b . For g ≥ 1, it is a coarse moduli space.

We denote by (X ,B1, . . . ,Bn) →Mg,b the universal family over the moduli
stack.

The next question is that of “geography”: how do the spaces Mg,n change
when the weight b changes?

Definition 1.1.4. The weight domain Dg(n) is defined to be the set {b ∈ (0,1]n}.
For genus g = 0 we additionally require that ∑ bi > 2, in order to have deg(KP1 +

∑ biBi) > 0.

Definition 1.1.5. A chamber decomposition of Dg(n) into locally closed strata is
obtained by cutting it by the hyperplanes b(I) = 1 for all subsets I ⊂ n.

Here, we adopt the notation b(I) ∶= ∑i∈I bi and n = {1, . . . , n}.

We also say that (b′1, . . . , b
′
n) ≥ (b1, . . . , bn) if b′i ≥ bi for all i.

Theorem 1.1.6 ([Has03]). The following holds:

1. (Same chamber) For b,b ′ in the same locally closed chamber, the moduli
stacks are the same and the universal families X →M are the same.

2. (Specialization from above) For b ′ ∈ Ch(b) (denoted b ′ ∈ b) and b ′ ≥ b, there
exist contraction morphisms

X ′ //

��

X

��
Mg,b′ //Mg,b

Further, the map on the moduli space is an isomorphism if ∣I ∣ = 2.

3. (Specialization from below) For b ′ ∈ Ch(b) and b ′ ≤ b, both the moduli spaces
and the universal families are the same.



1.2. Minimal Model Program: main definitions and results 5

One can prove that when crossing one of the walls b(I) = 1 generically (i.e.
no other inequalities b(J) ≤ 1 change), the bigger moduli stack is the blowupM′ =

BlZM of the smaller moduli stack along the smooth substack Z parameterizing
the curves where the points Bi with i ∈ I coincide. See, e.g. [AG08].

This wall crossing is illustrated in Figure 1.1.

- -) 

Figure 1.1: Crossing a wall b(I) = 1

1.2 Minimal Model Program: main definitions and re-

sults

We will accept MMP as a black box machine. You feed it a variety or a pair
and it spits out a better one. The necessary definitions for singularities (terminal,
canonical, log terminal, log canonical, semi log canonical) will be given later.

1.2.1 MMP machine for varieties

Input:

1. A smooth projective variety X.

2. Or, more generally, a normal projective variety X with terminal singularities.

Outputs:

1. Either a minimal model Xmin with nef canonical divisor KXmin
and terminal

singularities (a divisor D is nef if D.C ≥ 0 for any effective curve C), or
a Mori-Fano fibration X ′ → Y with relatively ample −KX′ and dimY <

dimX ′ = dimX.

2. If KX is big then also the canonical model Xcan with ample KXcan and
canonical singularities.

So, MMP is a machine for improving the properties of the canonical divisor.
What happens in between is really not that important. But here are the important
parts:
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(1) The rational map X ⇢Xmin is birational and it does not create divisors:
some divisors may be contracted but no new divisors are created. For the ranks
of Picard groups one has ρ(Xmin) ≤ ρ(X).

(2) The minimal model is usually not unique but the canonical model is
(provided KX is big). It is obtained from a minimal model by a linear system
∣dKXmin

∣ for d ≫ 0. There is also a way to obtain the canonical model directly
from X, by the formula Xcan = ProjR(X,KX), where for any divisor D we set

R(X,D) ∶= ⊕d≥0H
0
(X,O(dD)).

Here, we use the following standard notation. For an integral divisor D =

∑diDi with irreducible Di on a normal variety X, the divisorial sheaf O(D) is the
OX -subsheaf of the constant sheaf KX of rational functions whose local sections
are rational sections with effective (f) +D, i.e. multDi(f) ≥ −di. This definition
makes perfect sense if di ∈ R and one has OX(∑diDi) = OX(⌊di⌋Di).

The singular locus of a normal variety has codimension ≥ 2, and if j∶U → X
is the inclusion of the nonsingular locus then OX(D) = j∗OU(D∣U) is the push-
forward of an invertible sheaf. The sheaves of this form are called divisorial. In
particular, OX(dKX) is a divisorial sheaf on a normal variety for any d ∈ Z.

The ring R(X,KX) is called the canonical ring. In the cases where MMP has
been proved (listed below) it is a finitely generated ring over the base field k. To
have dimXcan = dimX, the plurigenera h0(X,O(dKX)) has to grow as c ⋅ ddimX .
This is the definition of a big divisor.

(3) Let me emphasize this point as it is very important:

• Birationally isomorphic smooth varieties (or varieties with canonical singu-
larities) have the same canonical model.

Indeed, for smooth varieties the space H0(X,O(dKX)), d ≥ 0, is a birational
invariant. If X is a variety with canonical singularities (see definition below) then
H0(X,O(dKX)) =H0(Y,O(dKY )) for any resolution of singularities Y →X.

(4) If the starting variety X is Q-factorial, then all intermediate steps and
Xmin are Q-factorial, but Xcan may not be. (A variety is called Q-factorial if for
any Weil divisor some positive multiple is Cartier.)

In case you are still interested about the internals of the machine, here is
some info. In between there is a sequence of birational transformations X =X0 ⇢

X1 ⇢ . . . ⇢ Xn which are either divisorial contractions Xi → Xi+1 (contracting a
divisor on Xi to a smaller-dimensional subvariety of Xi+1) or a flip, a diagram of
the form

Xi
//

f−i   

Xi+1

f+i}}
Zi

in which f−i and f+i are small contractions, isomorphisms in codimension 1. (For
example, if dimXi = 3 then both f−i and f+i contract some curves.)
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1.2.2 MMP machine for pairs

A Q- or R-divisor is a formal linear combination B = ∑ biBi with bi ∈ Q or R,
where Bi are effective divisors. Usually they are assumed to be irreducible and
distinct but we have to omit both of these conditions in order to work with moduli
of pairs. Thus, Bi are simply effective Z-divisors, not necessarily irreducible, and
they may have components in common.

We require bi ≥ 0. For log canonical singularities one will automatically have
bi ≤ 1. This does not have to be required in advance.

Input:

1. A pair (X,B = ∑Bi) of a smooth projective variety X and a Q- or R-divisor
B = ∑ biBi such that ∪Bi is a normal crossing divisor.

2. Or, more generally, a log canonical pair (X,B = ∑ biBi).

Outputs:

1. Either a minimal model (Xmin,Bmin) with nef divisor KXmin
+ Bmin and

dlt or log canonical singularities, or a Mori-Fano fibration X ′ → Y with
relatively ample −(KX′ +B′) and dimY < dimX ′ = dimX.

2. If KX +B is big then also the log canonical model (Xcan,Bcan) with ample
KXcan +Bcan and log canonical singularities.

Again, a minimal model is usually not unique but the log canonical model is
and Xcan = ProjR(X,KX +B). The question of independence of the log canonical
model of X is a little more delicate, see Lemma 1.2.4.

1.2.3 Standard singularities

One of the main revelations of the MMP since the earliest days was that in order
to achieve good properties of the canonical class in dimension ≥ 3 one must work
with singular varieties. Here are the standard definitions.

Let X be a normal variety and f ∶Y → X a resolution of singularities such
that the exceptional set ∪Ej is a normal crossing divisor. When working with a
pair, we additionally assume that ∪f−1

∗ Bi ∪Ej is a normal crossing divisor, where
f−1
∗ Bi is our notation for the strict preimages of Bi. Such a resolution is called

a log resolution. It exists in characteristic 0 by Hironaka and in dimension 2 in
arbitrary characteristic.

We start with canonical and terminal singularities. Assume that KX is a
Q-Cartier divisor, i.e. that some positive multiple NKX is a Cartier Z-divisor.
Cartier divisors can be pulled back (you just pull back the local equation). This
gives the magical formula

KY ∼Q f
∗
(KX) +∑ajEj ,
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The difference between KY and f∗(KX) consists entirely of the exceptional divi-
sors since they coincide outside of the exceptional locus. The coefficients aj are
called the discrepancies. If NKX is Cartier then aj ∈

1
N
Z, so aj ∈ Q.

Definition 1.2.1. The singularities of X are called terminal if all aj > 0 and canon-
ical if all aj ≥ 0.

It is easy to see that this definition does not depend on a log resolution (see
the argument for klt / lc below). A major consequence of “canonical” is that for any
d divisible by N one has H0(dKY ) =H0(dKX). Indeed, the pullbacks of sections
of OX(dKX) remain regular. And since NKY = NKX+ (effective exceptional
Cartier divisor), there are no new sections.

Now let (X,B = ∑ biBi) be a pair with bi ≥ 0. Assume that the divisor KX+B
is Q-Cartier or R-Cartier. “Q-Cartier” means that for some positive integer N the
coefficients Nbi ∈ Z and N(KX +B) is a Cartier Z-divisor. One has to be careful
about R-divisors:

Definition 1.2.2. An R-Cartier divisor is an R-linear combination of Cartier Z-
divisors. (Divisors here are sums of irreducible subvarieties, there is nothing in
this definition about linear equivalence.) When we say that KX +B is R-Cartier,
this means that for some concrete representative D ∼ KX , the divisor D + B is
R-Cartier. But then of course it is true for any other representative.

Two R-divisors are R-linearly equivalent, written D1 ∼R D2 if D1 −D2 an
R-linear combination of principal Cartier divisors ∑ ci(fi).

Since Cartier divisors can be pulled back, we again have the magical formula

KY ∼Q f
∗
(KX +∑ biBi) +∑aDD,

where the sum goes over all irreducible divisors on Y .

Definition 1.2.3. A pair (X,B = ∑ biBi) is called Kawamata log terminal (klt) if
all aD > −1, and log canonical (lc) if all aD ≥ −1.

If D is not f -exceptional then the coefficient aD is −∑ bimultf∗D(Bi). Thus,
aD > −1 means ∑ bimultf∗D(Bi) < 1 (resp. ≤ 1 for lc). If the divisors Bi are
irreducible and distinct then this means simply bi < 1 (resp. bi ≤ 1 for lc). But we
are OK with Bi’s being non-irreducible and having components in common. Then
we are saying that after rewriting ∑ biBi = ∑dkDk with irreducible distinct Dk,
one must have dk < 1 (resp. dk ≤ 1 for lc).

For the f -exceptional divisors Ej the condition says that the discrepancies
aj must satisfy aj > −1 (resp. aj ≥ −1 for lc).

A basic computation underlying these definitions is that if you start with a
reduced normal crossing divisor ∪Bi and blow up the intersection of several Bi’s
then f∗(KX +∑Bi) ∼Q KY +∑ f−1

∗ Bi +E, where E is the exceptional divisor of
the blowup. So the coefficient 1 is very natural, and the inequalities do not change
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if one replaces Y by a variety Y ′ obtained from it by a sequence of blowups (and
any other resolution is dominated by such). This shows independence of Y .

There are several flavors of log terminal singularities for pairs: log terminal
(lt), divisorially log terminal (dlt), pure log terminal (plt). They will not be im-
portant for us. There is also an important extension of lc to non-normal varieties
which we will introduce below: semi log canonical (slc). Similarly, one can also
define slt, sdlt, etc.

1.2.4 Uniqueness of the log canonical model for pairs

Lemma 1.2.4. Let (X,B = ∑ biBi) be an lc pair with a Q-Cartier divisor KX +B
and f ∶Y →X be a morphism with exceptional divisors Ej. Then

ProjR(X,KX +B) = ProjR(Y,KY + f−1
∗ B +∑Ej).

Proof. Indeed, KY +f
−1
∗ B+∑Ej ∼Q f

∗(KX +B)+∑(1+aj)Ej , and the difference

∑(1+aj)Ej is effective and f -exceptional, so for all d with dbi ∈ Z and d(KX +B)

Cartier one has H0(OX(d(KX +B))) =H0(OY (d(KY + f−1
∗ B +∑Ej))). ◻

Next, we are going to give a non-standard definition, not used much (or at
all) in the literature.

Definition 1.2.5. Let (X,B = ∑ biBi) be a pair with bi ≥ 0 that may not be log
canonical. Assume that KX +B is Q- or R-Cartier. Rewrite KX +∑ biBi = ∑dkDk

with distinct irreducible Dk, and let d′k = min(dk,1). Thus,

0 < d′k = min(∑ bimultDk(Bi),1) ≤ 1.

Let f ∶Y → X be a log resolution of (X,B) with exceptional divisors Ej . The log
canonical model of (X,B) is defined to be

ProjR(Y,KY +∑d′kf
−1
∗ Dk +∑Ej),

provided that this ring is finitely generated.

Note that the pair (Y,∑d′kf
−1
∗ Dk+∑Ej) is lc. By the above Lemma 1.2.4 this

definition does not depend on a choice of a log resolution, since any two resolutions
can be dominated by a third.

1.2.5 Relative case

MMP machine also works in a relative situation, when the input is a projective
morphism π∶X → S over an arbitrary variety S. The output is a relative minimal
model with π-nef KXmin

(resp. KXmin
+Bmin) or a relative canonical model with



10 Chapter 1. Stable pairs and their moduli

π-ample KXcan (resp. KXcan+Bcan) if one starts with a π-big canonical divisor KX .
Further, one has Xcan = ProjS RS(X,KX +B), where

RS(X,KX +B) = ⊕d≥0π∗O(d(KX +B))

is a relative canonical ring, an OS-algebra.

A divisor is π-nef if D.C ≥ 0 for any curve C collapsed by π, i.e. π(C) = pt.

A divisor is π-ample if its positive multiple is a pullback of O(1) from some
Pn × S; if S is projective, this simply means that D = ample + π∗D′.

A divisor is π-big if its restriction to a generic fiber is big. For a birational
morphism, this is an empty condition.

Another name for π-nef (etc.) is nef (etc.) over S.

1.2.6 When is MMP known to be true?

MMP is still a conjecture in general case. In full generality it is currently known
only in dimension 3 in characteristic 0 and in dimension 2 in any characteristic
(where it is fairly easy).

A huge step in MMP for arbitrary dimension was made in [BCHM10] but it
is only for klt pairs. We do need coefficients bi = 1, however, for example to handle
varieties with slc singularities.

1.3 Minimal Model Program and one-parameter degen-

erations

Here is the essential and most basic application of MMP to the complete moduli
of algebraic varieties. For degenerations of curves this was used by Shafarevich
[Sha66] and Deligne-Mumford [DM69]. Kollár and Shepherd-Barron realized in
[KSB88] that the same construction can be applied to degenerations of surfaces.

Let π0∶X0 → S0 be a family over a punctured curve S0 = S ∖ 0. We want
to extend it to a nice complete family over S, perhaps after a finite base change
S′ → S, X0 ×S S

′ → (S′)0, which is a standard thing to do when working with
moduli of varieties with finite automorphism groups.

Assume that KX0 is relatively ample over S0. In this case, X0 is equal to
ProjRS0(X0,KX0). So the idea is to extend X0 to some appropriate X and then
take the relative canonical model. Since that model is unique and does not depend
on the choice of an X, this will provide a unique in some sense extension. That is
the simple idea, which has to be worked out more carefully.

Begin more generally with a pair (X0,B0 = ∑ biB
0
i ) with a morphism to S0

such that the fibers (X,B)t are lc and have ample R-Cartier KXt + Bt. After
shrinking (S,0), one can assume that (X0,B0) is lc. Let Y 0 → X0 be a log
resolution for the pair (X0,B0). After shrinking (S,0), one can assume that all
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Figure 1.2: A one-parameter degeneration

the exceptional divisors E0
j are horizontal (the image is the whole S0). At this

point we have X0 = ProjRS0(Y 0,KY 0 + f−1
∗ B0 +∑E0

j ).
Now apply a version of Semistable Reduction Theorem to the normal crossing

pair (Y 0,∪f−1
∗ B0

i ∪E
0
j ) which says that after a base change S′ → S (in order not

to introduce horrible notation, we will skip the primes and denote the new curve
again by S) there exists an extension π∶Y → S such that Y is smooth, the central
fiber Y0 is a normal crossing divisor in which every irreducible component has
multiplicity 1, and ∪f−1

∗ Bi ∪Ej ∪ Y0 is a normal crossing divisor.

s 

Figure 1.3: A one-parameter degeneration completed

We now take the relative log canonical model

X ∶= ProjRS(Y,KY +∑ bif
−1
∗ Bi +∑Ej + Y0)

Then the horizontal divisors Ej collapse onto X, and the pair (X,∑ biBi +X0)

has lc singularities and KX +∑ biBi +X0 is π-ample. Restricting to the central
fiber, we see that the divisor KX0 +∑ biBi,0 is ample.
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Because we insisted that Y has irreducible components of multiplicity 1, the
log canonical model does not depend on a choice of Y by the uniqueness property
of lc models Lemma 1.2.4.

What singularities does the central fiber (X0,B0) have? We certainly can
not expect that X0 would be normal: already a degeneration of curves is a stable
curve which is typically not normal or irreducible. Whatever the singularities are,
we should call them “semi log canonical”. The definition of [KSB88] for surfaces
used semi log resolutions. An easier to work with definition was given in [Ale96a]:

Definition 1.3.1. Let (X,B = ∑ biBi) be a pair of a (reduced) variety and a Q- or
R-divisor on it. Then it is called semi log canonical (slc) if:

1. X satisfies Serre’s condition S2.

2. X has only double normal crossings in codimension 1, and the double locus
has no irreducible components in common with Bi’s.

3. The divisor KX +B is R-Cartier (note that KX is a well defined Weil divisor
class thanks to the previous condition).

4. Denoting ν∶Xν → X the normalization, the pair (Xν ,∑ biν
−1(Bi) +D

ν) is
lc, where Dν is the preimage of the double locus on Xν .

Remark 1.3.2. S2 is a natural generalization of “normal” to the case of varieties
which may not be regular in codimension 1. A well-known theorem of Serre says
that “normal” = S2 +R1. Removing R1 leaves S2.

One geometric consequence of S2 is that an S2 variety is “connected in codi-
mension 1”: one can not disconnect it locally analytically by removing a subset
of codimension ≥ 2. For example, a surface obtained from another surface by glu-
ing together two points is not S2. More generally, an S2 variety can be uniquely
reconstructed from any open subset U with codim(X ∖ U) ≥ 2. In particular, a
surface obtained by “pinching” a single point is not S2 either.

Remark 1.3.3. One can define a divisorial sheaf OX(KX + B) on an slc variety
as follows. The “bad” subset of X is the set where X has worse than double
normal crossing singularities, plus D ∩ (∪Bi). This set has codimZ ≥ 2; let U
be its complement. On U we have a well define dualizing sheaf ωX which is an
invertible sheaf. We denote by KU the linear equivalence class of divisors H on U
such that ωU ≃ OU(H). One defines

OX(d(KX +B)) ∶= j∗ω
⊗d
X (dD) for any d ∈ Z.

Remark 1.3.4. For the normalization of a double normal crossing singularity one
has ν∗(KX +B) = KXν + ν

−1(B) +Dν , so the condition (3) in Definition 1.3.1 is
equivalent to saying that for the log resolution Y →Xν →X of the normalization
of X, in the formula

KY ∼Q f
∗
(KX +B) +∑aDD

all the discrepancies satisfy aD ≥ −1, just as in the definition of lc singularities.
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Figure 1.4: Semi log canonical singularities

Example 1.3.5. A curve pair (X,∑ biBi) with bi > 0 is slc ⇐⇒ the singularities of
X are at worst double normal crossings (locally analytically isomorphic to xy = 0),
the divisors Bi do not contain the nodes, and for every non-nodal point x ∈X one
has multxB = ∑ bimultxBi ≤ 1.

If Bi are points then we are saying that they have to be nonsingular points
of X, and they may coincide but when they do, the total weight has to be ≤ 1,
just as in the definition of a weighted stable curve.

In our family, the pair (X,∑ biBi +X0) is lc. The fact that the central fiber
X0 is S2 was proved in [Ale08a]. By adjunction, this easily implies that the pair
(X0,∑ biBi,0) is slc. This proves the existence part of the following theorem:

Theorem 1.3.6. Let π0∶ (X0,B0) → S0 be a family of irreducible slc pairs (X,B)t
with ample KXt +Bt. Then possibly after a finite base change S′ → S this family
can be uniquely extended to a complete family over S such that the central fiber
(X0,B0) is slc with ample KX0 +B0.

The uniqueness part is proved as follows. We start with a completed family
π∶ (X,B)→ S extending π0 such that the central fiber (X0,B0) is slc. By a highly
nontrivial Inversion of Adjunction theorem [Kaw07], it follows that the ambient
family (X,B+X0) is lc. Let f ∶Y →X be a log resolution for the pair (X,B+X0).
Denote by Ej the horizontal f -exceptional divisors; some irreducible components
(Y0)s of the central fiber may also be f -exceptional.

If KX +B is Q-Cartier then X can be recovered as

X = ProjR(Y,KY +∑ f−1
∗ B +∑Ej +∑(Y0)s).

The last sum goes over all irreducible components of the central fiber Y0, and we
take them with coefficient 1 even if they have higher multiplicity in Y0 = π

∗(0) =

∑ms(Y0)s. Now the uniqueness follows from Lemma 1.2.4.
Even if KX +B is only R-Cartier, the uniqueness of the canonical model in

the above sense is a little harder to show but still well known, see e.g. [BCHM10].
See also [HX13].
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1.4 Moduli of stable varieties

1.4.1 Definition of a stable pair

Theorem 1.3.6 is a sufficient motivation for the following definition:

Definition 1.4.1. A pair (X,B = ∑ biBi) of a projective variety and an R-divisor
on it is called a stable pair if:

1. (Singularities) (X,B) is slc (in particular, KX +B is an R-Cartier divisor).

2. (Numerical) KX +B is ample.

When B = 0, we talk simply of stable varieties.

1.4.2 Moduli functors in the case B = 0

We start with the case B = 0. In this case, there is a good introduction [Kol10],
and all the necessary technical details have been filled in [Kol08, Kol].

The definition of a family of stable varieties of dimension ≥ 2 is nontrivial.
Without taking care, it is easy to produce examples of flat families in which KXt

is Q-Cartier on each individual fiber but K2
Xt

is not constant, see e.g. [Kol90]. To
fix this, one has to make sure that NKXt comes from an invertible sheaf on the
entire family X.

There are two basic functors, defined below. We use the terminology intro-
duced in [HK04].

Definition 1.4.2. Let d,N ∈ N and C ∈ R, C > 0. The Viehweg’s moduli functor
MN,C is defined as follows: for any scheme S over the base field, MN,C(S) is the
set of flat families π∶X → S of dimension d such that

1. Every geometric fiber Xt is a stable variety with Kd
Xt

= C.

2. There exists an invertible sheaf L on X such that for every geometric fiber
Xt one has

L∣Xt ≃ OXt(NKXt)

The Kollár’s moduli functor is defined as follows: MK,C(S) is the set of flat
families π∶X → S of dimension d such that

1. Every geometric fiber Xt is a stable variety with Kd
Xt

= C.

2. For all N the sheaves FN ∶= j∗OU(NKX) are flat over S and commute with
arbitrary base changes S′ → S. Here, U ⊂ X is the open subset on which π
is relatively Gorenstein. Recall that from the definition of slc the restriction
of X ∖U to each fiber has codimension ≥ 2.

Definition 1.4.3. The moduli stacks MN,C and MK,C are defined similarly: for
any scheme S a groupoidMN,C(S), resp.MK,C(S), is the category whose objects
are the families as above and the arrows are isomorphisms over S.
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1.4.3 Constructing the moduli spaces

There is a standard way to prove that the stacks MN,C and MK,C are algebraic
and that the coarse moduli spaces for the moduli functors exist. We briefly describe
it. It uses in a significant way MMP (full lc version) in dimension dimX + 1 and
boundedness, both of which are only available for dimX = 2. Therefore, we restrict
to this case and below only speak of stable surfaces.

(1) The first step is the Boundedness theorem, [Ale94] which in fact is slightly
stronger than what we formulate here; the full version allows for varying the co-
efficients bi in a DCC set.

Theorem 1.4.4 (Boundedness Theorem). Fix n ∈ N, b1, . . . , bn ∈ (0,1] and C ∈ R>0.
Then the family of stable surfaces (X,B = ∑

n
i=1 biBi) with (KX + B)2 = C is

bounded, i.e. there exists a scheme of finite type S and a family (X ,B1, . . . ,Bn)→ S
in which all such surface pairs appear as fibers.

In this section, we use this theorem for n = 0, i.e. B = 0. Below, we will use
its full power. Importantly, the coefficients bi are allowed to be non-rational, so
that KX +B is only an ample R-divisor.

By boundedness, there exists a universal N such that the divisor H = NKX

is invertible and very ample for all of our surfaces. Also, there exist only finitely
many possibilities for χ(OX). Therefore, there are only finitely many possibilities
for the Hilbert polynomial p(d) = χ(OX(dH)) = d2H2/2 + dHKX + χ(OX).

Let Hilb = ∪Hilbpi(d)(PNi) be the finite union of the corresponding Hilbert
schemes. The universal family X → Hilb contains all of our surfaces, and also a
bunch of other surfaces that we do not want. Now we need to weed them out.

(2) A very delicate and technically difficult property is Local Closedness of
the moduli functor M , which says that for any family X → S of surfaces there
exists a locally closed subscheme T → S with the following universal property:

• For any S′ → S, the family X ×S S
′ obtained by base change is in M(S)

⇐⇒ S′ → S factors though T → S.

For both Viehweg and Kollár moduli functors this property was established
in full generality in [Kol08].

After applying this theorem to the family X → Hilb, we now have a family
XT → T which contains all of our surfaces and only them.

Next, we have to divide T by an appropriate equivalence relation R so that
the quotient T /R is our coarse moduli space, and the stack [T /R] is our algebraic
moduli stack. There are convenient and powerful theorems for that: [Kol97, KM97]
but they only work for a proper equivalence relation, so one first to have establish
a couple more properties.

(3) Finite Automorphisms. This property says that for any stable pair the
automorphism group Aut(X,B) is finite. This easily follows from an old and gen-
eral result of Iitaka saying that for any smooth projective variety Y and a normal
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crossing divisor D on it such that KY +D is big, the group Aut(Y,D) is finite. We
apply it to the resolution of singularities of each irreducible component of the nor-
malization of X, and D is the support of the preimages of Bi and the exceptional
divisors. Also, (3) essetially follows from the following condition (4).

(4) Properness of the functor. This is the property with which we started the
discussion: for any family π0∶X0 → S0 over a punctured curve S0 = S ∖ 0, after
possibly a finite base change S′ → S, there exists a unique way to extend it to a
complete family π∶X → S.

However, we only established it in the case when the variety X0 is normal,
i.e. the generic fiber is irreducible. One needs it in the general case.

Intuitively, the general case is reduced to the irreducible case by normalizing
X0, finding the limits for each irreducible component (X0

k ,D
0
k), where D0

k is the
double locus, and then gluing the limits into a total family. The gluing should
work nicely by the uniqueness property of log canonical model and compatibility
with adjunction to Dk.

In reality, the process is quite delicate. One has to realize a crucial point that
for the gluing to work nicely the so called differents (whose definition we skip) on
both sides of the double locus have to match. The good news is that for surfaces
Kollár proved all the necessary results, see [Kol] and [Kol11], so this property has
been established.

(5) At this point, everything is set to take the quotient. First, one has to
make sure that in Step (1) the multiple H = NKX is taken large enough so that
not only H is very ample but it also has no higher cohomology: for all of our pairs
Hp(X,O(H)) = 0 for p > 0. Again, by boundedness such a multiple exists.

So at this time we have finitely many locally closed subschemes T of Hilbert
schemes Hilbp(d)(PN), and all of our surfaces appear in the universal families

XT ⊂ PN × T . The group PGL(N + 1) acts on T and sends surfaces to isomorphic
surfaces.

Moreover, for any family π∶XS → S in M(S) (where M = MN,C or MK,C)
the push forward π∗OXS(H)→ S is a locally free sheaf on X of rank N + 1. This
follows from the condition Hp(X,O(H)) = 0 for p > 0 by the Cohomology and
Base Change theorem.

On an open cover S = ∪Uα the sheaf becomes free: (π∣Uα)∗OXUα (H) ≃

O⊕N+1
Uα

. Choosing a basis, i.e. a concrete isomorphism (π∣Uα)∗OXUα → O
⊕N+1
Uα

gives a map S → T so that locally on the base S, XUα is the pullback of the
universal family XT → T . Any other isomorphism differs from this by an element
in PGL(Uα).

This implies that the moduli stackM is the quotient [T /PGL(N + 1)]. The
group action is proper by the properties (4,5). Now by [KM97] the quotient is an
algebraic stack with a coarse moduli space which is a proper algebraic space.

(6) Finally, the coarse moduli space M is not just a proper algebraic space,
but it is a projective scheme by Kollár [Kol90]. The result of [Kol90] is only for
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surfaces. It was extended to higher dimensions and to pairs (X,∑ biBi) by Fujino
[Fuj12].

1.5 Moduli of stable pairs (X,B) with B ≠ 0

1.5.1 A tricky problem

Practically all of the steps of the previous section go over verbatim in the case of
surface pairs (X,B = ∑ biBi). However, there is the following problem that was
identified by Hacking:

For simplicity, let us assume that B = b1B1 is irreducible and that b1 ∈ Q.
Let π0∶X0 → S0 be a one-parameter degeneration which we completed to a family
π∶X → S. By construction, the divisor KX +B is Q-Cartier. It is however possible
that the divisors KX and B are not Q-Cartier individually. In this case, in the
central fiber the closed subscheme B1 ∩X0 ⊂X0 may have an embedded prime! In
other words, it will not be a divisor but only a closed subscheme! Hassett came up
with a concrete example with coefficient b1 =

1
2
, which is reproduced in [Ale08a].

Indeed, by the properness of Hilbert scheme we know that a limit of subva-
rieties in a one-parameter family exists but generally it is only a subscheme, not
a subvariety. It may have nilpotents, and may have embedded components. This
is what happens here.

On the face of it, this problem means that perhaps a whole approach has to
be rethought from the ground up. Perhaps one has to set up the theory of stable
pairs as pairs (X,∑ biBi) where Bi ⊂X are subschemes.

This has many unwanted consequences. For example, what if some of the
embedded points inBi “wander away” from the divisorial part after a deformation?
Do we have to track such “free floating points” now? That makes the moduli
functor a lot bigger that desired.

Below we list several known solutions to this problem. We also provide a new
solution for very generic coefficients in Subsection 1.5.3.

1.5.2 Large coefficients

In [Ale08a] I showed that the problem does not appear for the components Bi with
bi = 1. Subsequently, Kollár [Kol] improved this significantly by showing that for
any component with coefficient bi >

1
2

the divisor Bi does not acquire embedded

primes and stays a divisor. So the boundary bi =
1
2

in Hassett’s example is the

best possible. So for as long as all bi >
1
2
, everything works and we have a moduli

space.

1.5.3 Very generic coefficients

We start with the following elementary
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Lemma 1.5.1. Let b0 = 1, b1, . . . , bn be real numbers which are linearly independent
over Q, and suppose that the divisor ∑

n
i=0 biBi is R-Cartier. Then each of the

divisors Bi is Q-Cartier.

Proof. Indeed, extend b0, . . . , bn to a basis {bi, i ∈ I} of the Q-vector space R.
(Of course, the index set I is uncountable.) The divisor ∑

n
i=0 biBi being R-Cartier

means that
n

∑
i=0

biBi =∑dkDk

for some real numbers dk and Z-divisors Dk. Expand each of the coefficients dk in
the above basis: dk = ∑i dk,ibi (a finite sum), dk,i ∈ Q. Then the above equality is
equivalent to

Bi =∑
k

dk,iDk for i = 0, . . . , n and ∑
k

dk,iDk = 0 for i ≠ 0, . . . , n.

So the divisors Bi are Q-Cartier. ◻

We can apply the above lemma to the divisor KX +B, B = ∑
n
i=1 biBi. Then

in the completed one-parameter family the divisors KX and Bi stay Q-Cartier,
and the problem disappears.

Remark 1.5.2. Here is a way to understand this trick. If we start with a Q-factorial
family X0 → S0 then a minimal model Xmin → S of a semistable model Y → S
will still be Q-factorial, and the divisors Bi will still be Q-Cartier.

It is on the last step, going from the minimal to the canonical model that
some curves C in the central fiber may get contracted such that BiC ≠ 0. This
forces the divisors Bi on the log canonical model to be not Q-Cartier.

The curves that get contracted satisfy the equation (KX + ∑ biBi)C = 0.
This give finitely many linear equations, defining finitely many hyperplanes. For
a generic (bi) lying outside of the hyperplanes, the curves are not contracted, and
the divisors Bi should stay Q-Cartier.

So this should be a general picture: there should exist a locally finite chamber
decomposition and for any (bi) in a maximal-dimensional chamber the divisors Bi
should stay Q-Cartier. To make it into a proof, however, one has to consider all
one-parameter degenerations for all (bi), etc. Choosing bi so generic that they are
linearly independent over Q is a quick solution.

So at this point we solved the problem with embedded primes. However, in
both Viehweg’s and Kollár’s moduli functors it is necessary that some multiple
N(KX +B) is an Cartier Z-divisor. In Viehweg’s functor it is explicit, in Kollár’s
functor it is needed to make the number of conditions to check finite (since we are
applying the local closedness to each multiple N ∈ N). Here is how to fix this small
obstacle:

Fix n and Q-linearly independent (1, b1, . . . , bn). Next, instead of fixing just
one number (KX + B)2, fix a vector C of all possible top intersection products
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Kk0
X B

k1
1 ⋯Bknn with ∑ki = 2. Since all the divisors are Q-Cartier, these are well-

defined rational numbers.

The Boundedness Theorem 1.4.4 applies to R-divisors, so it says that the
family of pairs (X,B = ∑ biBi) with Q-Cartier divisors Bi and ample R-Cartier
divisors Bi is bounded. Therefore, there exist some nearby rational numbers b′i for
which the divisors KX + B′, B′ = ∑ b′iBi are ample for all of our pairs. We can
easily compute the new vector C ′ for these modified coefficients.

The family of all pairs with vector C ′ for which KX + ∑ b′iBi is ample is
bounded by the same Theorem 1.4.4. The subset of the base for which the fibers
have no embedded primes is open. To this subset we can now apply the Local
Closedness theorems for the integral multiples of KX +B′. Then in the resulting
family XT → T we pick an open subset of T parameterizing the pairs with ample
KX +∑ biBi.

The rest of the proof proceeds as before. Most crucially, the functor is proper.

1.5.4 Very generic coefficients and KX ∼Q 0

Let me note one special case of the previous subsection. The moduli functor for
stable the pairs (X,B = ∑

n
i=1 biBi) such that

1. the coefficients 1, b1, . . . , bn are linearly independent over Q,

2. KX and Bi are Q-Cartier,

3. and some multiple NKX is linearly equivalent to zero,

4. (KX +B)2 = const

has a coarse moduli space which is a projective scheme.

To the previously established result, we need to add the following well known
statement which allows to carve out the subfamily where the sheaf OX(NKX) is
zero on the fibers.

Lemma 1.5.3. Let π∶X → S be a flat projective family with geometrically reduced
connected fibers and L be an invertible sheaf on X. Then there exists a closed
subscheme T ⊂ S satisfying the following universal condition: for any base change
S′ → S, on the family X ′ = X ×S S

′ → S′ the invertible sheaf L′ = g∗L is the
pullback of an invertible sheaf from the base ⇐⇒ the morphism S′ → S factors
through T .

Proof. See e.g. [Vie95, Lemma 1.19]. ◻

In some situations, even stronger results are available. For example, one has
the following:
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Theorem 1.5.4. Fix an integer C. Let π0∶ (X0, εH0) → S0 be a degenerating one-
parameter family of stable pairs in which the fibers are either abelian surfaces or
K3 surfaces and H is an effective ample Cartier divisor with H2 = C.

Then, perhaps after a finite base change S′ → S, there exists an extension
π∶X → S in which the central fiber satisfies KX0 ∼ 0 and H0 is Cartier, and the
pair (X0, εH0) has slc singularities for all ε < ε0(C).

Proof. For abelian varieties of any dimension, the proof is contained in [Ale02].
For K3 surfaces, a sketch of the proof was given in [Laz12] which is somewhat
incomplete but can be fixed. To complete it, one has to observe that Shepherd-
Barron’s operations for a degeneration of K3 surfaces preserve the condition for
H to be Cartier. ◻

Corollary 1.5.5. For any d ∈ 2N there exists a small irrational ε such that the
moduli space Pd of stable K3 surface pairs (X, εH) such that H2 = d is an open
subset of a coarse moduli space P d of stable slc pairs (X, εH). Further:

1. There exists N ∈ N such that for all stable pairs parameterized by P d one
has NKX ∼ 0.

2. For any family in the closure of Pd in P d, one has KX ∼ 0 and H is Cartier.

Note that generally P d may have several irreducible components. The the-
orem above guarantees KX ∼ 0 and H Cartier only for the pairs in the main
irreducible component of P d, for the “smoothable” pairs.

1.5.5 Pairs (X,∑ biBi) with branchdivisors Bi →X

Another solution to the problem of subschemes Bi ⊂ X with embedded primes is
to replace them with branchvarieties Bi →X introduced in [AK10]. A brachvariety
over a projective variety X is a reduced variety Bi together with a finite morphism
Bi → X. Thus, we trade an embedded possibly nonreduced subscheme for a re-
duced variety but only with a finite morphism. [AK10] proves that the moduli of
branchvarieties is proper, so any one-parameter degeneration has a unique limit.

Again, introducing brachdivisors leads to more pairs than perhaps desirable.
For example for the coefficient bi =

1
2

instead of just considering a divisor biBi in
which Bi perhaps has a component of multiplicity 2, we must consider all double
covers Bi → imBi ⊂X, and there are lots of them

1.5.6 Replace a divisor by a sheaf homomorphism

Kollár suggested the following solution. Let B = ∑ biBi an effective Q-divisor such
that NB is a Z-divisor and OX(N(KX +B)) is an invertible sheaf. Then we can
encode B by the homomorphism ϕ∶ω⊗NX → L. Symbolically, “B = (KX +B)−KX”.

Thus, a family of pairs (X ,B) → S can be encoded by an invertible sheaf L
on X and a homomorphism of sheaves ω⊗NX /S → L. The sheaf ω⊗NX /S may be very
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nasty, have torsion and cotorsion, etc. But, its formation commutes with arbitrary
base changes. Of course, the same is true for L because a pullback of an invertible
sheaf is invertible.

So one obtains a well defined functor with nice properties. The fact that it has
the Local Closedness property follows from [Kol08]. The rest of the construction
of the moduli space should proceed as before.

1.6 Moduli of stable varieties and pairs: known cases

We list the known cases where the moduli spaces of higher-dimensional stable pairs
are known to exist, and perhaps something more than just an existence theorem
is available.

1.6.1 Surfaces and some surface pairs (X,B)

Let me state clearly which results for surfaces I consider well established, with a
complete proof available.

Recall that for stable varietiesX, Viehweg’s moduli functorMN,C and Kollár’s
moduli functor MK,C were defined in 1.4.2. For the pairs (X,B = ∑ biBi) with
fixed rational bi the functors are defined the same way, with the multiples NKX

replaces by the multiples N(KX +B) for which all Nbi are integral. Finally, for
the real numbers bi, the coefficients are replaced by nearby rational numbers b′i,
as in Subsection 1.5.3.

Theorem 1.6.1. For fixed n, (b1, . . . , bn), and C, for stable surface pairs (X,B =

∑
n
i=1 biBi), both the Viehweg’s moduli functor with appropriate N(n, bi,C) and

appropriate (b′i) as at the end of subsection 1.5.3, and Kollár’s moduli functor
with appropriate (b′i) are coarsely represented by projective schemes in all of the
following cases:

1. B = 0.

2. Large coefficients: all bi >
1
2

.

3. Very generic coefficients: (1, b1, . . . , bn) are linearly independent over Q.

4. Large and very generic coefficients: some bi are rational and bi >
1
2

, and the
others are real and linearly independent over Q.

5. Very generic coefficients and KX ∼Q 0, i.e. some positive multiple NKX ∼ 0.

1.6.2 Products of curves and similar surfaces

By [vO05, vO06b], the stable limit of a family of surfaces which are products of
smooth curves Xt = Ct × C

′
t or symmetric powers Xt = (Ct × Ct)/Z2 is again a

product or a symmetric power of stable curves C0,C
′
0. Thus, the compactification
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of this component in the moduli space of surfaces of general type is Mg×Mg′ , resp.
Mg.

This was generalized to some surfaces which are finite quotients of products
of curves by more interesting automorphism groups in [vO06a, Liu12].

1.6.3 Planar curve pairs

Hacking [Hac04] considered compactifications of moduli spaces of pairs (P2, ( 3
d
+

ε)C), where C is a curve of degree d and 0 < ε≪ 1. (Note that KP2+( 3
d
+ε)C ∼ dεH

is very small.)

He proved that when d is not divisible by 3, the compactified moduli stack
is smooth. He also provided a rough classification of the degenerate stable pairs.

1.6.4 Del Pezzo surface pairs

[HKT09] works out several cases of compactifications of surface pairs (X,∑Bi)
where X is a del Pezzo surface and Bi are the lines, i.e. (−1)-curves.

1.6.5 Special surfaces of general type

As an application of the theory of weighted stable hyperplane arrangements [Ale08b],
[AP09] explicitly computes degenerations for several types of surfaces of general
type, including some numerical Campedelli surfaces and Burniat surfaces.

1.6.6 Stable toric varieties

Toric varieties give stable pairs in a very simple way. If X is a toric variety and
∆ is the union of boundary divisors then the pair (X,∆) is lc and KX + ∆ ∼ 0.
A pair (X,∆ + εB) for 0 < ε ≪ 1 is a stable pair ⇐⇒ B does not contain any
torus strata and B is ample. Thus, this case corresponds to the coefficients b1 = 1,
b2 = ε.

The moduli of stable toric pairs provides a compactification. It was con-
structed in [Ale02] and [AB06]. It was further extended to spherical varieties in
[AB04], [AB06].

1.6.7 Abelian varieties

If X is an abelian variety or an abelian torsor (a principally homogeneous space)
over an abelian variety and B is an ample divisor (“theta divisor”) then the pair
(X, εB) is a stable pair. The compactification using stable semiabelic varieties was
constructed in [Ale02]. Formally, the theory is the infinite-periodic analogue of the
theory of stable toric varieties.
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1.6.8 Weighted stable hyperplane arrangements

The moduli of weighted stable hyperplane arrangements [Ale08b] provides the
compactification for the moduli space of lc hyperplane arrangements (Pr−1,∑ biBi)
with ∑ bi > r. This is the major topic of these lectures. The case of the weights
bi = 1 is contained in [HKT06].



24 Chapter 1. Stable pairs and their moduli



Chapter 2

Stable toric varieties

For the theory of toric varieties, one should consult the usual sources [Oda88],
[Ful93] for a detailed introduction. Our introduction is very brief and serves mainly
to set up the notation and clarify the definitions (for example, our toric varieties
are normal and do not have the “origin” fixed.)

The theory of stable toric varieties review below is contained in [Ale02, AB06].
Below, k denotes the base field which is assumed to be algebraically closed.

2.1 Projective toric varieties and polytopes

2.1.1 Toric varieties and torus embeddings

The multiplicative group variety Gm is the group variety Speck[t,1/t] = A1 ∖ 0.
It comes with the structure morphisms mult∶Gm ×Gm → Gm, inverse∶Gm → Gm,
unit∶Speck → Gm, satisfying the group axioms. The reason not to write simply k∗

is that k∗ is a set but Gm is an algebraic variety. The set of k-points is Gm(k) = k∗.
A multiplicative torus T of dimension r is Grm = Gm ×⋯×Gm. It comes with

two standard lattices commonly denoted M and N , N = Hom(M,Z).

1. The lattice of 1-parameter subgroups N = Hom(Gm, T ) ≃ Zr.
An arbitrary toric variety is described by a fan (a collection of finitely gen-
erated strictly convex cones) in NR = N ⊗R.

The pictures recorded in this space are “inverted”. A cone τ of dimension d
corresponds to a T -orbit Oτ of dimension r−d, and the order is reversed: τ1
is a face of τ2, denoted τ1 ≺ τ2 ⇐⇒ Oτ1 ⊃ Oτ2 .

2. The lattice M = Hom(T,Gm) ≃ Zr of characters, or monomials.

This space is responsible for a “direct picture”. A d-dimensional polytope in
MR = M ⊗ R corresponds to an d-dimensional projective toric variety, and
the inclusions go the same way.

25
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We will work exclusively with the M -lattice, which in fact is much easier.

N 

Figure 2.1: A polytope in M and its normal fan in N

Definition 2.1.1. A toric variety is a normal variety with a T -action which has a
dense T -orbit O. A torus embedding is a normal variety with a T -action and a
fixed embedding T ⊂X which is a dense T -orbit.

Thus, the principal difference between a toric variety and a torus embedding
is that the latter comes with a special point 1 ∈ T ⊂ X, while in the former the
“origin” is not chosen.

If p is any point in the dense orbit O and Tp is its stabilizer then the orbit
O is a torsor (principal homogeneous space) over a torus T ′′ = T /Tp of dimension
≤ r. We allow the stabilizer Tp to be nontrivial but we assume that it is connected.
In characteristic p > 0 we assume additionally that it is reduced. As any algebraic
subgroup of a torus, Tp is the product of a torus T ′ and several copies of groups
of roots of unity µni (which in characteristic p may be connected nonreduced if ni
is a power of p). So we are saying that Tp = T

′ and there is no finite part.
A torus embedding together with a T -action has no isomorphisms. A toric

variety together with a T -action still has an automorphism group equal to T ′′.

2.1.2 Polarized toric varieties vs polytopes

Definition 2.1.2. A polarized toric variety is a pair (X,L) of a projective toric
variety X and an ample line bundle L on it.

Every line bundle on a toric variety is linearizable, and two linearizations
differ by an element in Hom(T,Gm) = M . A linearization of L is a lift of the
action T ↷ X to the A1-bundle L → X corresponding to L. When L is ample, it
is also the same as an action of T on the ring R(X,L) = ⊕∞d=0H

0(X,Ld) which
induces the original T -action on X = ProjR(X,L).

The main connection between algebraic geometry and combinatorics that we
need is the following:

Theorem 2.1.3. There is a 1-to-1 correspondence between
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1. (isomorphisms classes of) polarized toric varieties (X,L) with linearized L,

2. and polytopes P with vertices in the lattice M .

One has dimX = dimP . Further, a polytope P1 is a face of polytope P2 ⇐⇒ X1

is a T -invariant subvariety of X2 and L1 ≃ L2∣X1 as T -linearized line bundles.
Translating a polytope by an element of M corresponds to another choice of

a linearization.

Figure 2.2 illustrates this correspondence.

(P1,O(1))

(P1,O(2))

(P1,O(1))

(P1 × P1,O(1, 1))

(P1 × P1,O(2, 1))

(P2,O(3))

(Bl3ptsP2, π∗O(3)⊗O(−E1 − E2 − E3))

Figure 2.2: Polarized toric varieties ⇆ lattice polytopes

The correspondence proceeds as follows. If (X,L) is a polarized toric variety
and L is T -linearized then T acts on H0(X,L). An algebraic action of a torus on
a vector space V is diagonalizable and decomposes V into a direct sum ⊕m∈MVm
over the character group, so that for v ∈ Vm the action is

(λ1, . . . , λr).v =
r

∏
i=1

λaii ⋅ v, where m = (a1, . . . , ar) ∈M

The characters m are also called weights. It is a theorem that for the action
T ↷ H0(X,L) the weights m with Vm ≠ 0 are in a bijection with the integral
points of a lattice polytope P , and for each of these weights dimVm = 1. Thus, the
polytope P is the convex hull of the weights m such that H0(X,L)m ≠ 0.

In the opposite direction, start with a polytope P ⊂MR. Let Cone(1, P ) be
the cone in R1+r over the polytope (1, P ). We call the extra dimension the degree,
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so we put P in degree 1. Let S be the semigroup of integral points Z1+r∩Cone(1, P ).
It is graded by degree. The semigroup algebra k[S] is a graded algebra. Then
X = Projk[S] and L = OProjk[S](1).

The elements s = (d,m) ∈ S are the monomials xs in this algebra, deg s = d.
Relations between the vectors in S give relations in k[S]. Choosing generators of
S and figuring out relations between them gives concrete coordinates and homo-
geneous equations for X.

Example 2.1.4. Let P be the triangle with vertices (0,0), (0,1), (1,0). Denote
u = x(0,0), v = x(1,0), w = x(0,1). Then u, v,w generate k[S] and there are no
relations, so X is P2 with homogeneous coordinates u, v,w.

Let P be the square with vertices (0,0), (0,1), (1,0), (1,1). Denote u = x(0,0),
v = x(1,0), w = x(0,1), t = x(1,1). Then u, v,w, t generate k[S] and there is a single
relation (0,0) + (1,1) = (1,0) + (0,1). So X is a subvariety of P3 defined by the
homogeneous equation ut = vw. Of course, X ≃ P1 × P1.

If F is a polytope then F 0 denotes its relative interior, i.e. F minus the proper
faces. F 0 is a locally closed subset of Rr.

Lemma 2.1.5. There is a bijection between the T -orbits of X and locally closed
faces F 0 of the polytope P , OF ⇆ F , F ≺ P . It is dimension and order preserving:

1. dimF = dimOF , and

2. F1 ≺ F2 (i.e. F 0
1 ⊂ F

0

2) ⇐⇒ OF1 ⊂ OF2 .

Note that P = ⊔F 0
i and X = ⊔OF 0

i
.

2.2 Stable toric varieties and tilings

A stable toric variety is a seminormal union of toric varieties, glued along T -
invariant subvarieties. Combinatorially, it corresponds to a union of polytopes
glued along faces.

Definition 2.2.1. A variety X is said to be seminormal if any finite morphism
f ∶X ′ →X which is a bijection is in fact an isomorphism.

An example of a non-seminormal variety is a cuspidal curve y2 = x3: the
normalization is a bijection but not an isomorphism. This is a good way to think
about seminormal varieties: they are varieties without “cusps”. The main state-
ment about seminormal singularities is this:

Lemma 2.2.2. Any variety has a unique seminormalization πsn∶Xsn →X, a proper
bijective morphism with seminormal Xsn which has a universal property: any mor-
phism Y →X from a seminormal variety factors uniquely through πsn.
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A curve is seminormal iff it is locally analytically isomorphic to a union of n
coordinate axes in An for some n. For such a curve, n = dimTX,x at the singular
point. In particular, a planar curve is seminormal if it has at worst nodes as
singularities.

Definition 2.2.3. A polarized stable toric variety is a pair (X,L) of a projective
variety with a linearized ample line bundle such that

1. X is seminormal, and

2. the irreducible components (Xi, Li = L∣Xi) are polarized toric varieties.

(A “variety” for us need not be irreducible but it has to be reduced. Also,
recall that our toric varieties are normal by definition.)

Thus, a stable toric variety is glued from ordinary toric varieties in a generic
way, without introducing “cusps”.

For every irreducible component (Xi, Li) we have a lattice polytope. An
intersection Xi ∩Xj has to be T -invariant, so it is a closed union of orbits of both
Xi and Xj . On the combinatorial side, this gives a closed union of faces of both
Pi and Pj .

Definition 2.2.4. The topological type of a stable toric variety is the topological
space ∣∆∣ = ∪Pi, a union of polytopes glued in the same way as X = ∪Xi, together
with the finite map ρ ∶ ∣∆∣ → MR such that ρ∣Pi ∶Pi → MR are the embeddings of
lattice polytopes corresponding to (Xi, Li).

The easiest complex ∆ is a tiling of a bigger polytope P by smaller polytopes
P = ∪Pi. An example is given in Figure 2.3. In these lectures, we will only work
with stable toric varieties of this form. But in principle, the images of the polytopes
in MR are allowed to intersect or cover each other, so ρ need not be an inclusion.
For example, we can take two copies of the same square and glue them along the
boundary; in this case ρ would be generically 2-to-1.

Figure 2.3: Some simple stable toric varieties

For each tiling ∆ (or a more general complex of lattice polytopes), there is
generally not a single variety but a family of polarized stable toric varieties. That
is because there may be many ways to glue the individual toric varieties.

The gluing can be understood as follows. Choose an “origin” in every irre-
ducible component, thus fixing on each Xi the structure of a torus embedding.
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Then on every component of the intersections Xi ∩ Xj one gets two “origins”,
coming from Xi and from Xj . They differ by an element tij ∈ Tij in a correspond-
ing torus. The collection (tij) has to satisfy the 1-cocycle condition tijtjktki = 1
on Xi ∩Xj ∩Xk. On the other hand, the “origins” in the varieties Xi can be cho-
sen arbitrarily, up to an action of the tori Ti. Thus, the collection (tij) is defined
only up to a 1-coboundary (tit

−1
j ). Putting this together shows that the possible

glued stable toric varieties X are in a bijection with a certain 1-cohomology group
H1(∆, T ). The Figure 2.4 gives an example where this group is 1-dimensional.

Figure 2.4: Complex ∆ with a 1-dimensional family of STVs

Repeating the same argument for the polarized stable toric varieties shows
that (X,L) are in a bijection with a 1-cohomology group H1(∆,T), where T and
T are constructible sheaves on ∣∆∣ related by an exact sequence

1 → Gm → T→ T → 1,

and Gm is a constant sheaf on ∣∆∣. In particular, if ∣∆∣ is simply connected then
Hp(∆,Gm) = 1 for p > 0 and H1(∆,T) =H1(∆, T ).

2.3 Linear systems on toric and stable toric varieties

2.3.1 Linear systems on toric varieties

Let (X,L) be a polarized toric variety. Another basic fact is that the linear system
∣L∣ is base point free and defines a finite morphism ϕL∶X → PN , N = h0(X,L)−1,
which however need not be a closed embedding or even generically 1-to-1.

Lemma 2.3.1. Let m be an integral point in the lattice polytope associated to (X,L),
and em ∈ H0(X,L) a corresponding section. Let F be the minimal face of P
containing m, so that m ∈ F 0. Then

1. the open subset Um = {em ≠ 0} is Um = ∪m∈FiOF 0
i

, and

2. the closed subset Zm = (em) is Zm = ∪m/∈FiOF 0
i

.
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Figure 2.5: Open subset Um and closed subset Zm

This lemma is illustrated in Figure 2.5.

Definition 2.3.2. Now let A ⊂ P ∩M be an arbitrary subset of integral vectors in
P . Let VA = ⊕m∈Akem ⊂ H0(X,L) be a linear system and ϕA∶X → P∣A∣−1 be the
corresponding rational map.

We denote by RA the vector subspace of R1+r generated by the vectors (1,m),
m ∈ A, and by ZA = RA ∩Z1+r the corresponding saturated sublattice.

We denote by RP and ZP the corresponding sets for A = P ∩M .

Theorem 2.3.3. The following holds:

1. The rational map ϕA is regular, i.e. the base locus of the linear system VA
is empty ⇐⇒ A ⊃ Vertices(P ). In this case, ϕA is a finite map of degree
∣ZP ∶ ⟨(1,m), m ∈ A⟩∣.

2. Assuming A ⊃ Vertices(P ), the map ϕA is a closed embedding ⇐⇒ for
every vertex v the semigroup of integral vectors in the cone R≥0(P −v) ⊂MR
is generated by the vectors a − v, a ∈ A.

3. In particular, if the semigroup SP = Cone(1, P ) ∩ Z1+r is generated by the
vectors (1,m), m ∈ A then ϕA is a closed embedding.

Definition 2.3.4. We call a set A ⊂ P∩M generating if the group ZP is generated by
the vectors (1,m), m ∈ A, and totally generating if the semigroup SP is generated
by (1,m), m ∈ A.

We call a lattice polytope generating, resp. totally generating if the set
Vertices(P ) is generating, resp. totally generating.

Thus, for a generating polytope the map ϕA∶X → P∣A∣−1 is generically 1-
to-1 for any A ⊃ Vertices(P ), and for a totally generating subset ϕA is a closed
embedding.

2.3.2 Linear systems on stable toric varieties

The following theorem is contained in [Ale02]:

Theorem 2.3.5. Let (X,L) be a stable toric variety. Then:



32 Chapter 2. Stable toric varieties

1. Hp(X,L) = 0 for p > 0.

2. H0(X,L) = ⊕ρ−1(M)∩∣∆∣kem. In other words, H0(X,L) is a direct sum of
1-dimensional eigenspaces, one for each “integral” point of the topological
space ∣∆∣. Thus, H0(X,L) is the union of H0(Xi, Li) for the irreducible
components Xi, with subspaces corresponding to Xi ∩Xj identified.

2.4 Stable toric varieties over a projective variety V

2.4.1 Definition and main result

Let Pn be a projective space together with a T -linearized sheaf O(1). The lin-
earization is the same as an assignment zj →mj = wt(zj) ∈M , j = 1, . . . , n.

Definition 2.4.1. A (stable) toric variety over Pn−1 is a (stable) toric variety X,
a finite morphism f ∶X → Pn−1 and an isomorphism L ≃ f∗O(1) of T -linearized
ample sheaves.

The homomorphism f is the same as a homomorphism of graded vector
spaces H0(Pn−1,O(1) = ⊕nj=1kzj →H0(X,L). It gives a homomorphism

f∗∶ ⊕d≥0H
0
(Pn−1,O(d)) = k[z1, . . . , zn]→ R(X,L) = ⊕d≥0H

0
(X,Ld)

and the map f ∶ (X,L) → (Pn−1,O(1)) in the opposite direction. Thus, the mor-
phism f is equivalent to picking n homogeneous eigenvectors f∗(zmj) = emj ∈

H0(X,L) with wt(emj) =mj .
Let A ⊂ {1, . . . ,m} be the subset of mj such that emj ≠ 0. For each irreducible

component Xi of X we get a set Ai = A ∩ Pi. By the previous section, one has
Ai ⊃ Vertices(Pi): otherwise the map f is not regular on Xi.

One can easily generalize the above definition by considering a T -invariant
subvariety V ⊂ Pn−1 with the sheaf OV (1) = OPn−1 ∣V .

Definition 2.4.2. A (stable) toric variety over V ⊂ Pn−1 is a (stable) toric variety
X, a finite morphism f ∶X → V and an isomorphism L ≃ f∗O(1) of T -linearized
ample sheaves.

The main result about stable toric varieties over V ⊂ Pn−1 is the following:

Theorem 2.4.3 ([AB06]). For each topological type ∣∆∣ there exists a coarse moduli
space MT

∣∆∣(V ) of stable toric varieties over V . Further, MT
∣∆∣(V ) is a projective

scheme.

Each point [f ∶X → V ] ∈MT
∣∆∣(V ) defines:

1. a tiling ∪Pi of ∣∆∣ into lattice polytopes, and

2. the sets Ai ⊃ Vertices.

The points of MT
∣∆∣(V ) with the same ∪(Pi,Ai) form a locally closed stratum. This

gives a stratification of MT
∣∆∣(V ).
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2.4.2 Moment map

When working over C, there is an even nicer geometric connection between (X,L)
and a lattice polytope P : there is a natural moment map µ∶X(C) → MR whose
image is P . So, X(C) is fibered over the polytope P . Figure 2.6 gives an illustration
for (X,L) = (P1,O(2)).

µ

2

0

Figure 2.6: Moment map for (P1,O(2))

The moment map for (Pn−1,O(1)) with a T -linearized sheaf O(1) is defined
by the formula

µ(z1, . . . , zn) =
∑ ∣zj ∣

2 ⋅mj

∑ ∣zj ∣2
,

The moment map for a (stable) toric variety over Pn−1 is the composition
X(C) → Pn−1(C) → MR. Thus, if f is given by f∗ ∶ zj → cjej ∈ H

0(X,L), where
ej is a homogeneous basis of H0(X,L) then the moment map µ∶X(C) → MR is
defined by the formula

µ(p) =
∑ ∣cmem(p)∣2 ⋅m

∑ ∣cmem(p)∣2
, m ∈ ∣∆∣ ∩ ρ−1

(M).

The preimage µ−1(y) over a point in an a-dimensional face of P is isomorphic to
the compact real torus (S1)a.

The moment map gives a nice representation of the T -orbits in X. The T -
orbits are µ−1(F 0), for all faces F in the tiling ∪Pi of ∣∆∣. Figure 2.7 gives an
example of moment maps for a family of quadrics x0x2 = tx

2
1 in P2 and its degen-

eration x0x2 = 0.
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µt

2

0

µ0

2

0

Figure 2.7: Moment map for (P1,O(2)) and of its degeneration P1 ∪ P1.

2.5 Stable toric pairs vs stable toric varieties over Pn−1

Consider a toric variety (X,L) with a T -linearized sheaf L. Pick a homogeneous
basis H0(X,L) = ⊕m∈P∩Mkem. Any section s ∈H0(X,L) can be uniquely written
as s = ∑ cmem. Let A ⊂ P ∩M be the set of m for which cm ≠ 0.

Theorem 2.5.1. The following conditions are equivalent:

1. A ⊃ Vertices(P ).

2. The rational map X → Pn−1, n = h0(X,L), defined by zm → cmem is regular.

3. The divisor D = (s) does not contain any T -orbits.

Proof. We already saw the equivalence of (1) and (2). To see the equivalence of
(1) and (3), observe that the condition (3) is equivalent to requiring that D does
not contain any 0-dimensional T -orbits.

The 0-dimensional orbits are in a bijection with the vertices of P , v ⇆ Qv.
For each vertex v of P all the sections em for m ≠ v vanish at the point Qv. So,
s(Qv) ≠ 0 ⇐⇒ cv ≠ 0. ◻

This shows that the moduli space MT
P (Pn−1) of stable toric varieties over

Pn−1 in this case is equivalent to the moduli space of stable toric pairs (X,D) of
topological type P which satisfy the condition (3) in the above theorem 2.5.1.

2.6 Singularities of stable toric varieties

2.6.1 Depth properties

It turns out that the singularities of a stable toric varieties are completely deter-
mined by the topological space ∣∆∣.

Definition 2.6.1. Let S be a topological space which has a structure of a finite
simplicial complex. For a point s ∈ S, the link Links is the intersection of S with
a small sphere centered at s.
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The space S is called Cohen-Macaulay over the base field k if for all s ∈ S,
one has H0(Links, k) = k and Hp(Links, k) = 0 for 0 < p < dim Links.

Theorem 2.6.2. The support ∣∆∣ of a stable toric variety (X,L) is Cohen-Macaulay
⇐⇒ X is Cohen-Macaulay.

Corollary 2.6.3. If the support ∣∆∣ of a stable toric variety (X,L) is a polytope
then X is Cohen-Macaulay.

Proof. Indeed, in this case Links is either a sphere or a disk of dimension d =

dimX − 1, so H0 = k and Hp = 0 for 0 < p < d. ◻

Example 2.6.4. The complex in Figure 2.8 is not Cohen-Macaulay, since the link
at the origin is two closed intervals, and H0 = k2. This stable toric variety is a
union of two normal surfaces glued at a single point. One can also see this directly:
Cohen-Macaulay implies connected in codimension 1. The surface in Figure 2.8 is
not connected in codimension 1.

Figure 2.8: A non Cohen-Macaulay stable toric variety

2.6.2 Log canonical and semi log canonical

Toric varieties provide some of the easiest examples of log canonical singularites.

Lemma 2.6.5. Let X be a toric variety and ∆ be the union of the boundary divisors,
the complement of the dense orbit. Then KX + ∆ ∼ 0 and the pair (X,∆) is log
canonical.

Proof. The first property is well known, and the second property is the conse-
quence of the first. Indeed, any toric variety has a toric resolution obtained by
subdividing the cone. Let f ∶Y → X be such a resolution. Then Y is smooth and
∆Y is a normal crossing divisor. Then

f∗(KX +∆) = f∗(0) = 0 =KY +∆Y .

Since ∆Y = ∑Di is the sum of the boundary divisors with coefficients 1, (X,∆)

is lc. ◻
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What if we want a stable pair, i.e. it should be lc and K+B should be ample?
Then we need to add something ample to KX +∆.

Lemma 2.6.6. Let B be an ample effective divisor. Then

1. KX +∆ + εB is ample for any ε > 0.

2. The pair (X,∆ + εB) is lc for 0 < ε ≪ 1 ⇐⇒ B does not contain any
T -orbits ⇐⇒ B does not contain any 0-dimensional T -orbits.

The proof of (2) follows by continuity: the only places where (X,∆+εB) is not
lc for 0 < ε≪ 1 are the places where we are already at the limit, i.e. the discrepancy
is aD = −1. These are precisely the boundary divisors and their intersections, i.e
the closures of the T -orbits. And the only closed T -orbits are 0-dimensional.

Similarly, stable toric varieties provide some of the easiest examples of semi
log canonical singularities.

Lemma 2.6.7. Let X be a stable toric variety whose topological type is a manifold
with a boundary (for example, a polytope). Let ∆ be is the union of its outside
boundary divisors (as illustrated in Figure 2.9. Then

1. KX +∆ = 0 and the pair (X,∆) is slc.

2. For an effective divisor B, the pair (X,∆ + εB) is slc ⇐⇒ B does not
contain any T -orbits ⇐⇒ B does not contain any 0-dimensional orbits.

Indeed, normalizing reduces the situation to the toric case, and ν∗(KX +

∆outside) =KXν +∆all.

Figure 2.9: Outside boundary of a stable toric variety

2.7 One-parameter degenerations

Many of the combinatorial constructions in this section originate in the work of
Gelfand-Kapranov-Zelevinsky [GKZ94]. The conclusions from these combinato-
rial constructions differ in the following respect: [GKZ94] works with families of
embedded cycles in Pn−1. Some of these cycles may have multiplicities.
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The resulting family below is a family of stable toric varieties over Pn−1 or,
equivalently, the family of stable toric pairs (Xt,Dt) in which the varieties Xt are
reduced, so there are no multiplicities.

Let me go in detail through a single simple example, which hopefully illus-
trates everything there is to understand about one-parameter degenerations of
stable toric varieties.

Consider a line P1 together with a divisor ∆+ εBt, where ∆ = P0 +P∞ is the
boundary divisor, the complement of the dense torus orbit, and Bt is given by the
equation

ft = c0t
2 x5

0 + c1t x
4
0x1 + c2 x

3
0x

2
1 + c3 x

2
0x

3
1 + c4t x0x

4
1 + c5t x

5
1

for some fixed constants ci. If all ci ≠ 0 then for any t ≠ 0 the pair (P1,∆ + εBt is
a stable pair: it has lc singularities and ample KX +∆ + εBt. Clearly, OP1(Bt) ≃
OP1(5). It is a toric variety corresponding to the polytope [0,5] in MR, M = Z.

We would like to understand the limit of this pair as t↝ 0.

2.7.1 Complimentary degenerations

Let us associate to this family the following graph. For each of the points m =

0,1, . . . ,5 let h(m) be the height, the valuation at t of the coefficient of x5−m
0 xm1

in ft. This graph is shown in Figure 2.10.

( 

+ · G-~ - -+-o 
() 2_ 3 5 

I \ -4 

Figure 2.10: One-parameter degeneration of stable toric varieties over V

(1) The easiest way to degenerate the pair (P1,Bt) is to simply look at the
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limit of the equation ft as t↝ 0. It is

ft(0) = c2x
2
0x

2
1(c2x0 + c3x1).

The pair (P1,∆+ εB0) is not lc since the coefficients of P0 and P∞ are 1+ 2ε. The

log canonical model of (P1,∆+εB0) (see our Definition 1.2.5) is (X
(1)
0 ,∆+εB

(1)
0 ),

where X
(1)
0 = P1 and B

(1)
0 = (c2x0 + c3x1) which is a point distinct from 0,∞.

To be absolutely clear, X
(1)
0 does not correspond to the polytope [0,5] as

the original toric variety P1. Instead, it corresponds to the polytope [2,3].

(2) However, let us rescale the coordinates as follows: y0 = x0, y1 = t
−1x1. In

the new coordinates, our family becomes

ft = t
2
(c0 y

5
0 + c1 y

4
0y1 + c2 y

3
0y

2
1 + c3t y

2
0y

3
1 + c4t

3 y0y
4
1 + c5t

4 y5
1).

The height function is obtained from the previous one by adding a linear function
h2(m) = h(m) − t − 2. The limit now is

t−2ft(0) = y
3
0(c0y

2
0 + c1y0y1 + c2y

2
1)

Again, the pair (P1,∆+ε(t−2ft(0))) is not lc since the coefficient of P∞ is 1+2ε. Its

log canonical model is (X
(2)
0 ,∆+εB

(2)
0 ), whereX

(2)
0 = P1 and B

(2)
0 = (c0y

2
0+c1y0y1+

c2y
2
1) which is two points distinct from 0,∞. The new variety X

(2)
0 corresponds

to the polytope [0,2].

(3) Finally, we can rescale as follows: z0 = x0, z1 = tx1. In the new coordinates,
our family becomes

ft = t
3
(c0t

5 z5
0 + c1t

3 z4
0z1 + c2t z

3
0z

2
1 + c3 z

2
0z

3
1 + c4t z0z

4
1 + c5 z

5
1)

The height function is obtained from the previous one by adding a linear function
h3(m) = h(m) + t − 3. The limit now is

t−3ft(0) = z
3
1(c3z

2
0 + c5z

2
1).

Again, the pair (P1,∆+ε(t−2ft(0))) is not lc since the coefficient of P0 is 1+3ε. Its

log canonical model is (X
(3)
0 ,∆+εB

(3)
0 ), whereX

(3)
0 = P1 and B

(3)
0 = (c0y

2
0+c1y0y1+

c2y
2
1) which is two points distinct from 0,∞. The new variety X

(3)
0 corresponds

to the polytope [3,5].

Clearly, the three degenerations above correspond to different choices of ad-
justing the height function by a linear homogeneous function h(m)↦ h(m)+`(m)

and then taking the minimum.
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2.7.2 Stable degeneration

The polytope P = [0,5] lies in the space MR, where M = Hom(T,Gm) is the
character lattice of the torus acting on the varieties Xt. The polytope P gives a
cone Cone(1, P ) in (Z⊕M)⊗R, and each variety Xt, t ≠ 0 can be written as the
Proj of the semigroup algebra k[Cone(1, P ) ∩ (Z⊕M)]

Now, to the family Xt let us associate an infinite polyhedron lying in the
space M ⊕Z. The additional Z corresponds to the height and not to the degree.

Definition 2.7.1. The polyhedron P + is the lower convex envelope of the rays
(m,h(m) + R≥0). It is depicted in Figure 2.10. It is semi-infinite in the upward
direction.

Consider a cone over (1, P +) lying in the space (Z⊕M ⊕Z)⊗R. Let R+ be
the semigroup algebra

R+
= k[Cone(1, P +

) ∩ (Z⊕M ⊕Z)]

A point (d,m,h) corresponds to a monomial thx(d,m) of degree d ≥ 0. Let X+ =

ProjR+. SinceR+ is a k[t]-algebra,X+ has a natural morphism f ∶X+ → Speck[t] =
A1
t . This is our degenerating family.

The central fiber of this family is a scheme with three irreducible components
X(1), X(2), X(3), corresponding to the lower faces of P +. Projecting these faces
down to [0,5] gives a polyhedral subdivision of it into the intervals [0,2], [2,3],
[3,5].

Definition 2.7.2. For any lattice polytope P , a polyhedral subdivision obtained by
projecting down the lower envelope of the polyhedron P + for some height function
h∶P ∩M → R is called a convex subdivision.

Other names used for such subdivisions: regular, coherent.

Remark 2.7.3. Not every polyhedral subdivision is convex. The standard example
is depicted in Figure 2.11.

Figure 2.11: A non-convex tiling

The corresponding stable toric variety does not appear as the limit of a one-
parameter family of (P2,Dt) with OP2(Dt) ≃ OP2(4).
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To continue with out construction, there is yet another twist: the central
fiber of ProjR+ → A1

t is not reduced, because the component X3 appears it it with
multiplicity 2. To see this, note that the monomial tx0x

4
1 ∈ R

+ does not lie in the
ideal (t) but its square does: t2x2

0x
8
1 = t ⋅ x

2
0x

3
1 ⋅ tx

5
1. The reason for this is that the

set {3,5} of the polytope [3,5] is not generating, the vertices (1,3), (1,5) generate
a sublattice of index 2 in Z⊕M .

This changes, however, by making a finite ramified base change A1
s → A1

t ,
t = s2. After this base change the central fiber is a reduced seminormal union of
the toric varieties X(1), X(2), X(3), each isomorphic to P1. No further finite base
change changes the central fiber.

The original equation ft defines a section of the invertible sheaf O(1) on
X = ProjR+, a relative Cartier divisor B on X which restricts to the divisor

B0 = B
(1)
0 ∪B

(2)
0 ∪B

(3)
0 on the central fiber X0. Moreover, thinking about this will

convince you that R+ is the only graded subalgebra of k[M ⊕Z] for which ft stays
a regular section of O(1) and satisfies the following condition on the central fiber:

• B0 does not contain any T -orbits.

This condition was part of our definition of stable toric varieties. This implies that
the moduli functor of stable toric pairs is proper.

2.7.3 Maximal and higher codimension degenerations

What will happen if we rescale the height function by h(m)↦ h(m)+ 1
2
m? For this

to make sense, we will have to first make the base change t = s2. The new height
function will be h′(m) = 2h(m), and then we will rescale it by h′(m)↦ h′(m)+m.

The minimum of h′(m) is achieved at a unique point {2}. The limit of the
divisors Bt is given by the equation x3

0x
2
1. The corresponding pair is (P1, (1 +

3ε)P0 + (1 + 2ε)P∞) and it is not lc.
If we attempt to find its log canonical model then it is not going to work

because the “round-down” pair (P1, P0 + P∞) is not of general type, the divisor
KP1 +P0 +P∞ is not of general type. The image of its Iitaka fibration, however, is
a point.

Other “non-maximal” choices give the toric varieties, each a single points,
corresponding to the polytopes {0}, {3} and {5}. Clearly, the variety X is glued

from the three irreducible components X
(1)
0 , X

(2)
0 , X

(3)
0 along these smaller di-

mensional varieties.

How do we recognize if a certain choice of a height function going to give us
an irreducible component in the central fiber or a smaller-dimensional stratum of
the limit variety X0?

In terms of the graph the answer is obvious: it is whether the corresponding
polytope is maximal-dimensional or not.

In terms of the pair, the answer is as follows: the maximal-dimensional degen-
erations correspond to the pairs (X,∆+ εB) for which the automorphism group is
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finite. For X
(1)
0 , X

(2)
0 , X

(3)
0 the groups are 1, 1, and µ2 ≃ Z2. For the degenerations

giving lower-dimensional strata of the central fiber X0, the group contains Gm and
is infinite. The dimension of the group equals the codimension of the stratum.

2.8 Toric varieties associated to hyperplane arrange-
ments

A hyperplane arrangement is n hyperplanes B1, . . . ,Bn in a projective space Pr−1.
The hyperplanes are allowed to coincide. We consider them up to an isomorphism
of pairs, i.e. (Pr−1,B1, . . . ,Bn) is isomorphic to (Pr−1,B′

1, . . . ,B/n) ⇐⇒ there
exists an automorphism g ∈ PGL(r) of Pr−1 such that g(B1) = B

′
1, . . . , g(Bn) = B

′
n.

We will be concerned with complete moduli of hyperplane arrangements. On
the boundary of this moduli space the projective space Pr−1 will split up somehow
and degenerate to some nonnormal variety, a higher-dimensional analogue of a
stable curve.

The general idea is very simple. Since we understand so well degenerations
of toric varieties, let us associate to a hyperplane arrangement (Pr−1,B1, . . . ,Bn)
a toric pair (Y,∆+ εD) or a toric variety Y → V over some projective variety. Let
us do it in a reversible way, so that we can go back to (Pr−1,B1, . . . ,Bn) from Y .

Then degenerations of toric varieties will give us degenerations of hyperplane
arrangements, and the complete moduli spaces of stable toric varieties will give us
complete moduli spaces of stable hyperplane arrangements.

2.8.1 Gelfand-MacPherson’s correspondence

There are two dual ways to work with hyperplane arrangements, related by the
Gelfand-MacPherson’s correspondence which we will now explain.

Consider an (r × n)-matrix A of rank r with nonzero columns.

A =

⎛
⎜
⎜
⎜
⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .
ar1 ar2 . . . arn

⎞
⎟
⎟
⎟
⎠

The columns of this matrix, considered as linear functions fi(x) = a1ix1+. . . ar1xr,
define n hyperplanes B1, . . . ,Bn on a projective space Pr−1. The condition rankA =

r is equivalent to the following condition which we want to stress:

∩
n
i=1Bi = ∅

Let Mat0
(r, n) be the set of all such matrices. Let P(Mat0

(r, n)) be the cor-
responding projective space of dimension rn−1. The set HA(r, n) of isomorphism
classes of n hyperplanes in Pr−1 is the quotient

HA(r, n) = PGL(r) / P(Mat0
(r, n)) / T,
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where PGL(r) = GL(r)/Gm and T = (Gnm)/diagGm is a torus of dimension n− 1.
The group PGL(r) acts on the rows, by changing a basis in Ar, and the torus
T acts by scalar multiplication on the columns, rescaling the equations without
changing the hyperplanes Bi that they define.

Now, if we take the quotient P(Mat0
(r, n))/T first, then that will gives us

(Pr−1∨)n, the set of hyperplanes in a fixed projective space Pr−1. Then HA(r, n) =
PGL(r)/(Pr−1∨)n.

If we take the quotient PGL(r)/P(Mat0
(r, n)) first, then that will give us

G0
(r, n), the open subset of the the grassmannian G(r, n) of r-dimensional quo-

tient spaces An → V ∗ of a fixed n-dimensional space with the additional condition
that V are not contained in any of the n coordinate hyperplanes. (Alternatively,
G(r, n) parameterizes the subspaces V ⊂ An but we treat the columns as lin-
ear equations, so the interpretation with the quotients is better for us.) Then
HA(r, n) = G0

(r, n)/T .
So a single hyperplane arrangement, up to an isomorphism, is the same as

a T -orbit inside G0
(r, n). A point in the grassmannian is An → V ∗, i.e. PV ⊂

Pn−1. The hyperplanes Bi are the intersections of the n coordinate hyperplanes
Hi = {zi = 0} ⊂ Pn−1 with PV . The torus T = Gnm/diagGm acts by rescaling the n
homogeneous coordinates zi.

Let T.[V ] be a single orbit. Its closure Y = T.[V ] is then a projective toric
variety. Apriori, it may be nonnormal. It turns out, however, that the grassman-
nians are very special and nice, and Y is indeed an ordinary normal toric variety
(see Theorem 4.1.6).

Note that the orbit does not have a special “origin”, so Y is a toric variety
and not a torus embedding. It is a toric variety Y → G(r, n) over the grassmannian.

How do we recover the hyperplane arrangement from Y ? Well, let P → G(r, n)
be the universal family, P ⊂ Pn−1 ×G(r, n) whose fiber over [PV ⊂ Pn−1] is PV ⊂

Pn−1. If Y 0 is the dense T -orbit of Y and

PY 0 ∶= p−1
2 (Y 0

) = P ×G(r,n) Y
0
⊂ P,

then the hyperplane arrangement is PY 0/T .
So, the set HA(r, n) is the quotient set G(r, n)/T , and the hyperplane ar-

rangements are the T -quotients of the preimages of these orbits in the universal
family P → G(r, n).

Of course, the quotient set G(r, n)/T is extremely nasty and does not have
any structure of an algebraic variety. To get a nice space, we will have to take the
GIT quotient. To recover the hyperplane arrangements themselves, we will have
to take the GIT quotients of projective varieties PY = P ×G(r,n) Y . So we will need
to understand the issues involved with taking such quotients.

The degenerations of hyperplane arrangements will correspond to degener-
ations of toric varieties, which will be some stable toric varieties over G(r, n).
Thus, irreducible components Xi of a degeneration X = ∪Xi will correspond to
some toric varieties Yi ⊂ G(r, n), which in turn means that they will correspond
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to some new hyperplane arrangements [PVi ⊂ Pn−1]. So somehow, a limit of a
family of hyperplane arrangements will be glued from several other hyperplane
arrangements.

2.8.2 Torus action on the grassmannian

Let us explain this torus action in more detail. There is a natural action of the
torus T̃ = (Gm)n on An:

(λ1, . . . , λn).(z1, . . . , zn) = (λ1z1, . . . , λnzn).

This defines an action of T̃ on the grassmannian G(r, n), as follows. If G(r, n) ⊂ PN ,
N = (

n
r
) − 1 is the Plücker embedding with Plücker coordinates pI for all I ⊂ n,

∣I ∣ = r then the induced action is

(λ1, . . . , λn).pI = (∏
i∈I
λi)pI

An algebraic action of a torus on any vector space A is diagonalizable, and one
gets a decomposition A = ⊕χ∈ΛT̃Aχ into eigenspaces. Here, ΛT̃ = Hom(T̃ ,Gm) = Zn

is the character group of T̃ . Thus, to every eigenvector v one assigns a character,
also called its weight wt(v) ∈ Zn.

In these terms, one has wt(zi) = ei and wt(pI) = eI = ∑i∈I ei. Since diagGm ⊂

T̃ acts trivially on Pn−1, the torus T = T̃ /diagGm ≃ Gn−1
m also acts on Pn−1 and

G(r, n). The character group of T is

ΛT = {∑niei ∣∑ni = 0} .

We do not have a natural T -action on An, so there are no weights in ΛT assigned to
the homogeneous coordinates zi, pI . However, for the coordinates on the standard
affine covers one has wt(zi/zj) = ei − ej and wt(pI/pJ) = eI − eJ .

2.8.3 Moment polytope of a hyperplane arrangement

Under the Plücker embedding Y ⊂ G(r, n) ⊂ PN−1, the moment polytope of the

toric variety Y = T.[V ] is the convex hull of the vectors eI for all I ⊂ n, ∣I ∣ = r such
that the corresponding Plücker coordinate pI(V ) of the space V ⊂ An is nonzero.

This condition is equivalent to any of the following two conditions:

1. The intersection ∩i∈IBi = ∅ in PV .

2. The linear equations fi of hyperplanes Bi form a basis in the dual space V ∗.

This moment polytope is called a matroid polytope. The collection of vectors
fi ∈ V

∗ is called a vector matroid.
Thus, to understand the compactified moduli spaces of hyperplane arrange-

ments, we will have to understand matroid polytopes, and matroids in general.
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Chapter 3

Matroids

A matroid is a pair M = (E,I) consisting of a (usually finite) set E and a set
I ⊂ 2E of subsets called the independent sets. Equivalently, it can be defined using
bases, or using the rank function r∶2E → Z≥0.

Usually, we identify E with the set n = {1, . . . , n}. For us, the only interesting
matroids are vector matroids, also called representable or linear matroids. They
are very easy to understand.

There are many introductory books on matroids. Some standard sources
include [Oxl92], [Sch03], [Whi86]. All of the facts that we state without proof or
an explicit reference can be found there.

3.1 What is a vector (or representable) matroid?

3.1.1 Vector matroids using independent sets

Fix a field k. Consider n vectors f1, . . . , fn spanning a k-vector space W of dimen-
sion r. Call a subset I ⊂ n an independent set if the vectors {fi, i ∈ I} are linearly
independent.

Definition 3.1.1. A vector matroid represented by vectors f1, . . . , fn ∈ W is the
pair M = (n,I), where I is the set of all independent sets.

The rank r of M is the dimension of the span ⟨fi⟩.

Any undergraduate student who had a first course in linear algebra should
have no trouble proving the following:

Lemma 3.1.2. The set I satisfies the following properties:

1. ∅ ∈ I (for some, this could be a matter of convention).

2. (Monotonicity) If I is independent and J ⊂ I then J is independent.

45
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3. (Independent set exchange property) If I, J are independent and ∣I ∣ > ∣J ∣ then
there exists i ∈ I ∖ J such that J ∪ i is independent.

Vectors are allowed to be zero. Of course, the zero vectors never appear in
any independent set, so they are not very interesting and can be ignored for most
purposes.

Definition 3.1.3. A vector matroid is loopless if all vectors fi are nonzero.

The name loop for a zero vector comes from another major source of matroids:
graphs, see section 3.10.4.

3.1.2 Vector matroids using bases

Another, more economical way to define matroids is using bases. Call a subset
I ⊂ n = {1, . . . , n} a base if the vectors {fi, i ∈ I} form a basis of W .

Definition 3.1.4. A vector matroid represented by the vectors f1, . . . , fn ∈W is the
pair (n,B), where B is the set of all bases.

Again, the following is elementary to prove:

Lemma 3.1.5. Let B be a matroid on the set n. Then

• (Basis exchange property) For two bases I, J and i ∈ I∖J , there exists j ∈ J∖I
such that I ∖ i ∪ j ∈ B.

Of course, it is easy to go from I to B and back: the bases are the maximal
independent sets, and independent sets are arbitrary subsets of bases, including
∅.

Example 3.1.6. Let B(r, n) be the set of all cardinality-r subsets of n. If the field
k is large enough with respect to n (for example infinite) then B(r, n) is a vector
matroid over k called uniform matroid. To construct it, just take n vectors in kr

in general position, with no linear dependencies between any ≤ r of them.

3.1.3 Vector matroids using the rank function

Define the following function on the set of subsets of n:

r∶2n → Z≥0, r(I) = dim⟨fi, i ∈ I⟩.

Here, ⟨fi, i ∈ I⟩ denote the span of the vectors fi.

Lemma 3.1.7. The following holds:

1. For any set I ⊂ n, one has r(I) ≤ ∣I ∣.

2. (Monotonicity) If I ⊂ J then r(I) ≤ r(J).
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3. (Submodularity) r(I ∪ J) + r(I ∩ J) ≤ r(I) + r(J).

Proof. Trivial, as everything we said so far is. ◻

Of course, it is easy to go from independent sets to the rank function and
back. For any subset J ⊂ n, its rank is the cardinality of the largest independent
subset I ⊂ J . Vice versa, given the rank function we can recognize the independent
sets as those that satisfy r(I) = ∣I ∣.

3.1.4 Other characterizations of vector matroids

Let us mention without going into details other equivalent ways to characterize
vector matroids: using spanning sets, using circuits (minimal dependent sets),
using the span (or closure) operation on 2n.

3.1.5 Vector matroids and hyperplane arrangements

For geometric reasons, we should be switching to the dual picture of hyperplane
arrangements as soon as possible. So let us do it now. From now on, all our
matroids will be loopless, i.e. the vectors fi are all nonzero.

Let V = W ∗ be the dual space, and think of the vectors fi ∈ W = V ∗ as
nonzero linear functions on V . Each of them defines a hyperplane Bi ⊂ PV ≃ Pr−1.
Note:

1. The condition fi ≠ 0 assures that Bi is actually a divisor.

2. The condition that fi generate V ∗ is equivalent to B1 ∩ . . . ∩Bn = ∅.

We will assume both conditions from now on.

For convenience, let us introduce the notation for the following projective
linear subspace of PV : BI = B(I) ∶= ∩i∈IBi. Here is the translation of the notions
we introduced above into the language of hyperplane arrangements:

Lemma 3.1.8. The following holds:

1. r(I) = codimB(I), so B(I) ≃ Pr−1−r(I).

2. I is independent ⇐⇒ codimB(I) = ∣I ∣.

3. I is a base ⇐⇒ B(I) = ∅ and ∣I ∣ = r = dimPV + 1.

By convention, we set codim∅ = r and P−1 = ∅.
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3.2 What is an abstract matroid?

3.2.1 Definitions

The notion of an abstract matroid merely captures the abstract properties of vector
matroids listed in Lemmas 3.1.2, 3.1.5, 3.1.7. Below, we give three definitions. It is
a theorem that the three definitions are equivalent. One goes from one definition
to the other in the same as for vector matroids.

Definition 3.2.1. A matroidM is a pair (E,I) of a set E and a nonempty set I ⊂ 2E

of subsets of E called independent sets that satisfies the following properties:

1. ∅ ∈ I.

2. (Monotonicity) If I is independent and J ⊂ I then J is independent.

3. (Independent set exchange property) If I, J are independent and ∣I ∣ > ∣J ∣
then there exists i ∈ I ∖ J such that J ∪ i is independent.

Definition 3.2.2 (Using bases). A matroid M is a pair (E,B) of a set E and set
B ⊂ 2E of subsets of E called bases that satisfies the following property:

• (Basis exchange property) For two bases I, J and i ∈ I ∖ J , there exists
j ∈ J ∖ I such that I ∖ i ∪ j ∈ B.

Definition 3.2.3. A matroidM is a pair (E, r) of a set E and a nonnegative function
r∶2E → Z≥0 on the set of subsets of n that satisfies the following properties:

1. For any set I ⊂ E, one has r(I) ≤ ∣I ∣.

2. (Monotonicity) If I ⊂ J then r(I) ≤ r(J).

3. (Submodularity) r(I ∪ J) + r(I ∩ J) ≤ r(I) + r(J).

3.2.2 Non-representable matroids

All matroids of ranks 1 and 2 are representable over any infinite field. In higher
rank however not every matroid is representable. Here is the smallest and simplest
example. Consider the 7 points and 7 lines of the finite projective plane P2(F2)

over the field F2 with two elements (a Fano plane). This configuration defines the
Fano matroid of rank 3 on 7̄ which is nonrealizable over any field of characteristic
different from 2.

On the other hand, the non-Fano matroid is obtained by removing the line
that looks like a circle in the picture and replacing it with an ordinary line passing
only through two of the points. Anti-Fano is realizable over any field of character-
istic ≠ 2 but it is not realizable in characteristic 2, because in the latter case the
7th line must pass through the third point.
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Figure 3.1: Fano and non-Fano matroids

To construct a matroid which is not realizable over any field at all, it is
sufficient to take the union of the two examples. This is a matroid of rank 3 on the
set 14 whose restriction to S1 = {1, . . . ,7} is Fano matroid and to S2 = {8, . . . ,14}
is non-Fano matroid. Otherwise, we declare the lines to be in general position.
Thus, the bases are of the form I1 ⊔ I2, ∣I1∣ + ∣I2∣ = 3, where the sets Ii ⊂ Si are
independent.

The matroid with the smallest n (but not the smallest r) which is not repre-
sentable over any field is Vámos matroid. It has n = 8 and r = 4. The 8 elements
can be pictured as 8 vertices of a cube. The minimal dependent sets are the 6 faces
of the cube except for the parallel faces 1234 and 5678, plus the set 1537 joining
the opposite parallel edges. All together, there are 5 minimal dependent sets.

One can read more about non-representable matroids e.g. in [Oxl03].

3.3 Connected components of matroids

3.3.1 Definition

Consider a vector matroid represented by some vectors f1, . . . , fn in W = V ∗ on
the set E = n. Now suppose that W = W1 ⊕W2 with dimWi ≥ 1 and that the
vectors are split into two groups E1 ⊔E2 so that for i ∈ Es one has fi ∈Ws.

It follows that

1. A set I ⊂ E is independent iff I = I1 ⊔ I2, and Is ⊂ Es are independent sets.

2. r(E1) + r(E2) = r(E).

3. More generally, for any I ⊂ E one has r(I ∩E1) + r(I ∩E2) = r(I).

In this situation one says that the vector matroid is decomposable or discon-
nected. In the opposite case, when there is no such decomposition, the matroid is
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called indecomposable or connected.
For an abstract matroid on the set E, the definition is the same: the matroid

is decomposable iff there is a decomposition E = E1⊔E2 satisfying any of the three
properties above. (It is an exercise to check that they are equivalent.)

By repeating the process, we eventually get a decomposition E = E1⊔ . . .⊔Ep
for which the matroids Ms on the sets Es are connected. It is a theorem that for
any matroid such a decomposition is unique. The matroids Ms are called connected
components of M .

3.3.2 Geometric meaning for hyperplane arrangements

Let f1, . . . , fn ∈ V ∗, fi ≠ 0, be a loopless vector matroid of rank r = dimV . The
corresponding hyperplane arrangement consists of n hyperplanes Bi in PV ≃ Pr−1.

Let V = V1 ⊕ V2, n = n1 + n2, r = r1 + r2, and suppose that the matroid
is decomposable. Then we get two hyperplane arrangements: n1 hyperplanes in
PV1 ≃ Pr1−1 and n2 hyperplanes in PV2 ≃ Pr2−1, and our original hyperplane
arrangement is their join.

Below are the pictures of decomposable hyperplane arrangements for r = 2
and r = 3. The corresponding partitions of the rank are 2 = 1 + 1, 3 = 1 + 1 + 1,
3 = 2 + 1. The “elementary blocks” are hyperplane arrangements on P0 and P1.

Figure 3.2: Decomposable matroids

An automorphism of a hyperplane arrangement is an automorphism g∶PV →
PV such that g(Bi) = Bi for each i ∈ n. An automorphism group of a connected
hyperplane arrangement is trivial.

Indeed, pick r of the vectors fi that form a basis of V ∗. Without loss of
generality, we can assume that these are f1, . . . , fr and they are the standard basis
vectors of kn. Then Aut(PV,B1, . . . ,Br) is the torus T = (k∗)r/diag k∗. For each
additional vector fi, let Si ⊂ r be the set of indices for which the s-th coordinate of
fi is nonzero. Then the subgroup of T sending Bi to itself consists of the elements
(λ1, . . . , λr) such that λs are all the same for i ∈ Si. It is easy to see that the matroid
is connected iff ∪ni=r+1Si = r. In this case, we obtain Aut(PV,B1, . . . ,Bn) = 1.
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For a general hyperplane arrangement, one has a decomposition V = V1 ⊕

. . . ⊕ Vc. The automorphism group consists of the dilations in each of the linear
spaces Vi. The global dilations of V act trivially on PV , so Aut(PV,B1, . . . ,Bn) =
(k∗)c/diag k∗ ≃ (k∗)c−1. Thus, the number of connected components of a hyper-
plane arrangement is easy to recognize geometrically.

Remark 3.3.1. It is not true that any hyperplane arrangement with a trivial au-
tomorphism group contains r hyperplanes in general position. A counterexample
is provided by the columns of the following matrix, defining (P3,B1, . . . ,B6):

⎛
⎜
⎜
⎜
⎝

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

⎞
⎟
⎟
⎟
⎠

However, the statement is true for hyperplane arrangements in P1 and P2.

3.4 Matroids of rank 1

A matroid of rank 1 is simply n elements about which only one thing is important:
which ones are linearly dependent as 1-element sets (loops) and which ones are
linearly independent (non-loops); one must have at least one non-loop. Obviously,
it is representable over any field. Thus, all loopless rank 1 matroids on n elements
are isomorphic.

The corresponding hyperplane arrangement is P0 together with n divisors
B1, . . . ,Bn, so Bi = ∅. Despite being so trivial, this matroid becomes meaningful
when we take joins with other hyperplane arrangements, as in Section 3.3. In
the the higher-dimensional projective space it becomes a nonempty hyperplane of
multiplicity n.

3.5 Matroids of rank 2

All matroids of rank 2 are vector matroids, and can be represented over any infinite
field.

Let B be a loopless vector matroid of rank 2. The corresponding hyperplane
arrangement is a collection of p points Bi on PV = P1. The condition ∩Bi = ∅

means that p ≥ 2. Some points may coincide. Let Q1, . . . ,Qp be the distinct points,
and define the partition

n = J1 ⊔ . . . ⊔ Jp by i ∈ Js ⇐⇒ Pi = Qs.

A pair (i, j) is not a base if i and j lie in the same Js; all other pairs are bases.
The matroid is connected iff there are ≥ 3 points. The decomposable matroids

correspond to a partition n = n1 + n2 with ni ≥ 1; there are ⌊n/2⌋ of them.
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Figure 3.3: Matroids of rank 2

The indecomposable matroids correspond to partitions of n into ≥ 3 parts.
Up to the action of the permutation group Sn, there are p≥3(n) = p(n)− ⌊n/2⌋− 1
of them, where p(n) is the partition function. Here are the values for low n.

n formula 3 4 5 6 7 8 9
decomposable ⌊n/2⌋ 1 2 2 3 3 4 4
connected p≥3(n) 1 2 4 7 11 17 25
total p(n) − 1 2 4 6 10 14 21 29

Table 3.1: Number of connected rank-2 matroids for low n

We see that matroids of rank 2 are extremely simple. This is one reason why
moduli spaces of stable curves of genus 0 are so nice and smooth and relatively
easy. Unfortunately, that is where the simplicity ends. Matroids of rank 3 are
already very complicated for larger n. And so are the moduli spaces of stable
surfaces.

3.6 Matroids of rank 3

All matroids of rank 2 with n ≤ 6 are vector matroids, and can be represented over
any infinite field.

Loopless vector matroids of rank 3 are defined by line arrangements in PV ≃

P2. So, to work with them we can draw planar pictures.

3.6.1 Decomposable matroids

The decomposable line arrangements corresponding to the connected components
of ranks 3 = 1 + 1 + 1 and 3 = 2 + 1 are shown in the picture below.

In the first case, the matroids are in a bijection with partitions of n into 3
parts. In the second case, we first need to partition n = n2 +n1 with n2, n1 ≥ 1 and
then partition n2 into ≥ 3 parts. The formulas and the answers for low n are given
in the next table.

Since all matroids of ranks 1 and 2 are realizable over any infinite field, all
decomposable rank-3 matroids are realizable over any infinite field.
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Figure 3.4: Decomposable matroids of rank 3

formula 4 5 6 7 8 9
3=1+1+1 p3(n) 1 2 3 4 5 7
3=2+1 p≥3(3) +⋯p≥3(n − 1) 1 3 7 14 25 42
total 2 5 10 18 30 49

Table 3.2: Number of decomposable rank-3 matroids for low n

3.6.2 Connected matroids with n = 4

There is only one such arrangement, four lines in general position. Up to an au-
tomorphism of P2, this arrangement is unique and can be given by the equations
f1 = z0, f2 = z1, f3 = z2, and f4 = z0 + z1 + z2.

3.6.3 Connected matroids with n = 5

Figure 3.5: Connected matroids of rank 3 with n = 5

One can notice that matroids with (n, r) = (5,3) are in a bijection with ma-
troids with (n, r) = (5,2). This is a special case of duality, explained in section 3.9.
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3.6.4 Connected matroids with n = 6

The loopless connected matroids with n = 6 are all realizable. They are given in
Figure 3.6.

3.6.5 Matroids with n ≥ 7

It gets harder and harder to draw pictures and list all the possible cases as n
increases. Also, as we explained in Section 3.2, for n ≥ 7 non-realizable matroids
appear, which do not correspond to any line arrangements.

On the other hand, clearly it is an algorithmically feasible problem to list all
sets B of subsets of n that satisfy Definition 3.2.2. The computation probably can
not be done in polynomial time so it becomes unwieldy for large n.

This problem was considered in [MMIB12], where an efficient algorithm was
developed and all matroids for r = 3, n ≤ 12 and r = 4, n ≤ 10 were enumerated.
An online database maintained by the authors is available at http://www-imai.
is.s.u-tokyo.ac.jp/~ymatsu/matroid/index.html. The first two lines in the
following table are taken directly from that database. I computed the last line.

n 4 5 6 7 8 9 10 11 12
all matroids 4 13 38 108 325 1,275 10,037 298,491 31,899,134
simple conn. 1 3 8 22 67 382 5,248 232,927 28,872,971
connected 1 4 15 52 187 901

Table 3.3: Number of rank-3 matroids for 4 ≤ n ≤ 12

A matroid is called simple if every dependent set has at least 3 elements. In
other words, it is loopless and does not have parallel elements. For a realizable
matroid, this means that the n hyperplanes are distinct. Clearly, one can list all
connected matroids on n by considering the simple connected matroids on m for
m ≤ n and then adding multiples.

For the connected matroids with n = 6, this gives 15 = 2 + 5 + 8, i.e. 2 come
from the simple connected matroid with n = 4, 5 from n = 5 and 8 from n = 6. For
the connected matroids with n = 7, one gets 52 = 3 + 12 + 15 + 22.

http://www-imai.is.s.u-tokyo.ac.jp/~ymatsu/matroid/index.html
http://www-imai.is.s.u-tokyo.ac.jp/~ymatsu/matroid/index.html
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Figure 3.6: Connected matroids of rank 3 with n = 6
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3.7 Flats

A flat of a hyperplane arrangement (PV,B1, . . . ,Bn) is a linear subspace Z ⊂ PV
of the form Z = B(J) for some J ⊂ n. This includes the empty space. For each flat
Z, let

I(Z) = {i ∈ n ∣ Bi ⊃ Z} ⊂ n.

The sets of this form are the flats of the matroid M . Thus, the flats of M are in
a bijection with the distinct sets Z. One has Z(∅) = n and Z(PV ) = ∅. Also, for
each hyperplane Bi, I(Bi) = {j ∣ Bj = Bi}.

For an abstract matroid, a flat is a subset I ⊂ E such that for any j ∉ I one
has r(I ∪ j) > r(I). Another name for flats is closed sets.

3.8 Restrictions and contractions

There are two basis operations for a hyperplane arrangement: we can consider
only a subset of the hyperplanes, and one can restrict hyperplanes to a flat. For
matroids, these two operations are called restriction and contraction.

Let M be a loopless matroid corresponding to a hyperplane arrangement
(PV,B1, . . . ,Bn). Let I ⊂ n be any subset.

Definition 3.8.1. The restriction M ∣I is defined by the hyperplanes Bi, i ∈ I.
Since the intersection B(I) is not necessarily empty, more properly it defines a
hyperplane arrangement on PV ′, where V ′ = V /{fi = 0, i ∈ I}.

Definition 3.8.2. The contraction M/I is defined by the hyperplanes Bj ∩ B(I)
for all j ∈ Ic = n ∖ I. It is a true hyperplane arrangement on the projective space
B(I) exactly when I is a flat, so that the restrictions of linear functions fj to the
vector space {fi = 0, i ∈ I} are nonzero.

For an abstract matroid M , the restriction M ∣I is a matroid on the set I
with the rank function r∣I , and the contraction M/I is a matroid on Ic with the
rank function r′(A) = r(A ∪ I) − r(I).

Note that for hyperplane arrangements it would be more intuitive to call the
second operation M/I restriction, but the names come from the picture of vectors
in the dual vector space V ∗.

3.9 Dual matroids

Let M be a matroid on the set E = n. The dual matroid M∗ is the matroid on
the same set E whose bases are the complements of of the bases of M . (It takes
a little work to show that the axioms of Definition 3.2.2 are satisfied.) Thus, the
rank of the dual matroid is r∗ = n − r.
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The dual of a vector matroid is also a vector matroid defined as follows.
Represent the vectors f1, . . . , fn ∈W by a surjective homomorphism kn →W and
write the corresponding short exact sequence, with dimW = r, dimW ′ = r∗.

0→W ′
→ kn →W → 0

The matroid M∗ is defined by dualizing this sequence to obtain

0→W ∗
→ kn → (W ′

)
∗
→ 0

Thus, it is represented by n vectors in the r∗-dimensional vector space (W ′)∗.
One computes the rank function of M∗ to be

r∗(I∗) = r(I) + ∣I∗∣ − r, for any I ⊂ n, I∗ = E ∖ I.

Remark 3.9.1. One has to be careful to note that a complement of a loopless
matroid may have loops (zero vectors). Thus, when M corresponds to a hyperplane
arrangement, the dual may not. An example is a line arrangement in P2 with 5
lines such that B1 is general and B2, . . . ,B5 are distinct lines passing through a
common point. The dual matroid has rank 2 and one has r(1) = r(2345)+1−3 = 0.
Thus, f∗1 = 0, so M∗ does not correspond to a point arrangement on P1.

3.10 Regular matroids and degenerations of abelian va-

rieties

3.10.1 Regular matroids

While we are at it, let us also introduce regular matroids. They are not used for
hyperplane arrangements but they turn out to be important for degenerations of
abelian varieties.

Definition 3.10.1. A matroid M is regular if it can be realized over a field of
arbitrary characteristic.

A basic fact is that a regular matroid can be realized by columns of a totally
unimodular matrix.

Definition 3.10.2. A matrix A with entries in Z is called totally unimodular if it
has rank r and all r × r-minors are 0, ±1.

Thus, a totally unimodular matrix defines a representable matroid over any
field, and the set B of bases over any field is exactly the same.

The are two additional crucial things to know about regular matroids:

1. there are three basic types of matroids: graphic, cographic, and a special
rank-5 matroid R10 on 10 elements, and

2. all other matroids are obtained from these elementary blocks by a kind of
tensor product operation (Seymour’s decomposition theorem, see below).



58 Chapter 3. Matroids

3.10.2 Dicings

Let A be an r×n-matrix with entries in Z with column vectors f1, . . . , fn generating
Rn. Consider a polyhedral decomposition of Rn obtained by cutting it by the Zn
hyperplanes

fi(x) = ni, i = 1, . . . , n, ni ∈ Z.

For each r-tuple fi1 , . . . , fir forming a basis of Rn, the subdivision by the r systems
of hyperplanes i = i1, . . . , ir consists of parallelohedra with vertices in a lattice
Λ ⊃ Zr, and ∣Λ/Zr ∣ is the determinant of the corresponding r × r-minor. Thus,
all the vertices of the polyhedral subdivision belong to the original Zr iff all the
r × r-minors are 0 or ±1.

Definition 3.10.3. A dicing is a polyhedral subdivision of Rg ⊃ Zg defined by a
totally unimodular g × n-matrix A with coefficients in Z.

Let rank(A) = r. If r = g, the polyhedra are (finite) polytopes with vertices
in Zg. If r < g, the polyhedra are infinite and are the preimages of polyhedra in
Rg under a surjective homomorphism Zg ↠ Zr.

Figure 3.7: Three examples of dicings

3.10.3 Degenerations of principally polarized abelian varieties

The limit of a 1-parameter degeneration of principally polarized abelian varieties
of dimension g is described by a Zg-periodic polyhedral decomposition which is the
preimage of a Zr-periodic decomposition of Rr into polytopes with vertices in the
same lattice Zr. Every 1-parameter family defines a semidefinite quadratic form q
on Zg, and the decomposition is the so called Delaunay decomposition Del(q).

Dicings are a special, and easiest, example of Delaunay decomposition. A dic-
ing for the linear forms f1, . . . , fn is the Delaunay decomposition for a quadratic
form q = ∑

n
i=1 aif

2
i for any ai > 0. So dicings describe a particular class of degen-

erations of abelian varieties.
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3.10.4 Graphic matroids

Let Γ be a graph with m vertices vi and n edges ej . Let us pick an orientation on
the edges. Then we have the chain groups and a differential

∂∶C1(Γ, k) = ⊕kej → C0(Γ, k) = ⊕kvi, ∂ej = beg(ej) − end(ej).

This gives a surjection kn = C1(Γ, k)↠ ∂C1(Γ, k).

Definition 3.10.4. The graphic matroid associated to the graph Γ is the vector
matroid on the set E(Γ) of edges represented by the vectors ∂ej ∈ ∂C1(Γ, k).

Note that ∂ej = 0 iff the edge ej is a loop in the graph Γ. This explains the
use of the term loop to denote linearly dependent elements in other situations.

Also note that if the graph Γ is connected then ∂C1(Γ, k) ≃ k
m−1, and this

identification can be obtained by forgetting one of the vertices, i.e. erasing one
arbitrary row in the (m × n)-matrix with the columns ∂ej .

3.10.5 Cographic matroids and degenerations of Jacobians

Definition 3.10.5. A cographic matroid is defined to be the dual to a graphic
matroid.

Thus, it is a matroid on the same set E(Γ) of edges of the graph Γ and is
represented by vectors in the vector space (ker∂)∗ = (H1(Γ, k))

∗ = H1(Γ, k), the
first cohomology group of Γ. In terms of cochains, we have an exact sequence

C0
(Γ, k) = ⊕mi=1kv

∗
i

d
ÐÐ→ C1

(Γ, k) = ⊕nj=1ke
∗
j →H1

(Γ, k)→ 0

and the n vectors are [e∗j ] ∈H
1(Γ, k). If the graph Γ is connected then dimH1(Γ, k)

= n − (m − 1) = b1(Γ) by Euler’s formula. One has [e∗j ] = 0 iff ej is a cut-edge (a
bridge) of Γ.

Consider a 1-parameter degeneration of curves Ct over a smooth curve, such
that Ct is a smooth projective genus g curve for t ≠ 0 and C0 is a stable curve
with the dual graph Γ. Then we have a 1-parameter degeneration JCt of Jacobians,
which are the easiest principally polarized abelian varieties. The limit of this family
is described by the dicing for the cographic matroid of Γ.

By applying the above definition, this gives the following description of the
dicing. The space C1(Γ,Z) = ⊕ni=1Zej comes with a standard Euclidean basis. We
subdivide it into the standard cubes with the vertices in C1(Γ,Z) and the sides
parallel to the coordinate hyperplanes. The dicing of Rg is obtained by intersecting
these cubes with the linear subspace H1(Γ,R) ⊂ C1(Γ,R) and then pulling back
to Rg under a surjection Zg ↠H1(Γ,Z).
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1

Figure 3.8: Stable graphs of curves of genus 2 and their dicings

3.10.6 Matroid R10 and degenerations of Prym varieties

Definition 3.10.6. R10 is an exceptional matroid of rank 5 on 10 elements repre-
sented by the columns of the following matrix:

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 1 0 0 1 1
0 1 0 0 0 1 1 0 0 1
0 0 1 0 0 0 1 1 0 1
0 0 0 1 0 0 0 1 1 1
0 0 0 0 1 1 1 1 1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

It is neither graphic nor cographic.

Gwena [Gwe05] gave an example of degenerations of Prym varieties, the
intermediate jacobians of cubic 3-folds, which is described by a dicing for the
matroid R10. In particular, these Prym varieties are not Jacobians. This implies
that a generic cubic 3-fold is not rational, which is a weak form of a celebrated
theorem of Clemens and Griffiths.

3.10.7 Seymour’s decomposition theorem

Definition 3.10.7. Let M1 and M2 be matroids on the sets S1, S2 ⊂ S′. Define
a new matroid on the symmetric difference S = S1 △ S2 by declaring its cycles
(disjoint unions of circuits, i.e. the minimal dependent sets) to be the symmetric
differences of cycles of M1 and M2.

Then M is called is 1-sum if S1 ∩ S2 = ∅, 2-sum if ∣S1 ∩ S2∣ = 1, and 3-sum if
S1 ∩ S2 is a common three-point circuit.

These operations can be easily translated into operations on totally unimod-
ular matrices.
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Theorem 3.10.8 ([Sey80]). Any regular matroid is obtained from several graphic
matroids, cographic matroids, and R10 by applying 1-, 2-, and 3-sum operations.

3.10.8 Extended Torelli map

The moduli space Ag of principally polarized abelian varieties has infinitely many

toroidal compactifications. Each toroidal compactification A
τ

g corresponds to a fan

τ on the space Rg(g+1)/2 of quadratic forms on Rg such that

1. The support of τ is the cone C
rat

generated by the semi definite positive
quadratic forms with coefficients in Q.

2. The fan τ is equivariant with respect to the action of the group GL(g,Z):
cones go to cones.

3. Modulo the GL(g,Z)-action, there are only finitely many cones.

One particular choice for τ is the 2nd Voronoi fan τvor defined as follows:
q1, q2 lie in the same cone iff the Delaunay decompositions are the same, i.e.
Del(q1) = Del(q2). It is a theorem of Namikawa and Mumford that the Torelli

map Mg → Ag, C ↦ JC, extends to a morphism Mg → A
vor

g from the Deligne-
Mumford compactification.

Alexeev and Brunyate showed in [AB12] that the Torelli map also extends to
a morphism Mg → Aperf

g to another interesting compactification, for the perfect fan

τperf . Extending this result, Melo and Viviani [MV12] proved that the maximal
open subset U which is shared Avor

g and Aperf
g (which are birationally isomorphic

as they both contain Ag) is precisely the locus of dicings, corresponding to all
regular matroids of rank ≤ g. The compactified Torelli map factors through U .
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Chapter 4

Matroid polytopes and tilings

Some of the results we explain here are contained in [GS87, GGMS87]. Another
good source on matroid polytopes is [Sch03].

We will work in a Euclidean space Rn with a standard basis e1, . . . ,en. For
any subset I ⊂ n = {1, . . . , n}, eI will denote the vector ∑i∈I ei. We will also use
two special vectors 0 = e∅ = (0, . . . ,0) and 1 = en = (1, . . . ,1).

For two vectors x ,y ∈ Rn, we say that x ≤ y if xi ≤ yi for all i.

A polytope is a convex hull of finitely many points in Rn. Dually, it can be
defined a bounded intersection of finitely many half-spaces, i.e. by finitely many
linear inequalities `s ≥ 0. (More generally, a polyhedron is a possibly unbounded
locally finite intersection of halfspaces.) A polytope is integral if its vertices lie in
Zn.

C7. 
Figure 4.1: Some lattice polytopes

Matroid polytopes form a very special class among all integral polytopes.
They are defined by unusually simple inequalities. To describe them we introduce
the notation x(I) = xI to denote ∑i∈I xi, for any subset I ⊂ n.

63
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4.1 Base polytope and independent set polytope

4.1.1 First properties and dimension

Let M be a matroid on the set n with the independent sets I ⊂ 2n and bases
B ⊂ 2n.

Definition 4.1.1. The independent set polytope ISPM is the convex hull of the
points eI for I ∈ I. The base polytope BPM is the convex hull of the points eI for
I ∈ B.

In the algebraic geometry literature, mostly the second polytope appears,
and most algebraic geometers call it matroid polytope. It turns out, however, that
both polytopes have important applications in algebraic geometry.

Let M be a loopless vector matroid represented by vectors f1, . . . , fn. Recall
that an empty set is always independent. Therefore, 0 is always one of the vertices
of ISPM . Since fi ≠ 0, the points ei also belong to ISPM . Thus, dim ISPM = n,
maximal possible.

The base polytope BPM lies in the affine subspace ∑ni = r, so has dimension
at most n − 1. But it can easily be lower than that.

Example 4.1.2. Let f1, . . . , fr be a basis of a vector space W , so that n = r. The
independent set polytope is the cube with the vertices eI for all I ⊂ n. However,
there is only one basis, so the base polytope is the point 1 and has dimension 0.

It is a fact that the base polytope of a connected matroid has maximal pos-
sible dimension n − 1. In general, suppose that M decomposes into c connected
components:

n = S1 ⊔ . . . ⊔ Sc, rankMp = rp, r =∑ rp, n =∑np.

Then the base sets of M are of the form I1 ⊔ . . . ⊔ Ic, where Ip ⊂ Sp is a base set.
Therefore, the base polytope is the Cartesian product BPM = BPM1

× . . .×BPMc .
Since the polytopes BPp have dimensions np − 1, we get dim BPM = n − c.

Example 4.1.3. Here are the hyperplane arrangements for r = 2, n = 4 and their
base polytopes.

Unfortunately, this is pretty much the last example which is easy to draw.
For n ≥ 5, the base polytopes of connected matroids have dimension ≥ 4, and so
visualizing them becomes pretty tricky. Instead, we have to rely on other ways,
for example on understanding the defining inequalities.

Definition 4.1.4. The base polytope of a generic hyperplane arrangement in Pr−1

with n hyperplanes is

∆(r, n) = Conv(eI ∣ I ⊂ n, ∣I ∣ = r) = {x ∈ Rn ∣ 0 ≤ x ≤ 1, x(n) = r}

It is called the hypersimplex. The matroid is the uniform matroid.



4.1. Base polytope and independent set polytope 65

t 2. 3 4 2.. ?. • • $ • I 3 
Q • • • 0 • 

4 • ~ 
<. 4 

3l.t 

l'f !"; ,~Q~\ 
·~ \;, 2~ . 

12. 
\')_, 

Figure 4.2: Hyperplane arrangements for r = 2, n = 4 and their base polytopes

The usual simplex appears as a special case: σn = ∆(1, n). The hypersimplex
∆(r, n) can be obtained from a simplex rσn with sides of size r by taking the
convex hull of the centers of the faces with r vertices (these faces are simplices rσr
of dimension r − 1).

The hypersimplex ∆(r, n) has (
n
r
) vertices which are in a bijection with the

Plücker coordinates pI . Indeed, ∆(r, n) is the moment polytope of the grassman-
nian in its Plücker embedding G(r, n) ⊂ PN .

If r ≥ 2 then ∆(r, n) has 2n facets (codimension 1 faces) given by the equa-
tions xi = 0 and xi = 1. For r = 1, the n faces xi = 1 degenerate and become
points.

4.1.2 Characterization of matroids by base polytopes

Recall that abstract matroids can be equivalently defined in terms of independent
sets, base sets, rank functions, circuits, etc. Here, we get a yet another definition:
matroids can be defined by their base polytopes.

Going from this definition to others and back is easy, since the vertices of
BPM are the characteristic vectors of the bases of M . The following theorem of
Gelfand-Serganova says precisely which polytopes appear in this way.

Theorem 4.1.5 ([GS87]). A polytope in the linear space {x(n) = r} ⊂ Rn with
vertices of the form eI for some I ⊂ n is a base polytope of some matroid of rank
r iff all of its edges are parallel to ei − ej for some i, j.

The proof proceeds by observing that this property is equivalent to the basis
exchange property in Definition 3.2.2.
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There does not appear to be an easy to way to characterize the base polytopes
of representable matroids. Of course, this question is equivalent to characterizing
representable matroids among all matroids.

4.1.3 Base polytope as a moment polytope

Let [V ] ∈ G(r, n) be a point. The closure of the T -orbit T.[V ] is a possibly non-
normal variety in G(r, n). Let us call it X ′ and f ∶X →X ′ be its normalization, so
that X is a toric variety in our definition. The Plücker embedding G(r, n) ⊂ PN ,
N = (

n
r
) − 1 is T -invariant, and the sheaf O(1) is T -linearized, with wt(pI) = eI .

Pulling back L = f∗O(1), one obtains a polarized toric variety (X,L). What
is the corresponding polytope? By the correspondence, it is the convex hull of the
weights m such that H0(X,L)m ≠ 0. A little argument shows that these weights
m correspond to the Plücker coordinates pI with pI(V ) ≠ 0. In other words, the
weights are the vectors eI for all I, ∣I ∣ = r for which fi, i ∈ I form a basis. Thus,
P is the base polytope as defined in 4.1.1 below.

Moreover, one has the following:

Theorem 4.1.6 ([Whi77]). Any base polytope is totally generating (see Defini-
tion 2.3.4).

This implies that the morphism X → PN is a closed embedding, so that
X =X ′. In other words, the subvariety T.[V ] is in fact a normal toric variety.

When working over C, BPV is the moment polytope of the pair (X,L).

4.2 Facets and faces

We state the description of the faces and facets of base polytopes. An interested
reader may consult [GS87, Sch03] for the proofs.

From the definition, we know the vertices of BPM . They correspond to bases
of the matroid. For a hyperplane arrangement (PV,B1, . . . ,Bn), these are the
subsets I ⊂ n of cardinality r such that B(I) = ∩i∈IBi = ∅. So one can list them
explicitly, but there are way too many of them. A much more economical way of
describing a base polytope is by listing its facets, i.e. the minimal set of defining
inequalities.

Definition 4.2.1. A flat I ⊂ n is nondegenerate if the matroids M ∣I and M/I are
both connected.

Recall that for a hyperplane arrangement, flats are in a bijection with the
linear subsets Z ⊂ PV of the form Z = B(I) for some I ⊂ n. In this case,

1. M ∣I is connected ⇐⇒ Z is not a transversal intersection Z1 ⋔ Z2 of larger
flats, and
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2. M/I is connected ⇐⇒ the hyperplane arrangement {Bj ∩ Z} on Z is
not a join of several smaller hyperplane arrangements. Equivalently, M/I is
connected if the automorphism group Aut(Z,Bj ∩Z) is trivial.

Theorem 4.2.2. The minimal set of inequalities of the base polytope BPM is

x(n) = r, xi ≥ 0 for i = 1, . . . , n, and x(I) ≤ r(I)

for all nondegenerate flats I ≠ ∅, n. For a hyperplane arrangement the latter means
flats Z ≠ PV,∅.

The inequality x(I) ≤ r(I) holds for any subset I ⊂ n but these inequalities
are redundant unless I is a nondegenerate flat.

Definition 4.2.3. The inequalities x(n) = r and xi ≥ 0 are always present. So
usually we take them for granted. We call the rest of the inequalities x(I) ≤ r(I)
essential.

Example 4.2.4. For a generic hyperplane arrangement, the only nondegenerate
flats are 1-element sets {i}, since all the intersections are transversal. So, the
essential inequalities are xi ≤ 1.

Example 4.2.5. For the following line arrangement of 6 lines in P2 the essential
inequalities are

x1 ≤ 1, x23 ≤ 1, x4 ≤ 1, x5 ≤ 1, x1236 ≤ 2, x456 ≤ 2.

Figure 4.3: A line arrangement with 6 lines

Thus, there are 4 inequalities for 4 out of 5 distinct lines in the picture, and
2 inequalities for the points where ≥ 3 lines intersect. The flat {6} is degenerate,
since there are only two special points on the line Z = B6. The corresponding
inequality x6 ≤ 1 follows from x1236 ≤ 2, x456 ≤ 2, and x123456 = 3.
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4.3 Matroid polytopes and log canonical singularities

Recall the definition of lc singularities from Section 1.2. Now look at the Figure 4.3
above. For which coefficients bi is the pair (P2,∑ biBi) log canonical? To be lc
along the line Z23, one must have b23 ≤ 1. To be lc at the points with ≥ 3 lines
intersecting, one must have b1236 ≤ 2 and b456 ≤ 2. And of course there are the
inequalities bi ≤ 1 which are usually included in the definition of lc singularities to
begin with.

Thus, we see that, at least in this example, the inequalities for lc singularities
are exactly the same as the defining inequalities for the base polytope! In fact, this
is true in general. We state without proof several theorems from [Ale08b]. Recall
the following definition:

Definition 4.3.1. A pair (X,∑B = biBi) is called

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

log Calabi-Yau if KX +B ∼Q 0

log Fano if − (KX +B) is ample

of general type if KX +B is big (e.g. ample).

For a hyperplane arrangement, KPr−1 ∼ −rH and Bi ∼H, where H is the class
of a hyperplane. Therefore, the pair (Pr−1,∑ biBi) is log Calabi-Yau, log Fano, or
of general type ⇐⇒ ∑ bi = r, ∑ bi < r, or ∑ bi > r.

Theorem 4.3.2. A log Calabi-Yau hyperplane arrangement (PV,∑ biBi) is lc ⇐⇒
b ∈ BPM .

Thus, the inequalities for the base polytope appear most naturally in the
case of log Calabi-Yau hyperplane arrangements. The independent set polytope is
best suited to log Fano pairs:

Theorem 4.3.3. A log Fano hyperplane arrangement is lc ⇐⇒ b ∈ ISPM .

The independent set polytope also appears in the condition for an arbitrary
hyperplane arrangement to be lc at a given point. To formulate this, we need
another piece of notation:

Definition 4.3.4. Let (PV,B1, . . . ,Bn) be a hyperplane arrangement. For a point
p ∈ PV , we denote by I(p) the set of i ∈ n such that p ∈ Bi. For a vector b ∈ Rn we
denote by b ∣I(p) the vector x with xi = bi if i ∈ I(p) and xi = 0 elsewhere.

Theorem 4.3.5. A hyperplane arrangement (PV,∑ biBi) is lc at a point p ∈ PV
⇐⇒ b ∣I(p) ∈ ISPM .

4.4 Cuts of polytopes and log canonical singularities

In these lectures, we are interested in the stable pairs, which are of general type,
not Calabi-Yau or Fano. Below, we describe how the combinatorics of matroid
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polytopes has to be adjusted to handle this case. Again, the proofs can be found
in [Ale08b].

Definition 4.4.1. We define the b-cut of the hypersimplex by

∆b(r, n) = {x ∈ Rn ∣ 0 ≤ x ≤ b, x(n) = r}

Figure 4.4: b-cut hypersimplex

Theorem 4.4.2. A hyperplane arrangement (PV,∑ biBi) of general or log Calabi-
Yau type is lc ⇐⇒ ∆b ⊂ BPM .

Example 4.4.3. ∆1(r, n) = ∆(r, n), the ordinary hypersimplex. Thus, ∆1 ⊂ BPM
⇐⇒ BPM = ∆(r, n). The only hyperplane arrangement with this base polytope is
the generic hyperplane arrangement. So, the pair (PV,∑Bi) is lc only for generic
hyperplane arrangements.

Example 4.4.4. Let b > 1, i.e. all bi ≥ 1 and at least one coefficient is > 1. Then ∆b

is strictly bigger than ∆(r, n), so it is not contained in any base polytope. Thus,
(PV,∑Bi) is not lc, which is clear since there is some coefficient bi > 1.

Example 4.4.5. If b is a vector with b(n) = r, then polytope ∆b(r, n) is a single
point {b}. So when the pair (PV,∑ biBi) is of log Calabi-Yau type, the condition
∆b ⊂ BPM is the same as the condition b ∈ BPM .

Next, we address the question of when the hyperplane arrangement is lc at
a given point.

Definition 4.4.6. For p ∈ PV , define ∆p
b to be the face (possibly empty) of ∆b

where xi = bi for all i ∈ I(p).

Theorem 4.4.7. Let (PV,∑ biBi) be a hyperplane arrangement of general type.
Suppose that BPM ∩∆b ≠ ∅. Then (PV ,∑ biBi) is lc at p ⇐⇒ BPM ∩∆p

b ≠ ∅.
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Figure 4.5: BPM and ∆p
b

4.5 Matroid tilings

Definition 4.5.1. A tiling is a collection of polytopes Qj in Rn which is face-fitting:
intersection of any two Qj1 ∩Qj2 is either empty or is a face of both.

Definition 4.5.2. A partial matroid tiling is a tiling consisting of base polytopes
in the hypersimplex ∆(r, n) ∖ ∪ni=1{xi = 0}. It does not have to cover ∆(r, n)
completely.

We ignore the base polytopes contained in one of the spaces {xi = 0}, i.e.
base polytopes of matroids that contain loops fi = 0, since those do not correspond
to hyperplane arrangements.

Definition 4.5.3. A tiling of the b-cut hypersimplex ∆b is a partial matroid tiling
such that ∪BPMj ⊃ ∆b and such that all base polytopes BPMj intersect ∆b .

Figure 4.6: A matroid tiling of the b-cut hypersimplex ∆b

The intuition for the algebro-geometric meaning of such tilings is this: When
a single base polytope BPM covers ∆b , the hyperplane arrangement (PV,∑ biBi)
is lc and gives a point in the moduli space of stable pairs. But if ∆b /⊂ BPM then
several base polytopes BPMj are needed to cover it. In this case, the projective
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space Pr−1 degenerates, and the stable pair X = ∪Xj is nonnormal and consists of
several irreducible components Xj .

The irreducible components Xj thus correspond to several non-lc hyperplane

arrangements (PVj ,∑B(j)
i ). One should think of them as the “complementary”

degenerations of Pr−1 with n hyperplanes. They complement each other to give
the entire stable pair (X,B).

4.6 Rank 2 case

The combinatorics of matroid tilings in rank 2 is exactly the same as the com-
binatorics of stable weighted graphs. Vertices of a graph correspond to maximal-
dimensional polytopes and edges correspond to facets. For the case b = 1, this
theory was established in [Kap93]. The proof given below for the general case is
very similar.

Example 4.6.1. A stable curve with n = 4 points, its dual graph, the corresponding
matroid tiling and hyperplane arrangements are shown in Figure 4.7.

~I 

\ 

~ .3 • .j 
0 
4 

Figure 4.7: Matroid tiling corresponding to a stable curve

Recall from 3.5 that a hyperplane arrangement in rank 2 is the same as n
points on P1 which are allowed to coincide but there should be at least p ≥ 2
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distinct points. The base polytopes are maximal-dimensional if p ≥ 3 or have
codimension 1 if p = 2 (in which case it is a product of two simplices σJ × σJc).

Let ∪j BPMj be a partial matroid tiling of ∆(2, n). We will associate to it a
graph Γ, as follows. It will be convenient to work with half-edges, or “flags”.

1. To each maximal-dimensional base polytope we associate a vertex of Γ. The
essential inequalities of BPM are x(Js) ≤ 1 for a partition n = J1 ⊔ . . . ⊔ Jp
with p ≥ 3.

2. Further, to this vertex we add p half-edges going away from it, one for each
of the sets Js.

3. To each codimension 1 polytope BPM = {x(J) = x(Jc) = 1} which is a
common facet of two maximal-dimensional base polytopes with essential
inequalities x(J) ≤ 1 and x(Jc) ≤ 1, we associate an internal edge of Γ which
consists of two half-edges J and Jc.

4. To each codimension 1 polytope which has only one maximal-dimensional
neighbor with essential inequality x(J) ≤ 1 we associate an end of Γ and we
mark it J .

Thus, all internal vertices of Γ have valency ≥ 3, plus there are a number of ends.

12. 

Figure 4.8: Graph Γ describing a partial matroid tiling of ∆(2, n)

Theorem 4.6.2. Let ∪j BPMj be a partial tiling of ∆(2, n) by base polytopes which
is maximal-dimensional, and connected in codimension 1. Then the graph Γ is a
tree, and the ends of Γ correspond to the parts in a partition K1 ⊔ . . . ⊔Km of n
into m ≥ 3 parts. Also, the set Q = ∪j BPMj is a convex polytope.

Proof. For each edge e, the polytope BPe is an intersection of ∆(2, n) with the
hyperplane x(J) = x(Jc) = 1. Thus, it cuts the hypersimplex into two disjoint
parts, and removing it disconnects the tiling. Therefore, every edge e is a bridge,
so Γ is a forest. Since Q is connected in codimension 1, the graph Γ is connected,
so it is a tree.

The outside boundary of Q consists of the facets xi ≥ 0 and of the facets of the
form x(J) ≤ 1 for the ends of Γ. In both cases, Q lies entirely in the corresponding
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half-space. For the facets xi ≥ 0 this is true by definition of base polytopes. For the
facets x(J) ≤ 1 this is true because the facet x(J) = 1 is the intersection of ∆(r, n)
with a hyperplane and because the tiling is connected in codimension 1. Thus,
Q is the intersection of the half-spaces given by the inequalities for the facets.
Therefore, it is a polytope.

Now start with any vertex v for a maximal-dimensional base polytope in our
tiling. It has p ≥ 3 half-edges J1, . . . , Jp. The half-edge J1 is either an end marked
by J1 or it is half of an internal edge marked J1, J

c
1 . The half of this edge leads to

a vertex corresponding to a partition Jc1 , . . . , where the other parts are a partition
of J1. Thus, the set J1 gets subdivided. If we continue this path outward away
from v, it will be subdivided further, etc. Following all the paths from v outward,
we eventually get to a partition K1 ⊔ . . . ⊔Km of n refining J1 ⊔ . . . ⊔ Jp in which
all parts Ks correspond to the ends of the graph Γ. ◻

4.7 Rank 3 case

Recall that we listed all hyperplane arrangements in P2 with n ≤ 6 lines in 3.6.
By 4.2.2, the essential inequalities of the corresponding base polytopes are in a
bijection with the nondegenerate flats. In P2, the nontrivial flats are lines and
points. Therefore, we get:

1. For each line Z with ≥ 3 special points, let I = {i ∈ n ∣ Bi = Z}. Then we get
the inequality xI ≤ 1.

2. For each point Z with ≥ 3 lines passing through it, let I = {i ∈ n ∣ Z ∈ Bi}.
Then we get the inequality xI ≤ 2.

Below I list all base polytopes for n ≤ 3 and all complete matroid tilings for n ≤

6. Further, I checked computationally that any partial connected in codimension 1
tiling for n ≤ 6 can be extended to a complete tiling. Thus, all partial tilings in
these cases are subtilings of these.

4.7.1 The case n = 4

∆(3,4) = ∆(1,4) = σ4 is a simplex, and it has no subdivisions. So there is only the
trivial tiling: the single polytope ∆(3,4) itself.

4.7.2 The case n = 5

In Table 4.1, we list the four base polytopes corresponding to the four line ar-
rangements in Figure 3.5.

The meaning of the “volume” of a base polytope will be explained in ???.
For now, let me just say that the volumes are integral and they add up to (n−3)2

in a complete tiling of ∆(3, n).
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no. (volume) essential inequalities
0 (4) ∅
1 (3) x123 ≤ 2
2 (2) x125 ≤ 2, x345 ≤ 2
3 (1) x12 ≤ 1

Table 4.1: Base polytopes in ∆(3,5)

Up to S5, there are only two nontrivial base matroid tilings listed in Table 4.2.

no. (volume) polytope
1 (3) x123 ≤ 2 (1) x45 ≤ 1
2 (2) x125 ≤ 2, x345 ≤ 2 (1) x34 ≤ 1 (1) x12 ≤ 1

Table 4.2: Matroid tilings of ∆(3,5)

4.7.3 The case n = 6

In Table 4.3, we list the 15 base polytopes corresponding to the line arrangements
in Figure 3.6 of section 3.6.4.

The 5 polytopes marked with a star are rigid. Each of them corresponds to
a rigid line arrangement which has no moduli: there is a unique line arrangement
of this type up to an isomorphism. For all the other line arrangements, there
are positive-dimensional families of the same type. (For example, there is a 4-
dimensional family of 6 lines in general position.) The base polytope for a non-rigid
arrangement can be split into several smaller base polytopes.

Modulo S6, there are 25 nontrivial nontrivial tilings listed in Table 4.4, which
were found by a computer computation. Some of the base polytopes can be split
into unions of smaller base polytopes. The 7 cases marked with an ∗ are the “rigid”
tilings, which can not be split further.
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no. (volume) essential inequalities
0 (9) ∅
1 (8) x123 ≤ 2
2 (7) x123 ≤ 2, x456 ≤ 2
3 (7) x123 ≤ 2, x145 ≤ 2
4 (6) x123 ≤ 2, x345 ≤ 2, x561 ≤ 2
5∗ (5) x356 ≤ 2, x246 ≤ 2, x145 ≤ 2, x123 ≤ 2
6 (5) x1234 ≤ 2
7 (4) x156 ≤ 2, x1234 ≤ 2
8 (4) x12 ≤ 1
9 (3) x1234 ≤ 2, x12 ≤ 1
10 (3) x345 ≤ 2, x12 ≤ 1
11∗ (2) x356 ≤ 2, x1234 ≤ 2, x12 ≤ 1
12∗ (2) x1234 ≤ 2, x1256 ≤ 2
13∗ (1) x123 ≤ 1
14∗ (1) x34 ≤ 1, x12 ≤ 1

Table 4.3: Base polytopes in ∆(3,6)
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no. (volume) polytope
1 (8) x456 ≤ 2 (1) x123 ≤ 1

2 (7) x123 ≤ 2, x456 ≤ 2 (1) x123 ≤ 1 (1) x456 ≤ 1
3 (7) x124 ≤ 2, x456 ≤ 2 (1) x123 ≤ 1 (1) x356 ≤ 1

4 (6) x124 ≤ 2, x135 ≤ 2, x456 ≤ 2 (1) x123 ≤ 1
(1) x246 ≤ 1 (1) x356 ≤ 1

5 (5) x1234 ≤ 2 (4) x56 ≤ 1
6 (5) x1234 ≤ 2 (3) x123 ≤ 2, x56 ≤ 1 (1) x456 ≤ 1
7∗ (5) x124 ≤ 2, x135 ≤ 2, x236 ≤ 2, x456 ≤ 2

(1) x123 ≤ 1 (1) x145 ≤ 1 (1) x246 ≤ 1 (1) x356 ≤ 1
8 (4) x1234 ≤ 2, x156 ≤ 2 (4) x56 ≤ 1 (1) x234 ≤ 1

9 (4) x1234 ≤ 2, x156 ≤ 2 (3) x123 ≤ 2, x56 ≤ 1
(1) x234 ≤ 1 (1) x456 ≤ 1

10 (4) x1234 ≤ 2, x156 ≤ 2 (3) x234 ≤ 2, x56 ≤ 1
(1) x156 ≤ 1 (1) x234 ≤ 1

11 (3) x1234 ≤ 2, x12 ≤ 1 (3) x1256 ≤ 2, x56 ≤ 1 (3) x3456 ≤ 2, x34 ≤ 1

12 (3) x1234 ≤ 2, x34 ≤ 1 (3) x1256 ≤ 2, x56 ≤ 1
(2) x1234 ≤ 2, x1256 ≤ 2 (1) x34 ≤ 1, x56 ≤ 1

13 (3) x1234 ≤ 2, x34 ≤ 1 (3) x3456 ≤ 2, x56 ≤ 1
(2) x1234 ≤ 2, x1256 ≤ 2 (1) x12 ≤ 1, x56 ≤ 1

14 (3) x1256 ≤ 2, x56 ≤ 1 (3) x3456 ≤ 2, x34 ≤ 1
(2) x1234 ≤ 2, x12 ≤ 1, x356 ≤ 2 (1) x124 ≤ 1

15 (3) x1234 ≤ 2, x12 ≤ 1 (2) x1234 ≤ 2, x3456 ≤ 2
(2) x1256 ≤ 2, x3456 ≤ 2 (1) x12 ≤ 1, x56 ≤ 1 (1) x34 ≤ 1, x56 ≤ 1

16 (3) x3456 ≤ 2, x56 ≤ 1 (2) x1234 ≤ 2, x3456 ≤ 2
(2) x56 ≤ 1, x3456 ≤ 2, x124 ≤ 2 (1) x356 ≤ 1 (1) x12 ≤ 1, x56 ≤ 1

17 (3) x1234 ≤ 2, x12 ≤ 1 (2) x56 ≤ 1, x1256 ≤ 2, x3456 ≤ 2
(2) x34 ≤ 1, x3456 ≤ 2, x125 ≤ 2 (1) x12 ≤ 1, x56 ≤ 1 (1) x346 ≤ 1

18 (3) x3456 ≤ 2, x34 ≤ 1 (2) x1256 ≤ 2, x3456 ≤ 2, x56 ≤ 1
(2) x12 ≤ 1, x3124 ≤ 2, x356 ≤ 2 (1) x12 ≤ 1, x56 ≤ 1 (1) x124 ≤ 1

19 (3) x1256 ≤ 2, x56 ≤ 1 (2) x125 ≤ 2, x3456 ≤ 2, x34 ≤ 1
(2) x356 ≤ 2, x1234 ≤ 2, x12 ≤ 1 (1) x124 ≤ 1 (1) x346 ≤ 1

20∗ (2) x1234 ≤ 2, x1256 ≤ 2 (2) x1234 ≤ 2, x3456 ≤ 2
(2) x1256 ≤ 2, x3456 ≤ 2 (1) x12 ≤ 1, x34 ≤ 1
(1) x12 ≤ 1, x56 ≤ 1 (1) x34 ≤ 1, x56 ≤ 1

21∗ (2) x1256 ≤ 2, x3456 ≤ 2, x56 ≤ 1 (2) x1234 ≤ 2, x1256 ≤ 2, x12 ≤ 1
(2) x256 ≤ 2, x1234 ≤ 2, x34 ≤ 1 (1) x12 ≤ 1, x56 ≤ 1
(1) x34 ≤ 1, x56 ≤ 1 (1) x134 ≤ 1

22∗ (2) x56 ≤ 1, x1256 ≤ 2, x3456 ≤ 2 (2) x1256 ≤ 2, x346 ≤ 2, x12 ≤ 1
(2) x256 ≤ 2, x1234 ≤ 2, x34 ≤ 1 (1) x125 ≤ 1
(1) x34 ≤ 1, x56 ≤ 1 (1) x134 ≤ 1

23∗ (2) x1256 ≤ 2, x134 ≤ 2, x56 ≤ 1 (2) x12 ≤ 1, x1234 ≤ 2, 1256 ≤ 2
(2) x256 ≤ 2, x1234 ≤ 2, x34 ≤ 1 (1) x256 ≤ 1
(1) x34 ≤ 1, x56 ≤ 1 (1) x134 ≤ 1

24∗ (2) x1256 ≤ 2, x134 ≤ 2, x56 ≤ 1 (2) x1234 ≤ 2, x1256 ≤ 2
(2) x156 ≤ 2, x1234 ≤ 2, x34 ≤ 1 (1) x256 ≤ 1
(1) x34 ≤ 1, x56 ≤ 1 (1) x234 ≤ 1

25∗ (2) x1234 ≤ 2, x456 ≤ 2, x12 ≤ 1 (2) x125 ≤ 2, x3456 ≤ 2, x34 ≤ 1
(2) x234 ≤ 2, x1256 ≤ 2, x56 ≤ 1 (1) x346 ≤ 1
(1) x123 ≤ 1 (1) x156 ≤ 1

Table 4.4: Matroid tilings of ∆(3,6)
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4.8 Tropical projective spaces and Dressian

A tropical projective linear subspace TPr−1 ⊂ TPn−1 is a balanced polyhedral
complex of dimension r − 1 in Rn−1 with a specified behavior at infinity.

The balancing condition is as follows. For each codimension one polyhedron
P where k maximal dimensional polyhedra Q1, . . . ,Qk meet, let m1, . . . ,mk be
the integral normal vectors to P in Qi. Then one must have ∑

k
i=1 mi = 0.

For example, a tropical TP1 ⊂ TPn−1 is a polyhedral complex of dimension 1.
In this case, Qi are line segments that meet at a point P , and mi are the integral
generators in the direction of Qi −P . The complex should be a tree with n infinite
ends which go off to infinity in the directions e1, . . . ,en. Here, ei’s are the n vectors
in Zn such that ∑

n
i=1 ei = 0 (since TPn−1 is a projective space with n homogeneous

coordinates).

Figure 4.9: A tropical line TP1 ⊂ TP3

Tropical projective linear subspaces TPr−1 ⊂ TPn−1 are closely related to
stable hyperplane arrangements with weight b = 1. (The correspondence can be
extended to the case of arbitrary weight b by introducing tropical projective spaces
with more general behavior at infinity). Briefly, tropical TPr−1 ⊂ TPn−1 correspond
to smoothings of stable hyperplane arrangements, or one-parameter degenerations
of stable hyperplane arrangements with a smooth generic fiber, and capture the
essential combinatorial part of such smoothings. In particular, the non-smoothable
stable hyperplane arrangements do not appear this way.

Let us explain this in the one dimensional case. Consider a stable n-pointed
curve (C0, P1, . . . , Pn) of arithmetic genus 0. Its dual graph is a tree Γ with n
ends; each internal vertex has degree ≥ 3. A tropical TP1 ⊂ TPn−1 as a graph is the
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same tree Γ with n marked ends but it contains strictly more information than Γ.
Namely, for each internal edge e there is its length ce > 0 measured in the lattice
units: distance between two lattice points in the chosen direction is taken to be 1.

An edge e of Γ corresponds to a singular point Q of C0. Let π∶C → S be a
smoothing over a 1-dimensional regular base with a local parameter t. Then in a
neighborhood of Q the family has an equation xy = tn. Thus, we may associate to
e the length ce = n, which is a positive integer. The tropical curve is an abstraction
of this construction, with ce allowed to be any positive real number. One can also
obtain more general lengths by considering families over S = SpecR where R is
a ring of dimension 1 with a non-discrete valuation, with values in Q or R. For
example, one can take R = C[tα, α ∈ R>0].

Similarly, tropical planes in TPn−1 correspond to 1-parameter degenerations
of the pairs (P2,B1, . . . ,Bn). They are dual metric versions of tilings of ∆(3, n),
with the additional smoothing data. In terms of toric geometry, tilings live in the
lattice M and a tropical linear subspace is determined by a point in a fan living
in the dual space NR.

Thus, the combinatorial types of tropical planes in TPn−1 describe not all
stable hyperplane arrangements but only those that have a smoothing. Those are
the most important ones, anyway, they correspond to points in the main irreducible
component of the moduli space.

The combinatorial types of the tropical TPr−1 in TPn−1 are in a bijection
with cones in a fan which was called the Dressian in [HJJS09]. This is a subfan of
the secondary fan of ∆(r, n). Here, recall from chapter 2 that the secondary fan
describes the smoothable stable toric varieties over the Plücker projective space
PN , N = (

n
r
) − 1. The Dressian describes smoothings of stable toric varieties lying

over a closed subset of PN , the grassmannian G(r, n).
The Dressians Dr(3,6) and Dr(3,7) were computed in [SS04], [HJJS09]. In

particular, the 7 generic tropical planes in TP5 in [HJJS09, Fig.1] are the same
as the 7 rigid types of Table 4.4 marked with a star. For n = 7, the authors
list 94 generic tropical planes in TP6 in http://www.uni-math.gwdg.de/jensen/

Research/G3_7/grassmann3_7.html

4.9 Dual matroid polytopes and dual tilings

Consider the linear change of coordinates x∗i = 1 − xi. This defines an involution
ι∶Rn → Rn. Under this linear transformation, the image of the hypersimplex

∆(r, n) = {0 ≤ xi ≤ 1,
n

∑
i=1

xi = r}

is the hypersimplex

∆(r∗, n) = {0 ≤ x∗i ≤ 1,
n

∑
i=1

x∗i = n − r = r
∗
}

http://www.uni-math.gwdg.de/jensen/Research/G3_7/grassmann3_7.html
http://www.uni-math.gwdg.de/jensen/Research/G3_7/grassmann3_7.html
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For any I ⊂ n, ι(eI) = eI∗ , where I∗ = n ∖ I. Since the vertices of the base
polytope BPM are the vectors eI for the bases of M , and since the bases of the
dual matroid M∗ are the complementary sets I∗, we see that ι(BPM) = BPM∗ .

In terms of the inequalities, BPM is defined by 0 ≤ xi ≤ 1 and x(I) ≤ r(I)
for all I ⊂ n (this system is over-determined). After the coordinate change, we get
0 ≤ x∗i ≤ 1 and the inequalities

∣I ∣ − x∗(I) ≤ r(I) ⇐⇒ x∗(I) ≥ ∣I ∣ − r(I) ⇐⇒ x∗(I∗) ≤ r∗ − ∣I ∣ + r(I) = r∗(I∗),

which are precisely the defining inequalities of the base polytope BPM∗ .

The image of a b-cut hypersimplex ∆(r, n)b the polytope

{1 − bi ≤ x
∗
i ≤ 1, ∑xi = r

∗}

This is a b∗-cut hypersimplex only in two cases:

1. When b = 1, or

2. when ∆b is a point, i.e. b(n) = r and b∗ = 1 − b.

Thus, the dual of a matroid tiling of ∆(r, n) is a matroid tiling of ∆(r∗, n) but
for the b-cuts this generally does not work.

4.10 Mnev’s universality theorem

The line arrangements in P2 with a fixed base polytope P = BPM form a locally
closed subset of ((P2)∨)n, resp. of the grassmannian G(3, n), called the configu-
ration space Conf(P ). This is not the moduli space of stable pairs that we are
interested in but it is certainly related to it.

A theorem of Mnev says that for any affine scheme of finite type Y over Z,
there exist n and P such that Y is locally analytically isomorphic to Conf(P )

modulo smooth factors.
In other words, any singularity over Z or over the base field k that can be

written using finitely many polynomials with integral coefficients in finitely many
variables appears on one of the configuration spaces. This was used in [Vak06] to
show that many familiar moduli spaces have arbitrarily bad singularities. This in-
cludes the moduli spaces of smooth surfaces of general type. Basically, one needs to
construct a class of varieties with are in a bijection with hyperplane arrangements
of type P , for example by taking Galois covers over a line arrangement in P2.

This principle of arbitrarily bad singularities most likely applies to the moduli
spaces of weighted stable hyperplane arrangements of dimension ≥ 2 as well.
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Chapter 5

Weighted stable hyperplane
arrangements

5.1 GIT and VGIT

We give the briefest of introductions into Geometric Invariant Theory (GIT) and
Variation of GIT quotients (VGIT). The main point of this introduction is that
GIT is a big and nontrivial theory in general, for arbitrary reductive groups G.
However, when G is a torus, the GIT quotients are very easy and computing them
is a simple combinatorial procedure.

For a thorough introduction to GIT see [MFK94]. For VGIT, see e.g. [DH98].

5.1.1 Main definitions and results of GIT

In algebraic geometry, it is easy to take quotients of an algebraic variety by the
action of a finite group G. One covers X by G-invariant open affine sets Ui =
SpecRi. Then X/G is covered by the open affine sets SpecRGi , where RGi ⊂ Ri is
the subring of invariants. The points of X/G are in a bijection with the G-orbits
of G↷X.

This construction runs into immediate problems when G is infinite. The
easiest example is Gm ↷ A1. If the orbits corresponded to points then A1/Gm
would have 2 points, and one would lie in the closure of the other. And no, it does
not help to work with schemes here instead of varieties.

The basic definitions to handle the general case are the following.

Definition 5.1.1. The action of an algebraic groupG on a varietyX is the morphism
a∶G ×X →X satisfying the axioms of the group action.

Definition 5.1.2. A categorical quotient is a variety Y with a trivial G-action and
with a G-equivariant (i.e. commuting with the G-action) morphism f ∶X → Y

81
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which has a universal property: for any other such pair (Y ′, f ′∶X → Y ′), f ′ factors
uniquely through f .

As any other object defined by a universal property, the pair (Y, f) is unique
up to a canonical isomorphism.

Definition 5.1.3. A geometric quotient is a variety Y with a trivial G-action and
with a G-equivariant morphism f ∶X → Y such that:

1. the k-points of Y are precisely the G-orbits on X,

2. a subset U ⊂ Y is open ⇐⇒ f−1(U) is open, and

3. the regular functions on Y are precisely the G-invariant functions on X, i.e.
for any open subset U ⊂ Y , Γ(U,OY ) = Γ(f−1(U),OX).

In the example with Gm ↷ A1 the geometric quotient does not exist but the
categorical quotient is a point Speck. When a geometric quotient exists, it is also
a categorical quotient.

In GIT, one always works with an infinite reductive group, such as a multi-
plicative torus or SLn, GLn, SPn. The first result of GIT is for the affine case:

Theorem 5.1.4. 1. If X = SpecR then the categorical quotient exists and equal
to Y = SpecRG, where RG ⊂ R is the ring of invariants.

2. The points of Y are identified with G-orbits on X modulo the following equiv-
alence relation: G.x1 ∼ G.x2 ⇐⇒ G.x1 ∩G.x2 ≠ ∅.

3. Among the equivalent orbits there exists a unique closed orbit which is con-
tained in the closure of any other orbit in this equivalence class.

Example 5.1.5. Consider A2 with two different actions by the group G = Gm
illustrated in Figures 5.1 and 5.2. (if it helps, you may work over R and think of
G as R∗).

(a) λ.(x, y) = (λx,λ−1y). In terms of characters of G: wt(x) = 1, wt(y) = −1.
The ring of invariants is k[xy], so A2/G = A1. For c ≠ 0, the orbit xy = c

is closed and gives a point of A2/G. For c = 0, the set xy = 0 consists of orbits
x = 0, y ≠ 0, y = 0, x ≠ 0, and x = y = 0. The last orbit x = y = 0 is closed, the others
are equivalent to it. So the three orbits get identified in the quotient.

Now remove the line x = 0. The new variety is A2 ∖ A1 = Speck[x,1/x, y].
The ring of invariants is still k[xy], so (A2 ∖ A1)/G = A1 is the same as before.
This time, all orbits are closed.

(b) λ.(x, y) = (λx,λy). In terms of characters of G: wt(x) = 1, wt(y) = 1.
The ring of invariants is k, so A2/G = pt. The orbits are y = cx and x = 0.
After removing the line x = 0, the ring of invariants is k[x,1/x, y]G = k[y/x],

so (A2∖A1)/G = A1, and all the orbits are closed. This shows that removing some
orbits may result in a bigger quotient!
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Figure 5.1: Gm ↷ A2 with weights 1,−1

Figure 5.2: Gm ↷ A2 with weights 1,1

The second main result is for the case when X is a projective variety. The
main idea is very simple: if (X,L) is a polarized projective variety and L is a
G-linearized ample line bundle then G acts on the ring R(X,L) = ⊕d≥0H

0(X,Ld).
The group acts on the affine cone X̃ = SpecR(X,L) and the categorical quo-
tient X̃/G is Ỹ = SpecR(X,L)G. The variety X is the projective version X =

ProjR(X,L), so the quotient of X should be ProjR(X,L)G.

However, there is one point of the affine cone Ỹ which does not give a point
in Y : the vertex 0. Therefore, one must remove the G-orbits in X̃ equivalent to 0,
i.e. the orbits in Ỹ with 0 ∈ G.x̃.

Definition 5.1.6. A point x ∈ X is called unstable if for the corresponding points
x̃ ∈ X̃ one has 0 ∈ G.x̃. Let Xunstable be the set of all unstable points.

A point x ∈X is called semistable if x ∈X∖Xunstable. The set of all semistable
points is denoted Xss.

Finally, a point x ∈X is called stable if x ∈Xss, the orbit G.x ⊂Xss is closed
and the stabilizer Gx is finite. The set of all stable points is denoted Xs.
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The main result of GIT is the following:

Theorem 5.1.7. Let (X,L) be a polarized projective variety with a G-linearized
ample line bundle L. Then

1. The set Xss is open in X, and ProjR(X,L)G is its categorical quotient.

2. The points of Xss/G are G-orbits of Xss modulo the equivalence relation:
G.x1 ∼ G.x2 ⇐⇒ G.x1 ∩G.x2 ≠ ∅.

3. Among the equivalent orbits there exists a unique closed orbit which is con-
tained in the closure of any other orbit in this equivalence class.

4. The set Xs is open in Xss and its geometric quotient exists. The points of
Xs/G are G-orbits of Xs.

The categorical quotient of Xss is denoted by X//G. It bears repeating that
Xss, Xs, and X//G depend on the choice of a G-linearized ample line bundle L.

Example 5.1.8. Consider the same actions as in Example 5.1.5 but this time con-
sider the corresponding projective variety (

¯
A2) = P1 with a linearized ample line

bundle O(1).
(a) The unstable locus is xy = 0, Xss = Xs = P1 ∖ {(0,1), (1,0)}, and X//G =

pt. (b) The semistable locus is empty and X//G = ∅.

The most general statement of GIT [MFK94, Thm.1.1.10] is for arbitrary
Noetherian scheme X with an arbitrary G-linearized sheaf. Again, one defines the
open sets Xss ⊃Xs (but the definitions are trickier) and the main results are: the
categorical quotient Xss//G and geometric quotient Xs/G exist.

5.1.2 GIT quotient by a torus action

Now suppose that G is a torus T = Grm. The action T ↷ R = R(X,L) is diag-
onalizable and decomposes R into a direct sum R = ⊕m∈MRm. Then the ring of
invariants RG is simply R0, the degree-0 part. Thus from the algebraic point of
view the GIT quotient by a torus action is extremely easy: X//T = ProjR0.

This becomes especially easy for toric varieties. Let (X,L) be a polarized
toric variety for a big torus H = GNm with an H-linearized ample line bundle
L. Recall that it corresponds to a polytope Q. Explicitly, X = ProjR, where
R = k[ZN ∩ Cone(1,Q)] and L = O(1) on this Proj. The ring R is graded by
Z⊕MH , and in particular by MH .

Let T ⊂ H, T = Grm be a subtorus. On the character lattices we have a
surjection φ∶MH → MT . This gives a grading on R by the lattice MT . Now the
ring of invariants RT , i.e. the 0-degree part of R is simply

k[ZN ∩Cone(1,Q′
)], Q0 = Q ∩ φ−1

(0).

Thus, it corresponds to a slice Q∩φ−1(0) of the polytope Q. This is illustrated in
Figure 5.3.
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l 
Figure 5.3: GIT quotient of a polarized toric variety

5.1.3 Variation of GIT quotients (VGIT)

VGIT is best illustrated by the above situation, as in Figure 5.3. First of all,
replacing the line bundle L by a multiple La results in replacing the polytope
Q by a multiple aQ. The ring R = ⊕d≥0H

0(X,Ld) is replaced by the Veronese
subring R(a) = ⊕d≥0H

0(X,Lad). One has ProjR = ProjR(a), so the variety X is
unchanged. Thus, for the GIT quotient purposes one can freely replace L by a
positive multiple.

This allows to speak of fractional T -linearizations of L. By definition, it is
a T -linearization of some multiple La. Now changing the original linearization in
combinatorial terms amounts to replacing the slice Q0 = Q ∩ φ−1(0) by a parallel
slice Qc = Q ∩ φ−1(c), c ∈MT ⊗Q.

Now pick a generic c in Figure 5.3. Then for a nearby c′ the polytope Qc′

is normally equivalent to Qc. This means that the combinatorics of the faces of
Qc and Qc′ are the same, and one is obtained from the other by parallel shift of
the facets. More precisely, this means that the normal fans of Qc and Qc′ are the
same. So the associated toric varieties Yc =X//cT and Yc′ =X//c′T are the same.

However, if one considers some special c then the combinatorics changes and
Yc′ no longer equal to Yc. However, there is still a contraction Yc′ → Yc. When Qc
is maximal-dimensional, it is a birational contraction. When c is a boundary point
then it is a projective morphism with positive-dimensional fibers.

Finally, when c lies outside of the projection φ(Q), we have Qc =, and so the
quotient Yc is also empty. Putting this together, gives the following

Theorem 5.1.9. 1. The set of Q-linearizations c of L is divided into finitely
many polyhedral chambers.

2. If c, c′ lie in the same locally closed chamber then Yc = Yc′ .

3. If c is a specialization of c′, denoted c′ ∈ c, then there exists a proper con-
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traction π∶Yc′ → Yc with π∗OYc′ = OYc .

This theorem is one-half of VGIT. The second half consists in varying L in
PicX ⊗Q, and is equally easy.

The only strengthening of this simple VGIT that is needed for weighted
hyperplane arrangements is this:

• Let (X,L) be a polarized variety with a G-linearized ample line bundle L.
Let Z ⊂ X be a closed G-invariant subvariety. Then the GIT quotient Z//G
w.r.t. the G-linearized ample line bundle L∣Z is a closed subvariety of X//G.

This simple observation allows one to extend the above VGIT picture from
toric varieties to a much larger class of T -invariant subvarieties of toric varieties.

5.2 Semi log canonical singularities and GIT

The following theorem is the heart of the construction of weighted stable hyper-
plane arrangements. This is where the magic happens.

Recall that a point of a grassmannian G(r, n) ⊂ PN , N = (
n
r
) − 1 is a linear

space PV ⊂ Pn−1 and, assuming PV does not lie in any of the coordinate hyper-
planes Hi, i = 1, . . . , n, we have a hyperplane arrangement (PV,Bi =Hi ∩ PV ).

Thus, we have a universal family P → G(r, n), P ⊂ PN × Pn−1 whose fibers
are the linear spaces PV . Note that

1. PN × Pn−1 is a toric variety for the torus H = GN+n−1
m .

2. T ⊂H is a subtorus.

3. G(r, n) and P are T -invariant subvarieties of PN and PN ×Pn−1 respectively.

Now pick a vector b = (b1, . . . , bn), 0 < bi ≤ 1, bi ∈ Q. Assume that b(n) > r.
To this vector we associate

1. An ample Q-line bundle Lb = O(1,b(n) − r).

2. A T -linearization of Lb . This is defined by setting the weight of the variable
zi to

wt(zi) = ei −
b

b(n)
∈MT ⊗Q, i = 1, . . . , n.

This gives a choice of a linearized ample line bundle on PN×Pn−1 and its subvariety
P . To emphasize this choice, we will talk about b-semistable points, the quotient
P //bT , etc.

Theorem 5.2.1 ([Ale08b]). Let [V ] ∈ G(r, n) be a point in the grassmannian and
[p ∈ V ] ∈ P be a point in the universal family over it. Then

1. If V ⊂ ∪ni=1Hi then [p ∈ V ] is not b-semistable.
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2. If V /⊂ ∪ni=1Hi then [p ∈ V ] is b-semistable ⇐⇒ BPV ∩∆b ≠ ∅ and the pair
(PV,∑ biBi) is log canonical at p.

There is a general principle that log canonical and semi-log canonical prop-
erties are very close to GIT stability, and generally GIT semistable is stronger.
See [Hac04] for a discussion and [Oda13] for a recent example. Theorem 5.2.1 is
an instance of this principle, and it works especially nicely because hyperplanes
Bi are linear subvarieties.

5.3 Weighted shas

Construction 5.3.1. Consider a matroid tiling ∪BPVi of ∆b . Recall from Defini-
tion 4.5.2 that this means:

1. Each polytope BPVi is the base polytope of some hyperplane arrangement.
Polytopes of maximal dimension n−1 correspond to arrangements with triv-
ial automorphism group, polytopes of codimension c correspond to arrange-
ments with Aut(Pr−1,B1, . . . ,Bn) = (k∗)c.

2. The tiling ∪BPVi is face-fitting: any two polytopes are either disjoint or
intersect along a smaller base polytope, with bigger automorphism group,
which is a face of both.

3. Each BPVi intersects the b-cut hypersimplex ∆b(r, n).

4. ∪BPVi ⊃ ∆b(r, n), but they do not have to cover the entire ∆(r, n).

5. Finally, recall that we ignore the polytopes lying entirely in the hyperplanes
xs = 0 because they do not correspond to hyperplane arrangements, since
their matroids have loops (zero vectors). Thus, a more accurate but cumber-
some statement would be that ∪(BPVi ∖ ∪

n
s=1 {xs = 0}) ⊃ ∆b ∖ ∪

n
i=1{xi = 0}.

Figure 5.4: A matroid tiling of the b-cut hypersimplex ∆b

Now assume that Y → G(r, n) be a stable toric variety of type ∪BPVi . Thus:

1. Y = ∪Yi, and each irreducible component Yi = T.Vi is the closure of an orbit
of an arrangement PVi ⊂ Pn−1 in G(r, n), with base polytope BPVi .
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2. They are glued along smaller orbits: T.Vi ⊃ T.Vj means that [Vj] = limλ[Vi]
for some 1-parameter subgroup λ∶Gm → T .

3. By 4.1.6 each Yi is a closed subvariety of G(r, n), so Y → G(r, n) is a closed
embedding.

Let P → G(r, n) be the universal family with the fibers PV ≃ Pr−1 and let
PY = P ×G(r,n) Y be its restriction to Y . We have PY ⊂ Pn−1 × Y .

Definition 5.3.2. A weighted stable hyperplane arrangement (sha) associated to
the stable toric variety Y over G(r, n) for the weight b = (b1, . . . , bn) is the GIT
quotient X = PY //T , together with the hyperplanes Bi = (PY ∩Hi)//bT .

Theorem 5.3.3 (Main theorem). The pair (X,∑ biBi) has semi log canonical sin-
gularities, and the Q-divisor KX +∑ biBi is ample. In other words, (X,∑ biBi) is
a stable pair.

The proof of this theorem is a combination of two ingredients:

1. The stable toric variety Y has slc singularities, by Lemma 2.6.7.

2. For every semistable point [p ∈ PV ] in the fiber PY → Y , the fiber (PV,∑ biBi)
is lc by Theorem 5.2.1.

Example 5.3.4. Suppose that there is a single polytope BPV covering ∆b , so that
∆b ⊂ BP0

V . Then by Theorem 5.2.1 the semistable points in PY are of the form
[p ∈ P(t.V )], where t.V ∈ G(r, n) is any of the linear spaces in the T -orbit of
V ⊂ Pn−1 and p is an arbitrary point of P(t.V ). Since BPV is maximal-dimensional,
the stabilizer of V is free and T.V ≃ V .

The action of the torus on the orbit T.[V ] in G(r, n) is free, so moreover the
orbits of the points [p ∈ PV ] are moreover free. So the quotient is [PV,B1, . . . ,Bn].
So (X,∑ biBi) = (PV,∑ biBi).

Example 5.3.5. Consider the subdivision of ∆(3,5) into {x123 ≤ 2} and {x45 ≤ 1},
and their faces. Let b = (1− ε, . . . ,1− ε) so we don’t have to worry about the faces
xi = 1 for now. Then the tiling of ∆b consists of three polytopes:

1. BPV1 = {x123 ≤ 2},

2. BPV2 = {x45 ≤ 2},

3. BPV3 = {x123 = 2, x45 = 1}.

The set of the semistable point consists of the T -orbits of the following points:

1. PV1 ∖ p123 = P2 minus a point,

2. PV2 ∖ `45 = P2 minus a line,

3. PV3 ∖ (p123 ∪ `45) = P2 minus a point and a line.
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The actions on the orbits T.[V1] and T.[V2] are free. The action on T.[V3] is not
free, the stabilizer is Gm. However, the action on the orbits of the points [p ∈ PV3]

is free since Aut(P2,B1, . . . ,B5, p) = 1. Therefore, the quotient of the above set is
the union of

PV1 ∖ p123, PV2 ∖ `45, and (PV3 ∖ {p123 ∪ `45})/Gm = P1.

It is easy to see that X is the union of Bl1 P2 = F1 and P2 joined along a line P1.
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Figure 5.5: Illustration for Example 5.3.5

Theorem 5.3.6. For any b and any 0 < ε≪ 1, let b ′ = b − ε. Then

1. Y ss
b′ = Y

s
b′ and the action on Y s

b′ is free. The variety Xb′ = Y
s
b′/T is a geometric

quotient.

2. There exists a contraction π∶Xb′ →Xb which is crepant w.r.t b, i.e.
KXb′ +∑ biB

′
i = π

∗(KXb
+∑ biBi).

3. Suppose that N is a positive integer such that all Nbi ∈ Z. Then for any
weighted sha w.r.t. b the divisor N(KX +∑ biBi) is Cartier.

4. The morphism π∶Xb′ → Xb is birational (on every irreducible component),
and it is an isomorphism over ∪Bi.

The facts that Y ss
b′ = Y

s
b′ for a general b ′ and that there exists a contraction

of GIT quotients π∶Xb′ →Xb are standard properties of VGIT.
The singularities of a quotient Y s

b′/T are the same as the singularities of Y s
b′ .

This, together with applying the contraction π from the above theorem, implies:
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Theorem 5.3.7. The following holds:

1. For a generic b ′, the variety Xb′ is Gorenstein.

2. For any b, the variety Xb is Cohen-Macaulay, and Xb ∖ ∪Bi is Gorenstein.

Theorem 5.3.8. The finer structure of X = ∪Xs is described by the following:

1. The stratification of X into irreducible components, and their intersections
(we do not include the divisors Bi into this) coincides with the stratification
of the polytopal complex ∆b = ∪(BPVs ∩∆b)

2. Every irreducible component of Xs of Xb is normal. In fact, it is the log
canonical model of the non-lc hyperplane arrangement (PVs,∑ biBi,s).

3. For every irreducible component Xs, the open subset Xs ∖ (∪j≠sXj ∪Bi) is
isomorphic to PVs ∖ ∪Bi for the corresponding hyperplane arrangement.

5.4 Moduli spaces of shas

We start with the open part of the moduli space we intend to compactify.

Definition 5.4.1. Fix positive integers r, n and let b = (b1, . . . , bn) be a vector with
0 < b ≤ 1 and b(n) > r. Let Mb be the moduli space of log canonical hyperplane
arrangements (Pr−1,∑

n
i=1 biBi).

The space Mb is fairly easy to construct, as follows. Let U ⊂ G(r, n) pa-
rameterize the pairs such that the pair (X,∑ biBi) is log canonical. Then U
is an open subset in a smooth variety contained in the set G(r, n)s

b of stable
points for the linearization defined by b. Thus, there exists a geometric quotient
Mb = U/G ⊂ G(r, n)//bT .

Note that a log canonical pair has trivial automorphisms, for example because
by Theorem 4.4.2 the base polytopes BPV are maximal-dimensional. Thus, Mb is
smooth, and it is a fine moduli space. It is easy to compute its dimension:

dim Mb = n(r − 1) − (r2
− 1) = (r − 1)(n − r − 1).

For example, dim Mb(2, n) = n − 3 and dim Mb(3, n) = 2(n − 4).

Theorem 5.4.2. For every r, n and b = (b1, . . . , bn) there exists a projective scheme
Mb(r, n) and a flat projective family (X ,B1, . . . ,Bn) → Mb(r, n) such that every
fiber is one of the weighted shas defines in Section 5.3 (thus, (X,∑ biBi) is slc and
KX +∑ biBi is ample), and there are no repeating fibers.

An individual weighted sha was constructed starting from a stable toric vari-
ety over the grassmannian G(r, n). Thus, to construct a family of shas one has to
consider a family of stable toric varieties, as in Theorem 2.4.3. This works well for
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the weight b = 1 considered in [HKT06]. For an arbitrary weight b, however, we
have a problem: the cover of ∆b was only a partial cover of ∆(r, n), and partial
covers for different supports can not vary flatly: the Hilbert polynomial changes.

Combinatorially, it is clear what is going on: the partial cover ∪BPVi of
∆(r, n) is irrelevant, the only important part is the cover of ∆b(r, n) by the poly-
topes BPVi ∩∆(r, n). And for these covers the topological type, the support ∆b

is the same, and one can apply Theorem 2.4.3 freely, for an appropriate multiple
N∆b to insure that it is a lattice polytope.

The solution is to replace the grassmannian by a “b-cut grassmannian Gb(r, n)
whose moment polytope is ∆b . We will not go into details of this construction here,
referring an interested reader to [Ale08b].

5.5 Geography of the moduli spaces of shas

“Geography” refers to varying the weight b. How are the moduli spaces Mb related
for different b? What is located in the extreme corners? The answer is the following
theorem, illustrated in Figure 5.6.

Definition 5.5.1. The weight domain of possible weights b is

D(r, n) = {b ∈ Qn ∣ 0 < bi ≤ 1, ∑ bi > r} .

The closure D(r, n) is a polytope whose lower face is

{x ∈ Rn ∣ 0 ≤ x ≤ 1, x(n) = r} = the hypersimplex ∆(r, n).

Theorem 5.5.2. The domain D(r, n) is divided by the hyperplanes x(I) = k for all
I ⊂ n, 2 ≤ ∣I ∣ ≤ n − 2, 1 ≤ k ≤ n − 1, into finitely many chambers.

1. (Same chamber) If b and b ′ lie in the same chamber (denoted b ∼ b ′) then
Mb = Mb′ and the families of shas are the same.

2. (Specialization) If b ∈ Chamber(b ′) (denoted b ∈ b ′) then there exists a
contraction Mb′ → Mb on the moduli spaces and (X ′,B′i) → (X ,Bi) on the
families.

3. (Specialization from below) Further, if b ∈ b ′ and b ′ ≤ b then Mb′ = Mb

and on the fibers the morphism X ′ → X is birational (on every irreducible
component).

Theorem 5.5.3. Let a ∈ ∆(r, n) be a generic element of the lower face and b ∈

D(r, n) be an element such that a ∈ b. Then Mb = M0
b = G(r, n)//aT , i.e. all

weighted shas in this case are ordinary log canonical hyperplane arrangements
(Pr−1,∑ biBi).
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Figure 5.6: Chamber decomposition for the weights b

5.6 Shas of dimension 1

Let (X,∑ biBi) be a weighted sha of dimension 1. By Theorem 5.3.8, every irre-
ducible component Xs is normal and birationally isomorphic to P1, so it is a P1.
The stratification of X into irreducible component coincides with the stratification
of ∆b into ∪(BPVs ∩∆b). Now Theorem 4.6.2 about partial tilings of ∆(2, n) gives
the following:

Theorem 5.6.1. A weighted sha of dimension 1 is a tree of P1s. The faces x(Ka) ≤ 1
correspond to points Qa ∈ X distinct from the nodes and the points Bi = Qa for
i ∈Ka.

Thus, the one-dimensional shas are the same as weighted stable curves in-
troduced in Hassett [Has03]. The chamber decomposition of Theorem 5.5.2 is also
the same as Hassett’s chamber decomposition. The hyperplanes are of the form
x(I) = 1 for I ⊂ n.

Finally, a birational morphism of 1-dimensional varieties is an isomorphism,
so this provides an additional simplification in the 1-dimensional case: for b ∈ b ′,
b ′ ≤ b (specialization from below) not only Mb′ = Mb but also X ′ =X.

The geography in this case is very easy. When changing the weights, every
time we cross a wall b(I) = 1, ∣I ∣ ≥ 2 downwards, b ′ > b, b(I) > 1 to b ′(I) ≤ 1, the
pair (X,∑ biBi) shown in the Figure 5.7 ceases to be stable because the degree of
KX +∑ biBi on the end component E, which by adjunction equals

degKP1 +#(double points on E) + ∑
Bi∈E

bi = −1 +∑
i∈I
bi

goes from positive to non-positive. This end component on Xb′ gets contracted to
obtain the new curve Xb on which the points Bi for i ∈ I coincide.
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- -) 

Figure 5.7: Crossing a wall b = 1

5.7 Shas of dimension 2

5.7.1 General results

Theorem 5.3.8 together with the fact that (KX +∑ biBi)∣Xs is ample also gives
enough control over irreducible components of X.

Definition 5.7.1. Recall that lines Bi in a hyperplane arrangement are allowed to
coincide. Denote by Simp(PV,∑Bi) the hyperplane arrangement where the coin-
ciding lines BI = Bi, i ∈ I, are counted once with the weight b′I = min(∑i∈I bi,1).

By applying Theorem 5.3.8, one obtains:

Theorem 5.7.2. For any weight b, an irreducible component of a weighted sha is

1. Either a blowup of P2 at k ≥ 0 points where the hyperplane arrangement
Simp(PV,∑ biBi) is not lc.

2. Or P1×P1 which is obtained from Bl2 P2 by contracting the (−1)-curve. This
case appears only for the hyperplane arrangement given in Figure 5.8 and
only if Simp(X,∑ biBi) is not lc at exactly two points p1, p2 and the line
between them has weight 1 in Simp(X,∑ biBi).

The irreducible components are glued together along the following P1s:

• the strict preimages in BlP2 of 1-dimensional non-lc line loci of (PV,∑ biBi),

• and the exceptional divisors of blowups

with the exception of the line in the case of Figure 5.8 which get contracted.

Proof. Indeed, the procedure for constructing the log canonical model for a non-lc
pair (PVs,∑ biBi,s) was:

1. Write ∑ biBi,s as a the sum ∑dkDk with distinct hyperplanes Dk, so that
dk = ∑i, Bi,s=Dk . For the hyperplanes with weight dk > 1, set d′k = 1, for the
others leave d′k = dk.
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Figure 5.8: Line arrangement leading to P1 × P1

2. Blow up the non-lc points of the new arrangement, call the exceptional
divisors, (−1)-curves Ej .

3. Apply MMP to K +∑d′kf
−1
∗ Dk +∑Ej . In dimension 2 this means that we

contract several curves.

By Theorem 5.3.8, the curves contracted by the MMP belong to the set
{f−1

∗ Dk}, so we only have to pay attention to them.
It is easy to see that after the second step the divisor ∑d′kf

−1
∗ Dk +∑Ej is

already nonnegative on these curves, and the only curves were it can be zero are
the the (−1)-curves obtained by blowing up exactly two points on P2, as in the
statement of the theorem. ◻

We can now explain the “volumes” of polytopes that we used in Section 4.7.
Obviously, every lattice polytope has the usual Euclidean volume which can be
normalized so that the smallest polytope has volume 1. But the “volume” we
define below is much smaller and more convenient.

Let (X,∑Bi) be a sha for the weight b = 1. The divisor KX +∑Bi is ample,
Cartier, and has the same numerical invariants as the corresponding divisor on
P2. Therefore,

(KX +∑Bi)
2
=∑ ((KX +∑Bi)∣Xs)

2
= (KP2 + nH)

2
= (n − 3)2.

By adjunction, (KX +∑Bi)∣Xs =KXs +∑Bi +Ds, where Ds is the double locus,
the intersection of Xs with the other irreducible components of X.

Definition 5.7.3. We associate to each irreducible component the positive integer
(KXs +∑Bi +Ds)

2 and call it the volume of the corresponding polytope.

Note that one can define a refined version of the volume, (KX +∑ biBi+Ds)
2

for a sha with weight b if BPVs ∩∆b ≠ ∅, and 0 otherwise. These refined volumes are
polynomials of degree 2 and they add up to (∑ bi−3)2. Naturally, these definitions
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can be given to any matroid polytope in ∆(r, n) that corresponds to a hyperplane
arrangement.

One application of the volume is the following

Lemma 5.7.4. Any weighted sha of dimension r has ≤ (n − r)r−1 irreducible com-
ponents.

The actual bound is smaller because it turns out to be impossible for all the
pieces to have volume 1.

Next, we go through explicit examples for n ≤ 6 divisors.

5.7.2 The case n = 4

Nothing here, move along. One has dim Mb = 2(n − 4) = 0 and there is a unique
stable pair (X,∑ biBi) for as long as ∑ bi > 3: P2 and 4 lines in general position.

5.7.3 The case n = 5

The two nontrivial tilings of Section 4.7.2 for b = 1 give the varieties shown in
Figures 5.9 and 5.10.

1. The tiling (3) x123 ≤ 2; (1) x45 ≤ 1. There are three cases:

a. b123 > 2 and b45 > 1. Then X = Bl1 P2 ∪ P2, shown in Figure 5.9.

b. b123 ≤ 2 and b45 > 1. Then the first component is contracted to a line, and
X = P2.

c. b123 > 2 and b45 ≥ 1. Then the second component is contracted to a point,
and X = P2.

Note that b123 + b45 = b(n) > 3, so one of these cases must hold.

Figure 5.9: n = 5, tiling 1

2. The tiling (2) x125 ≤ 2, x345 ≤ 2; (1) x34 ≤ 1; (1) x12 ≤ 1.
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For b = 1, X =X1 ∪X2 ∪X3, with X1 = P1 × P1, X2 = P2, X3 = P2, as shown
in Figure 5.10 on the left.

For b = (1,1,1,1,1−ε), X =X1∪X2∪X3, with X1 = Bl3 P2, X2 = P2, X3 = P2,
as shown in Figure 5.10 on the right.

Figure 5.10: n = 5, tiling 2

When b125 ≤ 2, X2 gets contracted. When b345 ≤ 2, X3 gets contracted.

When b12 ≤ 1, both X1 and X2 get contracted. When b34 ≤ 1, both X1 and
X3 get contracted.

Starting with the picture on the right, when either X2 or X3 or both are
contracted, on X1 = Bl2 P2 one or both of the exceptional curves are contracted.

Starting with the picture on the left with b5 = 1, when either X2 or X3 is
contracted, X1 must also be contracted, because b5 = 1, b125 ≤ 2 implies b25 ≤ 1.
And both X2 and X3 can not get contracted at the same time because b5 = 1,
b125 ≤ 2, b345 ≤ 2 implies that b(5) ≤ 3.

Also note that the specialization up b ′ = (b1, . . . , b4,1−ε)↝ b = (b1, . . . , b4,1),
provided both b125 > 2 and b345 > 2, results in a nontrivial birational contraction
Xb′ → Xb which on the component X1 is Bl2 P2 → P1 × P1. So decreasing the
weights does not give a morphism from Xb to Xb′ , unlike the curve case.

5.7.4 The case n = 6

Theorem 5.7.2 tells precisely how to decode any partial tiling into a stable pair,
for any weight b. In Figures 5.12 and 5.13, we list the 25 stable pairs with weight
b = 1 for the 25 tilings of ∆(3,6) which we listed in Table 4.4, except for tiling
no.7.

The stable pair for tiling no.7 is given in Figure 5.11. It is obtained by starting
with line arrangement of 6 lines meeting at 4 points three at a time; blowing up
the 4 points, and attaching to Bl4 P2 four P2s.
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-> 

Figure 5.11: Stable pair for tiling no.7

The other 24 stable pairs can be drawn in a toric way, so that the irreducible
components correspond to polytopes forming a tiling of a triangle with side 3.
Recall that a d-th multiple of the elementary triangle corresponds to (P2,O(d),
a rhombus corresponds to P1 × P1, and a trapezoid to Bl1 P2 = F1. Thus the
irreducible components of X are as in Table 5.1

no. components
1, 5 Bl1 P2 + P2

2, 3 Bl2 P2 + 2P2

4 Bl3 P2 + 3P2

6 2 Bl1 P2 + P2

7 Bl4 P2 + 4P2

8 P1 × P1 + 2P2

9, 10 P1 × P1 +Bl1 P2 + 2P2

11 3 Bl1 P2

12, 13, 14 2 Bl1 P2 + P1 × P1 + P2

15-19 Bl1 P2 + 2P1 × P1 + 2P2

20-25 3P1 × P1 + 3P2

Table 5.1: Irreducible components of stable hyperplane arrangements for b = 1

As we mentioned, all connected in codimension 1 tilings in ∆(3,6) can be
extended to a complete tiling. So all weighted shas for b ≠ 1 are obtained from
these by contraction and sometimes replacing P1 × P1 by Bl2 P2, according to the
rules of Theorem 5.7.2.
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Figure 5.12: Shas of dimension 2 with n = 6
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Figure 5.13: Shas of dimension 2 with n = 6, continued
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Chapter 6

Abelian Galois covers

6.1 The yoga of cyclic and abelian Galois covers

6.1.1 Cyclic covers

Let π∶X → Y be a cyclic Galois cover of two varieties for the group G = µn of
roots of unity. Thus, we have a group action µn ↷X and the quotient is Y . Let us
assume that X and Y are smooth for now, until we understand how to deal with
the general case.

Remark 6.1.1. We may be tempted to write G = Zn and we would be correct
if we worked over C or over any field k of characteristic not dividing n which
contains all n roots of unity. But that is only because over such a field the group
varieties µn and Zn are (non-canonically) isomorphic. It turns out that in general
the µn-quotients are very easy and Zn-quotients are very hard and sometimes even
pathological. So why don’t we do the correct and easy thing from the start?

The group of characters of G is Zn. Algebraically, this means that µn =

Speck[Zn], where k[Zn] = k[λ](λn − 1) is the group algebra of Zn. Now this
formula works over any field. We can even use k = Z or any other ring R and
it would still work: we would get the group scheme µn,R over SpecR. This is
entirely similar to the case of a multiplicative group Gm = Speck[Z] or a torus
T = Speck[M], M ≃ Zn which also can be defined over any base.

Anyway, let us return back to the case when k is a nice field. How do we
describe the cover π in terms of the data on the bottom variety Y ? The morphism
π is finite, and in particular affine. This means that X = SpecY A, where A is some
OY -algebra of rank n.

The µn-group action is the morphism G ×Y X → X. Algebraically, this is
described by a homomorphism of OY -algebras A→ A⊗ k[λ]/(λn − 1). A pleasant
and completely general argument shows this is equivalent to giving the algebra A
a Zn-grading by the group of characters.

101
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(This is indeed a completely general fact, true over any base and for any
diagonalizable group Speck[G∗], where G∗ is a finitely generated abelian group.
If interested, read Grothendieck [DG+70].)

Thus, A = A0 ⊕A1 ⊕ ⋯ ⊕An−1. The Zn-action is described by the formula
λ.(a0, a1, . . . , an−1) = (a0, λa1, . . . , λ

n−1an−1). The quotient is SpecAG, and the
ring of invariants is obviously A0. Thus, one must have A0 = OY .

The morphism π is flat. More generally, from commutative algebra we know
that a finite R-module M over a regular ring R is flat over R ⇐⇒ M is Cohen-
Macaulay. So for as long as the bottom Y is smooth and the top X is Cohen-
Macaulay, the sheaves Ai must be flat. A flat finite R-module is locally free. Since
we also must have rankAi, each Ai is an invertible OY -module.

Finally, we should have the algebra structure on A. This means that Ai can
be identified with A⊗i1 and we must have the map A⊗n → OY . Thus, the data for
a µn-cover is:

1. An invertible sheaf L on Y , so that A = OY ⊕L
−1
⊕L−2 ⊕⋯⊕L−(n−1), and

2. a homomorphism L−n → OY , i.e a section s ∈H0(Y,Ln).

We still need to understand when such a cover X is smooth. This is easy: locally,
L ≃ OY and s is a regular function on Y . The cover is locally given by the equation
zn = s. Thus, X is smooth ⇐⇒ the divisor D = (s) is smooth.

When Y is projective and k has all n roots of unity, the section s can be
replaced by any constant, and is entirely determined by the divisor D. In this
case, the data for the cover is:

1. An invertible sheaf L, and

2. a smooth effective divisor D,

which must satisfy the relation Ln = D. The divisor D is the ramification divisor
of π∶X → Y .

6.1.2 Abelian Galois groups

An finite abelian group G is just a direct sum of several cyclic groups, so a Galois
G-cover X → Y can be decomposed as a sequence of cyclic covers. So in principle
we trace them out using the previous subsection. However, it must be familiar to
anyone that frequently things are nicer when you write formulas in a coordinate-
free manner, without choosing a basis. This is the case here.

Also, even if X and Y are smooth, all the intermediate varieties are singular.
Thus, the abelian covers do not really reduce to the case of cyclic covers of smooth
varieties.

The general theory was described by Pardini in [Par91]. The data for a cover
involves line bundles for all characters χ ∈ G∗ and divisors DH,ψ for all cyclic
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subgroups H ⊂ G and their generators ψ. This becomes quite cumbersome for a
general group.

For a group of the form G = µnp for a prime p, however, the pairs (H,ψ) are
in a bijection with the nontrivial elements of G. Since this is the only case we
need, we will state the data for this case only. And, it is very convenient to switch
to the additive notation again, notwithstanding what I said above.

Thus, we fixG ≃ Zp, its dual group of charactersG∗ ≃ Zpp and a perfect pairing

G∗ ×G → Zp, (χ, g) ↦ χ(g) ∈ Zp. For a residue class i ∈ Zp, let i ∈ {0,1, . . . , p − 1}
be its smallest nonnegative lift to Z.

Theorem 6.1.2. The data for a Galois cover π∶X → Y for the group G = Zn2 is:

1. for each χ ∈ G∗, an invertible line bundle Lg.

2. for each nonzero g ∈ G, an effective reduced divisor Dg (which could be zero)

satisfying the fundamental relations (written here additively):

∀χ,χ′, Lχ +Lχ′ = Lχ+χ′ + ∑
g∶ χ(g)=χ′(g)=1

Dg in Pic(Y )

In particular, 2Lχ = ∑g∶ χ(g)=1Dg. One has X = SpecY ⊕χ∈G∗L−1
χ .

Example 6.1.3. The data for a Z2 cover is three divisors A,B,C and three sheaves
L1, L2, L3 (plus L0 = OY ) such that

L1 +L2 = L3 +C, L2 +L3 = L1 +A, L3 +L1 = L2 +B

which implies that

2L1 = B +C, 2L2 = C +A, 2L3 = A +B.

Vice versa, if Pic(Y ) has 2-torsion, the sheaves L1, L2, L3 can be uniquely com-
puted from A,B,C by the above formula.

Of course the divisors should satisfy some local conditions that one can com-
pute in order for X to be smooth.

Theorem 6.1.4 ([AP09]). Assume that the group PicY has no torsion. Then a
G-cover with the group G = Znp for the ramification divisors Dg exists ⇐⇒

∑
g

gDg = 0 in Pic(Y )⊗Zp.

The line bundles Lχ can be computed uniquely from the divisors Dg by the formula

pLχ =∑
g

χ(g)Dg.
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6.1.3 Numerical invariants

Since OX = ⊕χL
−1
χ , one has

hp(X,OX) =∑
χ

hp(Y,L−1
χ ).

In the case of the group G = Znp the canonical class of X is computed by the
formula, which is essentially the Riemann-Hurwitz formula for curves:

KX = π∗(KY +∑
p − 1

p
Dg) in Pic(X)⊗Q.

6.1.4 Singular covers

[AP11] extends the theory to the case of singular covers with at most double
normal crossings in codimension 1.

The most basic here is the following theorem:

Theorem 6.1.5. Suppose that π∶X → Y be a finite cover of S2 varieties with double
crossings in codimension 1, BX ,BY be Q-divisors on X,Y , and suppose that for
the canonical divisors the following formula holds:

KX +BX = π∗(KY +BY ).

Then the pair (X,BX) is slc ⇐⇒ (Y,BY ) is slc. Also, KX +BX is ample ⇐⇒
KY +BY is ample.

How it works perhaps can be guessed from the following example.

Example 6.1.6. Look at a double cover of surfaces π∶X → Y , defined by the data
(L,D) such that L⊗2 ≃ O(D). Locally, it is given by the equation z2 = f(x, y),
where f is a local equation for D.

WhenD is smooth, the covers is smooth. On the opposite side of the spectrum
is the case when f(x, y) = x2, i.e. D = 2E has a component of multiplicity 2. Then
the local equation for X is z2 = x2. Therefore, X is non-normal, and has a double
crossing singularity.

According to the above formula, KX = π∗(KY +
1
2
D). Since the pair (Y, 1

2
D) =

(Y,E) is lc, the surface X is slc.

6.2 Special K3 surfaces

6.2.1 Covers of P2 ramified in 6 lines

A polarized K3 surface is a pair (X,L) where X is a K3 surface, smooth or with
ordinary double points, and L is an ample line bundle. The positive integer L=2d
is always even, as the intersection form on a K3 surface is even.
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The smallest possible degree is 2. A K3 surface of degree 2 is a double cover
π∶X → Y , where Y is either P2 or F0

4, a surface obtained from the Hirzebruch
surface F4 by contracting the (−4)-section; it is a cone over the rational quartic
curve in P4.

By the adjunction formula, KX = π∗(KY + 1
2
D). The branch divisor D thus

satisfies 1
2
D ∼Q −KX . Thus, it is a sextic curve in the case Y = P2.

The Hacking compactification of the planar pairs looks at the pairs (P2, ( 3
d
+

ε)Cd) when Cd is a curve of degree d. For sextics, this gives (P2, ( 1
2
+ ε)D).

While it is hard to do it for the whole 19-dimensional family of all sextic
curves, let us do in the case when D is a union of 6 lines. In terms of weighted
hyperplane arrangements, this is the quotient of the moduli space Mb(3,6), where
b = ( 1

2
+ε, . . . , 1

2
+ε), divided by the symmetric group S6. Recall that dimMb(3,6) =

(6 − 4)(3 − 1) = 4.
For this space, we have the compactification Mb(3,6) which on the boundary

adds weighted shas. By Theorem 6.1.5, the double covers (X, εR) are stable pairs,
where R = π−1(B) = 1

2
π∗(B) is the ramification divisor.

According to our recipe, to compute the stable pairs, we have to compute all
matroid covers of the b-cut polytope ∆b(3,6). This is a very small polytope for
0 < ε≪ 1, a small neighborhood of the central point ( 1

2
, . . . , 1

2
) of ∆(3,6).

Since we already computed all complete matroid covers of ∆(3,6) and I
already stated without proof that any partial cover (connected in codimension 1)
extends to a complete cover, all we have to do is to look at the list in Figures 5.11,
5.12, 5.13, and look at the neighborhood of the central point.

For many of them the central point lies in the interior of one of the polytopes
BPV . In that case, the matroid cover of ∆b consists of the single polytope BPV ,
the P2 does not degenerate, the cover X is normal, and the pair (X, εR) is log
canonical.

The smaller-dimensional polytopes that contain the point a0 = ( 1
2
, . . . , 1

2
)

have faces of the form x12 ≤ 1, resp. x3456 ≤ 2. The codimension-2 polytopes that
contain a0 are of the form x12 = x34 = x56 = 1, plus all the S6-permutations of
course.

The resulting pairs are listed in Figure 6.1. There are 6 nontrivial cases, in
addition to the trivial case Y = P2. The numbers under the picture are all the
types from Figures 5.11, 5.12, 5.13 that produce this weighted sha. The circled
number is the easiest type.

One should note that if we did not have the complete tilings of ∆(3,6), then
we would not need them all. For our computation, we only need to look at the
polytopes that intersect a very small neighborhood of the center a.

Using the formulas of subsection 6.1.3, it is easy to compute the irreducible
components Z of the degenerate K3 surfaces. Note that since the sums of the Bi’s
on each components are divisible by 2, the components of the double locus D are
not in the branch locus.
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Figure 6.1: Degenerations of some K3 surfaces of degree 2

1. The cover of a component P2 in Picture no. 1, ramified in 4 lines, has

KZ = π∗(KP2 +
1

2
(4h)) = π∗(−h)

Therefore, Z is a del Pezzo surface with K2
Z = π∗(h2) = 2. A generic such

surface has 6 singularities of type A1 with equation z2 = xy over the 6
intersection points of the 4 lines.

2. The cover of F1 in Picture no. 1, ramified in 2(s1+f)+4f has KZ = π∗(−s1).
Therefore, K2

X1
= −2. One has KX = −R, and R is an elliptic curve with

R2 = −2.

3. The cover of F1 in Pictures 2, 3, 4, 5, ramified in 2(s1 + f) + 2f has KZ =

π∗(−s1−f). Therefore, K2
Z = 2 and −KZ is semiample and contracts a (−2)-

curve to a point. The surface Z is a partial resolution of an A1 singularity
on a del Pezzo surface of degree 2 with 6 A1 points.

4. The cover of P1 × P1 in Pictures 3, 4, 5, 6 is a del Pezzo surface of degree 4
with 4 A1 points.

5. The cover of P2 in Pictures 3, 4, 5, 6 is a del Pezzo surface of degree 8 with
a single A1 singularity.
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6.2.2 Degenerations of Kummer surfaces

To every abelian surface A one associates its Kummer surface X = A/⟨±1⟩. It has
16 ordinary nodes. Now suppose that (A,L) is principally polarized surface. Then
the sheaf L ⊗ (−1)∗L descends to X and realizes X as a quartic surface in P3

with 16 nodes. Projecting from one of the nodes gives a double cover π∶X → P2

ramified in 6 lines; the remaining 15 nodes are the π-preimages of the (
6
2
) points

of intersections of these 6 lines.

Thus, the Kummers of principally polarized abelian surfaces form a closed
3-dimensional subfamily of the 4-dimensional family M ⊂Mb(3,6) of the previous
subsection. They are distinguished by the condition that the 6 lines B1, . . . ,B6 are
tangent to a common conic C, at the points P1, . . . , P6.

Let C̃ → C be the 2-to-1 cover ramified in P1, . . . , P6. Then C̃ is a curve of
genus 2 and the abelian surface A is its Jacobian JC̃.

The degenerations of the Jacobians are very well understood (see [Ale04])
and the degenerations of their Kummers are intimately related to them. Among
the 6 degenerations of the previous section, only 3 appear: cases 5, 12, and 20.
They correspond to the degenerations in which 1, 2, or 3 of the pairs of points
among the points P1, . . . , P6 come together.

6.3 Numerical Campedelli surfaces

This case is taken from [AP09]. Numerical Campedelli surfaces that we consider
are Z3

2-Galois covers of P2 with the building data Dg = a line for each g ≠ 0. The
adjunction formula says KX = π∗(KP2+ 1

2
(7h)). Therefore, K2

X = 8× 1
4
= 2, and KX

is ample. Thus, X is a surface of general type with K2
X = 2. One further computes

that pg = h
2(OX) = 0 and q = h1(OX) = 0.

The moduli space of such surfaces is Mb(3,7) for b = ( 1
2
, . . . , 1

2
), and its com-

pactification is Mb(3,7). To compute the latter, we need to compute the matroid
covers of ∆b(3,7). However, all such matroid covers are trivial. Indeed, none of
the hyperplanes x(I) = 2 ⇐⇒ x(Ic) = 1 intersect the interior of ∆b(3,7). If all
xi ≤

1
2

then ∣I ∣ = 6, but then ∣Ic∣ = 1 and x(Ic) ≤ 1
2
.

Therefore, Mb(3,7) = Mb(3,7) is already compact and equal to to the GIT
quotient G(3,7)//bT for the symmetric (“democratic”) weight.

6.4 Kulikov surfaces

Kulikov surfaces are Z2
3-covers of Bl3 P2 in a configuration of 9 curves obtained by

blowing the vertices of the triangle in the configuration of 6 lines in P2 pictured
in Figure 6.2. The colors of the divisors Dg correspond to the following group
elements g ∈ Z3

2: red = (1,0), green = (1,1), black = (1,2) and the dashed line is
(0,1). These surfaces are smooth, have ample KX , K2

X = 6, and pg = q = 1.



108 Chapter 6. Abelian Galois covers

' ' \ 

Figure 6.2: Kulikov surface configuration

From a different point of view, the moduli space together with its compacti-
fication was considered in [CC12]. We give it here to illustrate our methods.

It is fairly obvious that the configuration of 6 lines forms a 1-dimensional
family. So to compactify it should not be too hard.

The starting configuration is that of tiling no.4 in Figure 5.12. The subdi-
visions must have their corners “cut off”. The only such subdivision is no.25 in
Figure 5.13. The tilings in Figure 5.13 are given modulo S6, so in fact there are
two degenerations shown in Figure 6.3.

Figure 6.3: Degenerations of Kulikov surfaces

The compactified moduli space is isomorphic to P1.
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