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1. Introduction

This paper is concerned with compactifications of the moduli spaces F2d of po-
larized K3 surfaces (S,L), L2 = 2d, and more narrowly with the case 2d = 2. It is
well known that F2d is a quasiprojective variety of dimension 19 and that over C it
can be written as a quotient D/G of a symmetric Hermitian domain of type IV by
a discrete arithmetic group. There are several approaches to compactifying F2d:

(1) The first one is specific to the quotients of the form D/G, where the fact that
it happens to be a moduli space is irrelevant. Namely, for any space D/G there is a

Baily-Borel compactification [BB66] D/GBB
with a fairly small boundary (for type

IV domains only curves and points). Further, there exist infinitely many toroidal

compactifications D/Gτ of Mumford et al [AMRT75]. These depend on choices of
compatible fans for the cusps in the Baily-Borel compactification. The boundary

of each D/Gτ is a divisor, and they all map to D/GBB
. A related compactification,

in a sense a mixture of the above two, is due to Looijenga [Loo86, Loo03].
(2) The second approach is to use Geometric Invariant Theory. For K3 surfaces

of degrees 2 and 4 it was pioneered by Shah [Sha80, Sha81].
(3) The third approach is to compactify F2d functorially as a moduli space by

adding some “stable surfaces” on the boundary, in a way similar to the Deligne-
Mumford compactification Mg for the moduli space of curves. The general theory
[KSB88], [Ale96a, Ale96b, Ale06], [Kol15], sometimes going by the moniker KSBA,
says that the moduli functor of pairs (S,

∑
diDi) with semi log canonical singular-

ities and ample KS +
∑
diDi has a proper moduli space. Although there are some

remaining technical questions in the most general case, in the special case of K3
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surface pairs (S, εD) with a small coefficient 0 < ε� 1 and an ample divisor D the
theory is complete.

This provides e.g. a compactification for the moduli space P2d of pairs (S, εD) of
K3 surfaces with the additional data of a divisor D ∈ |L| in the polarization class.
This space has dimension 20+d and it is fibered over F2d into (quotients of) Pd+1s.
The space P 2 was computed by Laza [Laz12].

To compactify the original space F2d one has to make some intrinsic choice of
a divisor D ∈ |NL| that would depend only on the surface S itself, for some fixed
multiple N . There are many natural choices for such an intrinsic D, leading to
different compactifications. In our particular case, every K3 surface S of degree 2
comes with an involution and a 2-to-1 map π : S → X to a P2 or F0

4 (the Hirzebruch
surface F4 with the (−4)-section contracted), and one can take for D ∈ |3L| the
ramification curve of π. This is probably the smallest possible choice, and it is the
one we make.

It is easy to see that given a double cover π : S → X, the pair (S, 2εD) is stable
iff the pair

(
X, ( 1

2 + ε)B
)

is stable, where B ∼ −2KX is the branch divisor on the
base.

Thus, the moduli compactification F 2 is essentially the same as the compact-
ification M(P2, d) of the moduli space of planar degree d pairs

(
P2, ( 3

d + ε)Cd
)

constructed by Hacking in [Hac04], in the special case of sextic curves. Hacking’s
results are very complete for d = 4, 5 and somewhat complete for 3 - d. The
expanded version [Hac01] contains some partial results for the d = 6 case which
are unfortunately not enough to describe this space in detail. We supplement the
results of that work here.

A very interesting question is whether one can combine approaches (1) and (3):

Question 1.1. Does one of the infinitely many toroidal compactifications F
τ

2d have
a special moduli meaning? Does it come with a family of stable K3 surface pairs?

The answer to this question is known to be “yes” in the closely related but easier
case of principally polarized abelian varieties whose moduli space is a quotient Ag =
Hg/ Sp(2g,Z) of a symmetric domain of Siegel type. In that case one finds [Ale02]

that the normalization of the main component of the moduli compactification Ag
coincides with the toroidal compactification A

τ

g for a special fan called the 2nd
Voronoi fan. (In the definition of the moduli functor, principally polarized abelian
varieties (A, λ) are replaced by pairs (Y, εΘ) consisting of an abelian torsor Ay Y
together with a theta divisor; such pairs have the same moduli space Ag.) So the
above question can be put in the following way:

Question 1.2. Is there a substitute for the 2nd Voronoi fan in the case of polarized
K3 surfaces?

The main aim of this paper is to relate a particular toroidal compactification

F
refl

2 with the moduli compactification F 2 by stable pairs (S, εD) for the above
choice of D ∈ |3L| as the ramification divisor, i.e. F 2 = M(P2, 6). The fan that we
consider is the reflection fan τ refl cut out by the hyperplanes perpendicular to the
(−2)-vectors in the relevant lattice. Our main result is as follows:

Theorem 1.3. The strata of F 2 are in a bijection with the strata of F
refl

2 modulo
a certain natural equivalence relation defined in (4.6).
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In light of this we make the following conjecture:

Conjecture 1.4. There exists a universal family of stable pairs (X , εD) over the

toroidal compactification F
refl

, which defines a morphism F
refl

2 → F 2.

Remark 1.5. The space F 2 itself is definitely not a toroidal compactification of F2

because a particular stratum correponding to the 2Ẽ8Ã1 type II degenerations has
codimension 2 in F 2, but it should be a divisor in any toroidal compactification.

However, the positive-dimensional fibers of F
refl

2 → F 2 are small, of dimension ≤ 3,
and there are few of them. These fibers are described by the equivalence relation
(4.6), as in Theorem 1.3.

The plan of the paper is as follows. In Section 2 we briefly review the rele-
vant combinatorics of toroidal compactifications as it relates to our case. We also
describe the reflection fan τ refl in detail. It turns out that cones in this fan are
conveniently described by parabolic and elliptic subdiagrams of a certain weighted
graph called the Vinberg diagram ΓVin.

In Section 3 we briefly review the theory of moduli compactifications via stable
pairs, explain how it applies to the case of K3 surfaces of degree 2, and recall
Hacking’s results on the compactification M

(
P2, ( 1

2 + ε)B6

)
of planar sextics.

In Section 4 we describe all stable limits of K3 pairs (S, εD), i.e. of pairs
(
P2, ( 1

2 +

εB)
)

and
(
F0

4, (
1
2 + εB)

)
, and find that the types of limits are in a bijection with

the cones of τ refl modulo a certain natural equivalence relation defined in (4.6).
In Section 5 we study a closely related question. We classify maximally log

canonical sextics in the plane, by which we mean that (P2, 1
2B) is lc but the pair(

P2, ( 1
2 + ε)B

)
for ε > 0 is not lc. Our theorem in this case is:

Theorem 1.6. There is a bijection between the types of maximally log canonical
sextics in the plane and the hyperbolic subdiagrams of a certain graph Γ21, obtained
by removing three central vertices from the Vinberg diagram ΓVin.

In a sense, this theorem is dual to a description of cones in τ refl. Dualizing
hyperbolic diagrams gives parabolic and elliptic subdiagrams of Γ21 and ΓVin.

In Section 6 we prove a result (Theorem 6.13) that gives sufficient conditions
for a family to satisfy Conjecture 1.4, and present a construction of a family that
comes very close to satisfying these conditions.

Throughout the paper, we work over the field C of complex numbers.

Acknowledgements. VA was partially supported by NSF grant DMS 1200726.
AT was supported in part by NSERC and in part by a Fields-Ontario-PIMS post-
doctoral fellowship with funding provided by NSERC, the Ontario Ministry of
Training, Colleges and Universities, and an Alberta Advanced Education and Tech-
nology Grant.

2. Toroidal compactifications of F2

2.1. Baily-Borel and toroidal compactifications of F2d. The general refer-
ences for this section are [BB66, AMRT75, ast85]; see also [Sca87, Kon93, Loo03].

The cohomology group H2(S,Z) of a smooth K3 surface with the intersection
pairing is isomorphic to the unique even unimodular lattice II3,19 = E⊕2

8 ⊕ U⊕3,
where E8 and U are the standard even unimodular lattices of signatures (0, 8) and
(1, 1). Let h ∈ II3,19 be a primitive vector with h2 = 2d > 0, and let L2d := h⊥ '
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E⊕2
8 ⊕ U⊕2 ⊕ 〈−2d〉, a lattice of signature (2, 19). The domain D2d is defined as

either of the two connected components of the set

{[ω] ∈ P(L2d ⊗ C) | ω.ω = 0, ω.ω̄ > 0}.
Let G2d be the subgroup of the isometry group O(II3,19) that fixes h and the
connected component D2d. This is a subgroup of finite index in O(L2d). Then the
Global Torelli Theorem says that there is a bijection between

(1) the points of the quotient D/G and

(2) the isomorphism classes of pseudo-polarized K3 surfaces (X̂, L̂) with a big

and nef line bundle L̂ such that L̂ is primitive in Pic X̂ and L̂2 = 2d, or
(2′) equivalently, with the isomorphism classes of polarized K3 surfaces (X,L)

that have Du Val (An, Dn, En) singularities, with a primitive ample line
bundle L such that L2 = 2d.

Given (X̂, L̂), the pair (X,L) is obtained by contracting the (−2)-curves C ⊂ X
such that L̂.C = 0. Given (X,L), the surface X̂ is the minimal resolution of

singularities of X, and L̂ is the pullback of L.
Many authors prefer to work with the smooth K3 surfaces, and the coarse moduli

space in the category of schemes for either moduli functor is D2d/G2d, which is a
quasiprojective variety over C. However, the moduli functor for smooth K3s is
non-separated. Indeed, for a generic 1-parameter family X → S with a central
fiber X0 acquiring a (−2)-curve, X can be flipped in C, giving a non-isomorphic
over S family X+ → S. For this reason, it is preferable to work with the functor
of polarized K3 surfaces (X,L) with ADE singularities whose moduli functor is
separated.

The boundary of Baily-Borel compactification F
BB

2d consists of curves (1-cusps)
which intersect and self-intersect at points (0-cusps). The 0-cusps are in a bijection
with primitive vectors e ∈ L2d such that e2 = 0, modulo G2d. Similarly, the 1-
cusps are in a bijection with primitive isotropic sublattices E ⊂ L2d of rank 2,
modulo G2d. The 1-cusps (resp. 0-cusps) correspond to type II (resp. type III)
degenerations of K3 surfaces.

For any 0-cusp e, let N2d,e be the lattice e⊥/e of signature (1, 18), and let G2d,e

be the subgroup of G2d fixing e. The data for a toroidal compactification F
τ

2d is
a collection of G2d,e-equivariant fans {τe}, one for each 0-cusp. (Recall that a fan
is a locally finite collection of face-fitting rational polyhedral cones.) The fan τe is
a fan in the R-vector space with the lattice N2d,e and its support is the rational

closure C
Q
2d,e of the cone

C2d,e = {v ∈ N2d,e ⊗ R | v2 > 0}
obtained by adding rational vectors v with v2 = 0. The fan must be equivariant
with respect to the G2d,e-action, and there must be only finitely many cones modulo

G2d,e. The toroidal compactification F
τ

2d is modeled on the G2d,e-quotients of the
“infinite toric varieties” corresponding to the fans τe.

For other symmetric domains, one may have to consider compatible fans for cusps
of all dimensions. However, for the type IV domains the fans for the 1-cusps lie in
1-dimensional spaces, so these fans are unique and the compatibility is immediate.

2.2. The degree 2 case. We now specialize this construction to the degree 2d = 2
case. Then L2 = E⊕2

8 ⊕ U2 ⊕ A1, where A1 = 〈−2〉. There is a unique 0-cusp and
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four 1-cusps. Consequently, the boundary F
BB

2 \ F 2 consists of four nodal curves
meeting at a single point.

The lattice corresponding to the unique 0-cusp is N2 := N2,e = E⊕2
8 ⊕ U ⊕ A1.

We denote the dual lattice M2 = N∗2 ; this is an overlattice of N2 of index 2. The
corresponding group is G2,e = O(N2).

Thus, the data for a toroidal compactification F
τ

2 is one O(N2)-equivariant fan

τ supported on C
Q

. There is a natural choice for this fan: the reflection fan τ refl,

obtained by cutting C
Q

by hyperplanes orthogonal to roots r ∈ N2, r2 = −2. A
fundamental domain of the lattice N2 for this reflection action has 24 sides. The
corresponding polyhedron in the hyperbolic space H = C/R+ has finite volume.

Of course for an arbitrary hyperbolic lattice N the reflection group may not give
a fan; this happens iff the fundamental polyhedron has infinite volume. Vinberg
[Vin75] gave a constructive algorithm to determine whether the volume is finite.
When it finishes successfully, Vinberg’s algorithm produces a Vinberg diagram ΓVin

(also called a Coxeter diagram) whose vertices correspond to the walls r⊥i of a
chosen fundamental domain δ = {v | ri.v ≥ 0}, and edges indicate the angles
between ri’s. The following is a general description of the faces of all dimensions
of the fundamental domain from [Vin75]:

Theorem 2.1 (Vinberg). There is a bijection between faces F of the fundamental
domain δ and certain subdiagrams I ⊂ Ver(ΓVin) defined by

F 7→ {i | F ⊂ r⊥i }, I 7→ ∩i∈I r⊥i ∩ δ.
The faces of δ are of two types:

(1) Rays R≥0v with v2 = 0. These are in a bijection with maximal subdiagrams
of ΓVin whose every connected component is parabolic.

(2) Other cones (including rays) which are in a bijection with elliptic subdia-
grams of ΓVin.

The correspondence is order-reversing. The cone δ itself corresponds to ∅.
We call the above two types of cones type II and type III cones.

Corollary 2.2. The cones of τ refl modulo O(N2) and the strata in the toroidal

compactification F
refl

2 are in a bijection with the elliptic and maximal parabolic
subdiagrams of ΓVin modulo Aut(ΓVin).

For the lattice N2 = E⊕2
8 ⊕U⊕A1, the Vinberg algorithm, proving that τ refl is a

fan, was computed e.g. by Scattone in the last chapter of [Sca87], see also [Kon89,
Nik83]. The Vinberg diagram ΓVin in this case has 24 vertices. We reproduce it in
Figure 1. Each vertex corresponds to a vector ri with r2

i = −2. There is no edge
between the vertices ri, rj if rirj = 0, a single edge if rirj = 1, a double edge if

rirj = 2, and a dashed line if rirj = 6. We denote the vectors ~ai, ~bi, ~di as shown.
Note that Aut(ΓVin) = S3.

The four maximal parabolic subdiagrams of ΓVin, also found in [Sca87], are
shown in Figures 2a–2d. Connected components of these diagrams are extended

Dynkin ÃD̃Ẽ diagrams. Connected components of elliptic subdiagrams are ordi-
nary Dynkin ADE diagrams. Each of the maximal elliptic subdiagrams has 18
vertices. Some of these are A18, D18, 3E6, etc.

By construction, the toroidal compactification F
refl

is modeled on a single ordi-
nary 19-dimensional affine toric variety U refl which we now explicitly define.
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Figure 1. Vinberg diagram ΓVin
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Definition 2.3. In the lattice M2 of monomials, consider the rational polyhedral

cone σ̌refl generated by the integral vectors ~ai (i = 0, . . . 17), ~bi (i = 0, 6, 12), and
~d′i = 1

2
~di (i = 3, 9, 15). We denote by σrefl its dual cone in N2.

The affine toric variety corresponding to σ̌refl and σrefl is denoted by U refl.

Lemma 2.4. The maximal-dimensional cone σrefl has 10 rays of type II – 4 up to
O(N2), and 525 rays of type III – 99 up to O(N2).

Up to O(N2), each ray is uniquely determined by its label except for the cases
A13A4A1, A17A1, A92A4A1, A9E8A1, D10E7A1, for which there are two rays.

Proof. A direct computation. �

2.3. Relations between vectors ~ai, ~bi, ~di. Let Γ = tΓs be a maximal parabolic

subdiagram. Each connected component Γs is an extended Dynkin diagram of ÃD̃Ẽ
type. It is well known that there exists a unique primitive vector n(Γs) =

∑
niri

with ri ∈ Γs, ni ∈ N, such that n(Γs)rj = 0 for all rj ∈ Γs. This is a nonzero
vector in the lattice N2 that generates the corresponding type II ray. Thus, if Γ
has ≥ 2 components then we get relations n(Γs) = n(Γs′). We call these Type II
relations, and we record them below (plus the relations obtained from these by an
S3-symmetry). The weights are also shown in Figure 2.

2Ẽ8Ã1 : 6~a0 + 4~a1 + 2~a2 + 3~b0 + 5~a17 + 4~a16 + 3~a15 + 2~a14 + ~a13 =

6~a6 + 4~a5 + 2~a4 + 3~b6 + 5~a7 + 4~a8 + 3~a9 + 2~a10 + ~a11 =

~b12 + ~d3

D̃10Ẽ7 : ~a17 +~b0 + 2(~a0 + · · ·~a6) +~b6 + ~a7 =

4~a12 + 2~b12 + 3~a11 + 3~a13 + 2~a10 + 2~a14 + ~a9 + ~a15

D̃16Ã1 : ~a1 +~b0 + 2(~a0 + · · ·+ ~a6) +~b6 + ~a5 =

~a3 + ~d3

Theorem 2.5. The following holds:

(1) The lattice N2 has rank 19 and determinant 2.

(2) The sublattice generated by the 19 vectors ~ai, ~b0 has index 3 in N2.

(3) N2 is generated by the 20 vectors ~ai,~b0,~b6 with a unique 2Ẽ8-relation

n(Ẽ
(1)
8 )− n(Ẽ

(2)
8 ) = 0 between them.

(4) N2 is also generated by the 21 vectors ~ai,~bi, and the relations between them

are generated by the three 2Ẽ8-relations; the sum of these relations is zero.

(5) The dual lattice M2 = N∗2 is generated by N2 and one of vectors ~d′i = 1
2
~di.

In particular, M2 is generated by ~ai,~b0,~b6, ~d
′
3 with two relations coming

from 2Ẽ8 and D̃16Ã1.

Proof. (1) is by definition, (2,5) are direct computations, and (3,4) are easy. �

Theorem 2.6. The lattice M2 and the cone σ̌refl can be embedded into a lattice
Z21 with the basis of vectors ~si (0 ≤ i < 18) and ~ti (i = 0, 6, 12) by setting

~ai = ~ti−1 + ~ti+1 − 2~ti (i 6= 0, 6, 12), ~ai = ~ti−1 + ~ti+1 + ~si − 2~ti (i = 0, 6, 12),

~bi = ~ti − 2~si (i = 0, 6, 12), ~d′i = ~ti + ~si+9 (i = 3, 9, 15),

where the indices i are considered modulo 18. Moreover, M2 is the kernel of a
homomorphism Z21 → Z2 ⊂ Z3 defined by ~ti 7→ ~ui − ~uc, ~si 7→ ~vi − ~uc, where the
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vectors ~ui, ~uc, ~vi are defined by

~u0 = (6, 0, 0), ~u1 = (5, 1, 0), ~u2 = (4, 2, 0), . . . ~u17 = (5, 0, 1)

~v0 = (4, 1, 1), ~v6 = (1, 4, 1), ~v12 = (1, 1, 4), ~uc = (2, 2, 2).

(cf. the intergral points in the 6-6-6 lattice triangle as in depicted in Figure 7).

Proof. We can embed M2 into Z24 and the cone σ̌ into R24 by evaluating for each

of the 24 generators ~ai, ~bi, ~d
′
i of M2 their dot products with the 24 generators ~ai,

~bi, ~di of N2. If we denote the coordinates on Z24 by ~a∗i = ~ti, ~b
∗
i = ~si, ~d

∗
i = ~ri

then we will get the above expressions with some additional ~ri. We then project to
Z24/〈~ri〉 = Z21, and the sublattice M2 projects isomorphically.

It is immediate to check that all ~ai,~bi, ~d
′
i are in the kernel of Z21 → Z2. �

3. Moduli of stable pairs

3.1. General theory. We briefly recall the main definitions and results concerning
complete moduli spaces of stable pairs, referring for details to [Kol13, Kol15, Ale06,
Ale15].

Definition 3.1. A pair consisting of a normal variety X and an R-Weil divisor
B =

∑
biBi, with 0 ≤ bi ≤ 1 and effective Z-Weil divisors Bi, has log canonical (lc)

singularities if KX+B is R-Cartier and for any resolution of singularities f : Y → X
in the natural formula

KY = π∗(KX +B) +
∑

aEE,

one has aE ≥ −1, with the sum going over all irreducible divisors E on Y , whether
they are f -exceptional or not. In particular, for any irreducible nonexceptional
divisor E on X one has

∑
bi multE Bi ≤ 1.

Definition 3.2. A pair consisting of a reduced, but possibly reducible, variety X
and an R-Weil divisor B =

∑
biBi, with 0 ≤ bi ≤ 1 and effective Z-Weil divisors

Bi, has semi log canonical (slc) singularities if

(1) X satisfies Serre’s S2 condition,
(2) X has at worst double crossing singularities in codimension 1,
(3) no component of Bi contains any component of the double locus, and,
(4) denoting by ν : Xν → X the normalization of X, the pair (Xν , ν−1B +

(double locus)) is log canonical.

Definition 3.3. A pair (X,B) of a connected reduced, but possibly reducible,
projective variety X and an R-divisor B =

∑
biBi is stable if

(1) (X,B) has slc singularities,
(2) KX +B is ample.

Definition 3.4. Fix real numbers C, 0 < ε < 1, and a positive integer N ∈ N.
Define the moduli functor M ε,C,N from Schemes to Sets by setting M ε,C,N (S) to be
the set of of flat families (X ,B = εB1)→ S up to isomorphisms over S, satisfying:

(1) B1 ⊂ X is a relative divisor, flat over S.
(2) Every geometric fiber is a stable pair (X,B = εB1) with (KX +B)2 = C.
(3) Denoting by j : U → X the open subset where the sheaves ωX/S andOX (B1)

are invertible, the complement X \ U has codimension ≥ 2 on each fiber.
(4) j∗OU (NB1) is invertible and relatively ample.
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(5) j∗ω
⊗N
U/S is invertible and relatively trivial.

Theorem 3.5. For a sufficiently small 0 < ε � 1, and fixed C, there exists an
N such that the functor M ε,C,N is proper and is coarsely represented by a proper
algebraic space M over C.

Moreover, Kollár’s theorem [Kol90] and Fujino’s generalization to pairs [Fuj12]
imply that M is a projective scheme over C. Note: taking a small coefficient
ε avoids some thorny problems when some one-parameter limits of divisors B1

acquire embedded points.

3.2. Application to K3 surfaces of degree 2. As an application of the general
theory, consider the moduli functor F2 as in Section 2.1, parameterizing pairs (S,L),
where S is a K3 surface with ADE (Du Val) singularities, and L is an ample

invertible sheaf with L2 = 2. Let Ŝ the minimal resolution of singularities of S,

and L̂ be the pullback of L, a big and nef invertible sheaf on Ŝ. Then one of the
following holds:

(1) (Hyperelliptic case) The linear system |L̂| is base point free. Then |L̂| de-

fines a generically 2-to-1 map Ŝ → P2 which descends to a finite morphism
π : S → P2 of degree 2.

(2) (Unigonal case) |L̂| has a base curve, a (−2)-curve, and the moving part

is “composed of a pencil”. Then Ŝ comes with a generically 2-to-1 map to
the Hirzebruch surface F4 which descends to a finite morphism π : S → F0

4

of degree 2, where the surface F0
4 is the cone over a rational normal curve

of degree 4; it is obtained from F4 by contracting the (−4)-section.

Either way, we get a double cover π : S → X, where X is P2 of F0
4. Let D be

the ramification curve of π. Then D ∈ |3L| and D2 = 18. For 0 < ε � 1, the
pair (S, εD) is klt (implying it is slc), KS ∼ 0, and (KS + εD)2 = 18ε2. Thus, the
general theory (3.5) provides a functorial compactification.

We will be interested in the main irreducible component of this compactificaiton,
which we will denote by F 2. (Thus, we are only interested in the stable surfaces
which can be obtained as one-parameter degenerations of K3 surfaces).

Let π : S → X be a 2-to-1 Galois cover of surfaces that have at worst double
crossing singularities, and let B = π(D) denote the branch divisor on the base X.
Let S0, X0 denote the compatible complements of the “bad loci”, where X,S are
not Gorenstein and/or D,B are not Cartier. Then the Riemann-Hurwitz theorem
implies that

2KS0 ∼ π∗0(2KX0 +B0), KS0 + 2εD0 ∼Q π
∗
0

(
KX0 + (1/2 + ε)B0

)
Lemma 3.6. The pair (S, 2εD) is stable ⇐⇒ the pair

(
X, ( 1

2 + ε)B
)

is stable.

Proof. See e.g. [AP12, Lemma 2.3]. �

Corollary 3.7. The functorial compactification F 2 of the K3 surfaces of degree 2
coincides with the functorial compactification of log canonical pairs

(
X, ( 1

2 + ε)B
)

with X = P2 or F0
4, and B ∈ | − 2KX |.

Moreover, since the pairs (F0
4, B) of this kind are one-parameter limits of pla-

nar pairs, this is the same as the functorial compactification of log canonical pairs(
P2, ( 1

2 + ε)B
)

where B is a planar sextic.
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3.3. Hacking’s compactification M(P2, d) for planar pairs. The compactifi-
cation of of the moduli space of log canonical pairs (P2, ( 1

2 + ε)B) with B a sextic
curve is a special case of the moduli space of planar stable pairs of degree d from
[Hac01, Hac04]:

Definition 3.8. A planar stable pair of degree d is a pair (X,B) such that

• the pair (X, ( 3
d + ε)B) is stable, in the sense of Definition 3.3,

• the divisor dKX + 3B is linearly equivalent to zero, and
• there is a deformation (X ,B)/S of (X,B) over the germ of a curve S, such

that the general fiber Xt of X/S is isomorphic to P2 and the divisors KX
and B are Q-Cartier.

It follows from the results above that the moduli space M(P2, d) of stable planar
pairs of degree d is compact and agrees with the main irreducible component of the
compactification of log canonical pairs (P2, ( 1

2 + ε)B) when d = 6.

The moduli spaces M(P2, d) have been studied in detail by Hacking [Hac01,
Hac04]. In particular, he has obtained partial classifications of the stable pairs that
can appear. For later reference, we will briefly summarize his results here.

The first result that we will need is a description of the possible irreducible
components of stable pairs of degree d. Let (X,B) denote such a stable pair and
let Y be an irreducible component of the normalization of X. Denote the inverse
image of the double curve in X by C. Then Definition 3.3 implies that −(KY +C)
is ample and the pair (Y,C) is log canonical.

Theorem 3.9. [Hac04, Theorem 5.3] Let Y be a surface and let C be an effective
divisor on Y such that the pair (Y,C) is log canonical and −(KY + C) is ample.
Then (Y,C) is one of the following types:

(I) C = 0 and Y has at most one strictly log canonical singularity;
(II) C ∼= P1 and (Y,C) is log terminal;

(III) C ∼= P1∪P1, where the components of C meet at a single node and the pair
(Y,C) is log terminal away from the node;

(IV) C ∼= P1 and (Y,C) has a singularity with the local form ( 1
r (1, a), (xy =

0))/µ2, where the µ2-action is étale in codimension 1 and exchanges (x = 0)
and (y = 0). Moreover, (Y,C) is log terminal away from this singularity.

Using this, Hacking goes on to give a list of possible slc surfaces X that may
underlie stable pairs (X,B) of degree d. To state his result, we first give some
notational conventions and terminology.

Let X be an slc surface and let D denote the double curve on X. Let X1, . . . , Xn

be the irreducible components of X and let Di be the restriction of D to Xi. Let
ν : (Xν , Dν) → (X,D) denote the normalization of X and let (Xν

i , D
ν
i ) denote its

irreducible components.
The map Dν → D is 2 : 1. Let Γ ⊂ D be any component and write Γν for its

inverse image on Xν . If Γν is irreducible and is a double cover of Γ, we say that
Γν ⊂ Xν is folded to obtain Γ ⊂ X.

Theorem 3.10. [Hac04, Theorem 5.5] Let X be an slc surface so that −KX is
ample. Then X has one of the following types.

(A) X is normal, with one component of type (I).
(B) X has two components X1, X2 such that (Xν

i , D
ν
i ) is of type (II) for i = 1, 2.
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(B*) X is irreducible and non-normal. The pair (Xν , Dν) is of type (II) and X
is obtained by folding the curve Dν .

(C) X has n components X1, . . . , Xn such that (Xν
i , D

ν
i ) is of type (III) for each

i. One component of Dν
i is glued to a component of Dν

i+1 mod n for each i
so that the nodes of the curves Dν

i coincide and the components Xi of X
form an “umbrella”.

(D) X has n components X1, . . . , Xn such that (Xν
i , D

ν
i ) is of type (III) for

each 2 ≤ i ≤ n− 1. Either (Xν
1 , D

ν
1 ) is of type (IV), or (Xν

1 , D
ν
1 ) is of type

(III) and (X1, D1) is obtained by folding one component of Dν
1 ; similarly for

(Xn, Dn). The components (X1, D1), . . . , (Xn, Dn) are glued sequentially so
that the nodes of the curves Dν

i and any strictly log canonical singularities
in (X1, D1) and (Xn, Dn) coincide, and the components Xi of X form a
“fan”.

Furthermore, Hacking later shows [Hac04, Theorem 6.5] that surfaces of type
(B*) do not admit smoothings to P2, so cannot possibly underlie stable pairs of
degree d. Hence all stable pairs of degree d must fall into one of the classes (A),
(B), (C) or (D).

In the case of interest to us, d = 6, Hacking is able to go even further. In [Hac01,
Section 14.3.1], he classifies stable pairs of degree 6 of types (A) and (B) (this
classification is reproduced in Table 1). Furthermore, in [Hac01, Section 14.3.2], he
gives an upper bound list of the irreducible components (Y,C) of types (III) and
(IV) that may occur in stable pairs of types (C) and (D), and gives constraints
restricting how such components may be glued to give stable pairs of degree 6.

Surface Double Curve
P2

F0
4 = P(1, 1, 4)

Elliptic cone, degree 9
P2 ∪ F1 line ∪ (−1)-section
P2 ∪ F4 conic ∪ (−4)-section
P(1, 1, 4) ∪ F4 quartic ∪ (−4)-section
P(1, 1, 2) ∪ P(1, 1, 2) line ∪ line

Table 1. Classification of stable pairs of degree 6 of types (A)
and (B), as given by Hacking [Hac01, Section 14.3.1]

Remark 3.11. In order to complete the classification of stable pairs of degree 6, it
remains to show which of these stable pairs of types (C) and (D) admit smoothings
to P2. This will be addressed in the next section, where we will give a complete
classification of the stable pairs of the “umbrella” type (C) which admit smoothings
to
(
P2, ( 1

2 + ε)B
)

and show that stable pairs of the “fan” type (D) do not occur.

For later reference, we give Hacking’s list of possible components (Y,C) of type
(III) (which form the irreducible components of stable pairs of degree 6 of type (C))
in Table 2, along with their Picard numbers ρ.

The notation used in this table is as follows: Bl(m,n) denotes the weighted blow-
up of a smooth point on a surface with weights (m,n) with respect to some local
analytic coordinates; unless otherwise stated it will be assumed that the point
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Case Surface Parameter Double Curve ρ
1 F0

n = P(1, 1, n) 1 ≤ n ≤ 9 H1 +H2 1
2 P(1, 2, 2n− 1) 1 ≤ n ≤ 9 H + (2H) 1
3 P(1, 1, 2(n− 1))/µ2 2 ≤ n ≤ 10 H1/µ2 +H2/µ2 1
4 Fn 0 ≤ n ≤ 7 F + S 2
5 Fn− 1

2
1 ≤ n ≤ 7 1

2F + S 2

6 Bl(1,2)P(1, 1, n) 2 ≤ n ≤ 9 H ′1 +H2 2
7 Bl(1,2)P(1, 2, 2n− 1) 2 ≤ n ≤ 10 H + (2H)′ 2
8 Bl(1,1)P(1, 1, 2) n = 2 H ′ + E 2
9 Bl(1,2)P(1, 1, 2) n = 2 H ′ + E, wt(H) = 2 2
10 Bl(2,3)P(1, 1, 2) n = 2 H ′ + E 2
11 Bl(1,2)Fn− 1

2
n = 1 1

2F + (S + 1
2F )′, wt(S) = 1 3

Bl(1,2)Fn− 3
2

2 ≤ n ≤ 9 1
2F + S′ 3

12 Bl(1,2)Fn−1 2 ≤ n ≤ 8 F + S′, wt(S) = 1 3
13 Bl(1,2)Fn 2 ≤ n ≤ 7 F ′ + S 3

14 Bl2(1,2)P(1, 1, n) 5 ≤ n ≤ 10 H ′1 +H ′2 3

Table 2. Candidates for type (III) components of stable pairs of
degree 6, as given by Hacking [Hac01, Section 14.3.2]

and choice of analytic coordinates is general. H denotes a general hyperplane
section and E will always denote an exceptional curve. Parentheses denote a general
member of a linear system (so (2H) denotes a general member of the linear system
|2H|) and strict transforms of divisors are denoted by primes (so the strict transform
of H under a blow-up will be denoted H ′; in this case it is always assumed that H
passes through the centre of the blow-up).

Fn− 1
2
, for n ≥ 1, denotes the surface obtained from Fn in the following way:

first perform a sequence of two blowups away from the negative section, to obtain
a degenerate fiber which is a chain of curves with self-intersections −2, −1, −2,
then contract the two (−2)-curves. Thus Fn− 1

2
has one double fiber with two A1

singularities on it and a negative section with square −(n− 1
2 ). Denote the negative

section and fiber in Fn or Fn− 1
2

by S and F respectively, and write 1
2F for the double

fiber with its reduced structure.

4. Limits of sextic pairs and the Vinberg diagram ΓVin

In this section, we classify all stable limits of sextic pairs
(
P2, ( 1

2 + ε)B
)
, i.e. the

pairs appearing on the boundary of the moduli compactification F 2.

4.1. Statement of the result. Consider Figure 3b which represents a toric degen-
eration of a P2 together with a sextic curve B. The points correspond to monomials
of degree 6: a0 7→ x6, a1 7→ x5y, etc., the center is x2y2z2.

The surface X = ∪18
i=1F0

2 represented by this figure is a union of 18 quadratic
cones F0

2 (Hirzebruch surface F2 with the (−2)-section contracted). The vertices of
the cones are on the “outside” boundary at the “odd” vertices P1, P3, . . . , P17, and
the surfaces are glued in an alternating order along P1s. We divide these P1’s into
“long” (corresponding to even vertices) and “short” (corresponding to odd vertices)
sides; they are respectively infinite sections s∞ with s2

∞ = 2 (a conic section) and
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a0 a1 a2 a3 a4 a5 a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

a16

a17
b0 b6

b12

d9d15

d3

(a) Vinberg diagram

a0 a1 a2 a3 a4 a5 a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

a16

a17

(b) Maximal degeneration

Figure 3. Vinberg diagram vs maximal degeneration

lines f through the vertex (the image of a fiber on F2) with f2 = 1
2 . The restriction

Bi = B|Xi
is another conic section.

The corresponding degeneration of K3 surfaces is the double cover S = ∪18
i=1Si

ramified over the curve B and the 9 points P1, P3, . . . , P17, which are the vertices
of the cones lying on the short sides. Each irreducible component Si is isomorphic
to a P2. These 18 P2s are glued in an alternating order along “long” and “short”
sides, which are conics and lines respectively.

Theorem 4.1. There exists a unique maximal stable degeneration of the sextic
pairs

(
P2, ( 1

2 + ε)B
)

and of the correponding K3 pairs (S, 2εD). All other stable
degenerations are obtained from it by partial smoothings according to the Rules 4.2.
The degeneration types of surfaces correspond to elliptic and maximal parabolic
subdiagrams Γ ⊂ ΓVin modulo the equivalence relation defined in (4.6).

Rules 4.2. Let Γ ⊂ ΓVin be an elliptic or maximal parabolic subdiagram, as in
the description 2.2 of the cones in the fan τ refl.

(1) All irreducible components Si are toric surfaces with two exceptions: the one
specified in rule (5) and when #(i | ai ∈ Γ) ≥ 17. In the latter case, S is irreducible.

If Γ = Ã17 then S is a cone over an elliptic curve. Otherwise, S is obtained from a
toric surface by gluing two “opposite” sides.

(2) Each toric surface corresponds to a polytope P that is a union of adjacent
triangles in Figures 3b, 4. The two triangles near a corner of the 6-6-6 (or 3-3-12)
triangle can be glued in two ways: by creating, resp. not creating a corner; cf. the
two triangles adjacent to the a12 edge in Figure 3b, resp. 4.

(3) If ai ∈ Γ then we smooth the curve corresponding to the edge from the center
to the outside vertex. This edge between triangles is removed to obtain a bigger
polytope.

(4) For i ∈ {0, 6, 12}, suppose ai ∈ Γ, so that the ai-edge is smoothed out. Then
if bi ∈ Γ then the corresponding polytope has a corner at ai, as in Figure 3b. But
if bi 6∈ Γ then the polytope has a straight line at ai, as for i = 12 in Figure 4.
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(5) For i ∈ {3, 9, 15}, suppose ai ∈ Γ, so that the ai-edge is smoothed out,
and that di ∈ Γ. Then the connected component of Γ containing ai, di must

equal Ã1. The corresponding irreducible component Sk is isomorphic to either P2

(non-unigonal case) or F0
4 (unigonal case), and the intersection C = Sk ∩ (∪j 6=kSk)

is either a conic on P2 or a section s∞ on F0
4 with s2

∞ = 4. The partial smoothing
in this case is of two lines P1 ∪ P1 for the edges ai±1 to the irreducible curve C.

Note that F0
4 is toric. Although P2 is also a toric surface, the conic C in this

case is not a torus-invariant divisor.

(6) Connected components of the diagram Γ not supported entirely on the set
{b0, b6, b12, d3, d9, d15} correspond to the irreducible components Xi of X which
are bigger than a single F0

2. (For notational consistency, we formally assign an F0
2

component to a diagram A0 = ∅ ⊂ Γ.)

a0

a1

a2

a3

a4

a5

a6a7a8a9a10a11a12a13a14a15a16a17

Figure 4. Unigonal maximal degeneration

Remark 4.3. All stable surfaces claimed in Thereom 4.1 are of the “umbrella”
type from (3.10). Thus, we claim that the surfaces of the “fan” type do not occur.

Remark 4.4. Suppose that ai /∈ Γ, and i ∈ {0, 6, 12, 3, 9, 15}. Then the corre-
sponding ai-edge has not been smoothed out and the degenerate surface is the
same whether the corresponding bi or di is in the diagram Γ or not. Thus, the bi
and di vertices in Γ play a role only if they are attached to an ai vertex in Γ.

Remark 4.5. Although the degenerate surfaces in Figures 3b and 4 may look
different, they are isomorphic. Both are simply 18 copies of F0

2 glued together
along P1s to form a seminormal surface. This seminormal surface is unique: how
one draws it is not important.

Definition 4.6 (Equivalence relation). We define the equivalence relation on the
set of elliptic and maximal parabolic subdiagrams Γ ⊂ ΓVin as follows:

(1) if Γ,Γ′ are disconnected from each other and Γ′ is supported on the set
{b0, b6, b12, d3, d9, d15} =⇒ Γ ∼ Γ t Γ′.

(2) Γ1 and Γ2 differ by an S3-action =⇒ Γ1 ∼ Γ2.

(3) Γ1 and Γ2 are both contained in the Ã17 subdiagram formed by the 18
outer ai vertices and differ by a D9-action =⇒ Γ1 ∼ Γ2.

Example 4.7. In Figure 5 we illustrate how this correspondence works for the
maximal parabolic subdiagrams of Figure 2.

For Γ = 2Ẽ8Ã1, the two polytopes are obtained by cutting the 6-6-6 triangle of
Figure 3b by a vertical line. All edges away from this line are smoothed, and the
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corresponding stable surface is X = F0
2 ∪ F0

2. For Γ = D̃10Ẽ7, the 6-6-6 triangle is

cut by a horizontal line, and X = P2 ∪ F1. For Γ = D̃16Ã1, the 3-3-12 triangle of
Figure 4 is cut by a horizontal line giving X = F4 ∪P2 with the boundary between

the two components being a conic. Finally, for Γ = Ã17, all 18 edges are smoothed
out and there are no corners; the corresponding surface X is a cone over an elliptic
curve. Noting that P(1, 1, 4)∪F4 is a degeneration of F4 ∪P2, we thus obtain all of
the expected Type II degenerations from Table 1.

Remark 4.8. Not all cases of candidate type (III) components from Table 2 appear
as components of stable degenerations in Theorem 4.1. Table 3 shows for which
parameter n the candidate components do appear, and gives the corresponding
ellliptic subdiagrams Γ ⊂ ΓVin. For clarity, we will henceforth refer to irreducible
components of degenerate fibers by the names given in the “Name” column of this
table, which makes the correspondence with elliptic subdiagrams explicit.

Note here that, up to the action of D9, there are two different ways to embed an
Am diagram, with m odd, into the Ã17 diagram formed from the outer vertices. We
thus say that an Am diagram, with m odd, that is supported on Ã17 is of corner
type if it is equivalent under the action of D9 to one that starts in a corner of ΓVin,
and of edge type otherwise. Using the terminology above, a diagram Am with m
odd is of corner type if the corresponding component has two “short” sides, and
edge type if it has two “long” sides.

Finally, we recall that the components F0
2 making up the maximal degeneration

(Figure 3b) formally correspond to A0 = ∅ diagrams. The maximal degeneration
thus corresponds to the unique empty subdiagram of ΓVin.

Case Parameter Elliptic subdiagram Name ρ

1 1 ≤ n ≤ 9 A2n−1 ⊂ Ã17 of edge type Ae2n−1 1

2 1 ≤ n ≤ 9 A2n−2 ⊂ Ã17 A2n−2 1

3 2 ≤ n ≤ 10 A2n−3 ⊂ Ã17 of corner type Ac2n−3 1
4 0 ≤ n ≤ 7 D2n+4 contains 1 interior vertex D2n+4 2
5 1 ≤ n ≤ 7 D2n+3 contains 1 interior vertex D2n+3 2
6 2 ≤ n ≤ 9 A2n−1 contains 1 interior vertex A′2n−1 2
7 2 ≤ n ≤ 10 A2n−2 contains 1 interior vertex A′2n−2 2
8 n = 2 E7 E7 2
9 n = 2 E8 E8 2
10 n = 2 E6 E6 2
11 impossible 3
12 impossible 3
13 n ∈ {3, 6} D2n+4 contains 2 interior vertices D′2n+4 3
14 n ∈ {5, 8} A2n−1 contains 2 interior vertices A′′2n−1 3

Table 3. Correspondence between cases from Table 2 and elliptic
subdiagrams of ΓVin

4.2. Two toric families. We begin the proof of Theorem 4.1 by constructing two
16-dimensional “toric” families in which many (but not all) of the stable surfaces
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Figure 5. Maximal parabolics in ΓVin and Type II degenerations

already occur. The construction is standard and is based on the theory of sec-
ondary polytopes, see [GKZ94]. Let A be a finite subset in Zr and let Q be the
polytope which is the convex hull of A. In [KSZ92], the authors constructed a
family of possibly non-normal toric varieties X ′Q ⊂ P|A|−1 and their degenerations
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over a possibly non-normal projective toric variety corresponding to a secondary
polytope Σ(Q,A). This construction works as follows: the polytope Q defines
a polarized toric variety (XQ, LQ) and A defines a basepoint free linear system
F (cm) = 〈cmxm; m ∈ A〉 ⊂ H0(XQ, LQ). An irreducible fiber X ′Q(cm) of the

above family is then the image of the finite morphism φF (cm) : XQ → P|A|−1; it
comes with multiplicity deg φF (cm).

A version of this construction that is needed for our purposes was given in
[Ale02]. The subvariety X ′Q(cm) is replaced by a pair (XQ, B), B = Z(

∑
cmx

m)
consisting of a normal projective toric variety XQ and a divisor B on it which does

not contain any torus orbits. One obtains a flat family (X ,B) → M(Q,A) over
a stack with a coarse moduli space M(Q,A) whose normalization is the normal
toric variety correponding to the secondary polytope Σ(Q,A). (This moduli space
generally also has other irreducible components; we ignore those for simplicity.)

Degenerations of the toric variety X ′Q, which in [KSZ92, GKZ94] are considered
simply as cycles, are replaced by reduced seminormal varieties X with torus action
along with Cartier divisors B not containing any torus orbits. It follows that the
pair (X,∆ + εB) is stable in the sense of (3.3), where ∆ is the “outside” torus
boundary, described in toric terms by the boundary of Q.

Here is how we apply this construction in our situation. Consider the set A of
19 points, 18 outer points plus the center, of Figure 3b. The toric variety for the
secondary polytope is covered by affine charts UT , one for each triangulation T of
Q with vertices in a subset A′ ⊂ A. We pick the chart for the triangulation T0

shown in Figure 3b.

Lemma 4.9. The affine toric variety UT0 is a 16-dimensional toric subvariety of
the toric variety U refl of Definition 2.3.

Proof. By the general theory of [GKZ94], to every triangulation T = {δi} of the
set A one associates a vector vT in the lattice ZA: vT (a) =

∑
a∈δi Vol δi if a ∈ A′,

vT (a) = 0 if a /∈ A′. These vectors span an affine translate of a lattice M ' Zd,
where d = |A| − dimQ− 1. The secondary polytope Σ(Q,A) is the convex hull of
vT ’s.

Thus, the cone σ̌ ⊂ M ⊗ R corresponding to UT0 is spanned by the vectors
vT − vT0 where T goes over the “neighboring” triangulations of A that differ from
T0 by a flip. For the triangulation T0 there are 18 neighboring triangulations, one for
each of the boundary points. The dimension of the lattice M is d = 19−2−1 = 16.
Thus, we get 18 vectors vT − vT0 in an 16-dimensional space generating the cone σ̌.
We write these vectors explicitly in the next Section.

Using the linear relations of Section 2.3, one checks that σ̌ is the image of the

cone σ̌refl under the linear map M2 � M = M2/〈~b0,~b6,~b12〉. For the dual lattices,
we obtain N ⊂ N2. Thus, UT0 is a toric subvariety of U refl which is invariant under
the action of the 16-dimensional torus N ⊗ C∗ = Hom(M,C∗). �

Lemma 4.10. Over an open neighborhood of the origin of UT0 (the closed torus
orbit), there exists a flat family of stable pairs

(
X, ( 1

2 + ε)B
)

extending the family

of lc sextic pairs
(
P2, ( 1

2 + ε)B
)
.

Proof. As we explained above, by the general theory of [Ale02], over UT0 there is a
flat family of stable pairs

(
X,∆ + εB

)
extending the family of

(
P2,∆ + εB

)
, where

∆ is the outer toric boundary xyz = 0 and B is a family of sextics not passing
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through the points (1, 0, 0), (0, 1, 0), (0, 0, 1), i.e. whose equations have nonzero
coefficients for the monomials x6, y6, z6.

The central fiber
(
X0,∆0 + εB0

)
of this family is described by the triangulation

T0, which is a union of 18 F0
2’s, and the divisor B, whose restriction to each irredi-

cible component is a conic section s∞ not passing through the vertex of the cone
or the central point where the 18 components meet. Now we observe the following:

(1)
(
X0, (

1
2 + ε)B0

)
is also a stable pair.

(2) Let X be any partial smoothing of X0 not isomorphic to P2, and let XP be
an irreducible component of X. It corresponds to a lattice polytope P in the plane
which contains the central point c on its boundary. Now the fact that the outside
boundary of P is at lattice distance 2 from c implies that 2∆ ∼ B.

This implies that over an open neighborhood of 0 the pairs
(
X, ( 1

2 + ε)B
)

are
also stable. �

Remark 4.11. In the above theorem, we are simplifying slightly. Because of the
nontrivial but finite automorphism group of the central fiber, to get a family of
reduced varieties one has to make a finite ramified µ16

2 -base change U ′T0 → UT0 .

Then there is a family of stable pairs over U ′T0 and over the stack [U ′T0 : µ16
2 ] with

the coarse moduli space UT0 .

The same exact argument works for the family of stable toric varieties for the
triangulation of the set of 19 points, the center plus the outer 18 points, of Figure 4.
The general fiber in this family is a pair (F0

4, B), B ∈ | − 2KF0
4
|. Again, the central

fiber is a stable pair for both ∆0 + εB0 and for ( 1
2 + ε)B0, and for all smoothings

one has ∆ ∼ 1
2B. In this case, the 16-dimensional lattice M is a quotient of M2

modulo the sublattice 〈~b0,~b6, ~d3〉.
Lemma 4.12. Let ∪Pi be a subdivision of the 6-6-6 triangle of Figure 3b or the
3-3-12 triangle of Figure 4 obtained by gluing some of the 18 triangles to form
≥ 2 convex polytopes Pi. Let (X0, B0) be the correponding stable surface, as in
Theorem 4.1. Then it appears as a stable degeneration of some 1-parameter family
of pairs

(
P2, ( 1

2 + ε)B
)

or
(
F0

4, (
1
2 + ε)B0

)
.

Proof. This holds by by the toric construction [KSZ92, Ale02]. We pick heights hm
for the 19 points in Figures 3b or 4 so that the projection of the lower convex enve-
lope of the points (m,hm) gives the decomposition ∪Pi. Then the 1-parameter limit
of the family (Xt, Bt) with Bt = Z(

∑
thmxm) is a stable toric variety ∪(X(i), L(i)),

where (X(i), L(i)) is the polarized toric variety corresponding to the lattice poly-
tope Pi. �

Remark 4.13. We may easily describe the stable surfaces arising from this lemma
in terms of the correspondence between degeneration types and elliptic/maximal
parabolic subdiagrams Γ ⊂ ΓVin given in Theorem 4.1. Indeed, stable surfaces
arising as degenerations of (P2, ( 1

2 + ε)B) in this lemma correspond to those sub-
diagrams Γ that contain all three vertices bi (with vertices labeled as in Figure
3a), whilst stable surfaces arising as degenerations of

(
F0

4, (
1
2 + ε)B0

)
correspond to

those subdiagrams Γ that contain b0, b6, and d3 (up to equivalence (4.6)).
Thus, the only subdiagrams Γ missing from this construction are those which

contain few of the interior vertices bi, di. Moreover, by the equivalence relation (4.6),
we may freely add or remove subdiagrams Γ′ that are supported on these interior
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vertices, as long as Γ′ and Γ are not connected. It follows that any subdiagrams
missing from the above construction must contain “long” elliptic subdiagrams, that
contain one or more of the vertices a0, a6, a12 without containing the corresponding
b0, b6, b12.

4.3. Parametric equations for toric families. For later generalizations, we
need to recall the equations for the toric families in more detail. The most conve-
nient equations are parametric.

Let us start with the toric family for the 6-6-6 triangle. We will begin by de-
scribing 1-parameter degenerations. The data for such a degeneration is a system
of heights {Tc, Ti (0 ≤ i < 18}, one for each of the 1+18 points in Figure 3b. For
convenience, we set Tc = 0.

For each of the 1+18 points in the plane, we have a corresponding vector. As in
Theorem 2.6, let us denote them by ~uc, ~ui. Consider the convex hull of the points
(~uc, Tc), (~ui, Ti) in Z2+1. The projection of the lower convex hull of these points
down to R2 defines a subdivision of the 6-6-6 triangle into a face-fitting tiling ∪Qi
into polytopes.

The 1-parameter families of stable pairs (P2,∆ + εB) whose limits lie in UT0
correspond to the system of heights such that ∪Qi is either the triangulation T0 or
its coarsening. The corresponding family can be explicitly described as ProjR →
SpecC[t], where R is the subring of the ring C[t][x, y, z], graded by deg x = deg y =
deg z = 1, which is generated by the monomials

uc = x2y2z2, u0 = tT0x6, u1 = tT1x5y, . . . , u17 = tT17x5z.

More carefully, to get a reduced central fiber, one may have to make a ramified
finite base change t = tm1 for some divisible m.

The conditions for the heights to define a tiling ∪Qi that is a coarsening of the
triangulation T0 are

Ti−1 + Ti+1 − 2Ti ≥ 0 (i 6= 0, 6, 12),
Ti−1 + Ti+1 − 3

2Ti ≥ 0 ⇐⇒ Ti−1 + Ti+1 + Si − 2Ti ≥ 0, Si = 1
2Ti (i = 0, 6, 12).

Let ti = tTi and si = tSi . Denote ai = ti−1ti+1

t2i
(for i 6= 0, 6, 12), and ai =

ti−1ti+1si
t2i

, bi = ti
s2i

(for i = 0, 6, 12), so that a2
i bi =

t2i−1t
2
i+1

t3i
. Then these conditions

are equivalent to asking for ai, (i 6= 0, 6, 12) and a2
i bi (i = 0, 6, 12) to be regular

functions of t or, equivalently, for ai to be regular functions of t and b0 = b6 =
b12 = 1.

Similarly, the entire 16-dimensional family can be defined parametrically as fol-
lows: Let A be the monomial subalgebra of C[ti, t

−1
i ] that is the normalization of the

subalgebra generated by ai = ti−1ti+1

t2i
(i 6= 0, 6, 12), a2

i bi =
t2i−1t

2
i+1

t3i
(i = 0, 6, 12).

Then the family is ProjR → SpecA, where R is the subalgebra of the algebra
A[x, y, z], graded by deg x = deg y = deg z = 1, generated by the monomials

uc = x2y2z2, u0 = t0x
6, u1 = t1x

5y, . . . , u17 = t17x
5z.

More precisely, one may have to make a ramified finite base change ti = (t′i)
m for

some divisible m to obtain a monomial ring A1 ⊃ A, and then divide by (µm)16 to
obtain a family of stable pairs over a stack [SpecA1 : (µm)16]. In our case, taking
m = 2 suffices.
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A similar construction holds for the 3-3-12 triangle shown in Figure 4. In this case
R is the subring of the ring C[t][u, v, w], graded by deg u = degw = 1, deg v = 4,
which is generated by the monomials

uc = u2v2w2, u0 = tT0u12, u1 = tT1u8v, . . . , u17 = tT17u11w.

The conditions for the heights to define a tiling ∪Qi that is a coarsening of the
triangulation T0 are now

Ti−1 + Ti+1 − 2Ti ≥ 0 (i 6= 0, 3, 6),

Ti−1 + Ti+1 − 3
2Ti ≥ 0 ⇐⇒ Ti−1 + Ti+1 + Si − 2Ti ≥ 0, Si = 1

2Ti (i = 0, 6),

T2 + T4 ≥ 0 ⇐⇒ T2 + T4 + 2R3 − 2T3 ≥ 0, R3 = T3.

Letting ti = tTi , si = tSi and ri = tRi as before, denote ai = ti−1ti+1

t2i
(for

i 6= 0, 3, 6), denote ai = ti−1ti+1si
t2i

, bi = ti
s2i

(for i = 0, 6), and denote a3 =
t2t4r

2
3

t23
,

d3 =
t23
r23

. We obtain a2
i bi =

t2i−1t
2
i+1

t3i
(for i = 0, 6) and a3d3 = t2t4. So these

conditions are equivalent to asking for ai, (i 6= 0, 3, 6), a2
i bi (i = 0, 6) and a3d3 to

be regular functions of t or, equivalently, for ai to be regular functions of t and
b0 = b6 = d3 = 1.

Finally, we may define the entire 16-dimensional family parametrically as follows:
Let A be the monomial subalgebra of C[ti, t

−1
i ] that is the normalization of the

subalgebra generated by ai = ti−1ti+1

t2i
(i 6= 0, 6), a2

i bi =
t2i−1t

2
i+1

t3i
(i = 0, 3, 6), and

a3d3 = t2t4. Then the family is ProjR → SpecA, where R is the subalgebra of
the algebra A[u, v, w], graded by deg u = degw = 1, deg v = 4, generated by the
monomials

uc = u2v2w2, u0 = t0u
12, u1 = t1u

8v, . . . , u17 = t17u
11w.

4.4. All surfaces claimed in Theorem 4.1 occur as stable limits. The first
step towards proving Theorem 4.1 is to show that all of the claimed surfaces actually
occur as stable limits. We begin our proof by reducing the number of subdiagrams
that we need to consider. Indeed, we have:

Lemma 4.14. Let Γ′ ⊂ Γ be subdiagrams of ΓVin, with Γ maximal parabolic or
elliptic, and Γ′ elliptic. Suppose that the surface corresponding to Γ occurs as a
stable limit. Then the surface corresponding to Γ′ also occurs as a stable limit.

Proof. Let X = ∪Xs (resp. X ′) be a surface corresponding to the diagram Γ (resp.
Γ′) as in Theorem 4.1. According to the Rules 4.2, X is glued from toric surfaces
Xs along toric boundaries, with a single exception as in 4.2(5). We first note that
for each diagram Γ the surface X can be glued from Xs uniquely, so there is only
one isomorphism class. (Of course, the pair (X,B) is not unique.)

We show that for each irreducible component Xs there exists a family πi : Xs →
A1 such that a fiber π−1

t (t) for t 6= 0 is isomorphic to Xs and π−1
t (0) is isomorphic

to a union of toric surfaces ∪X ′ss′ which give a part of the surface X ′. By gluing,
this gives a family π : X → A1 such that for t 6= 0 the fiber π−1(t) ' X and
π−1(0) ' X ′. A limit of smoothable surfaces is smoothable (by using a “diagonal”
argument), so this proves the statement.

Once we know that X ′ is smoothable via some family π′ : X ′ → S, X ′ =
π′−1(0), where S is a smooth affine curve, it follows that the family of pairs
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(X ′, B′) is also smoothable. Indeed, on every fiber of π′ the higher cohomolo-
gies of O(−2KX′) vanish. By the Theorem on Cohomology and Base Change, this
implies that π′∗O(−2KX ′) is a locally free sheaf (of rank 28). Thus, the homomor-
phism H0(X ′,O(−2KX ′) → H0(X ′,OX′(−2KX′)) is surjective, and any section
B′ ∈ | − 2KX ′ | can be lifted to a family of divisors B′.

Thus, we are reduced to constructing a degeneration Xs  ∪X ′ss′ from an irre-
ducible component Xs of X that corresponds to a connected elliptic or parabolic
diagram Γs to a union of components ∪X ′ss′ corresponding to its subdiagram Γ′s.
We split the inclusion Γ′s ⊂ Γs into two steps:

(1) Removing some of the vertices bi, di from Γs: this step smooths some cor-
ners and does not increase the number of irreducible components.

(2) Removing some of the ai vertices: this step smooths some of the edges
going from the center and increases the number of irreducible components,

unless Γs = Ã17 and Γ′s = A17.

Step 1. First let Γs be parabolic. When Γs = Ã1 ⊃ Γ′s = A1, the degeneration
takes P2 to itself and the double curve degenerates from a smooth conic to a pair

of lines. The case Ẽ7 ⊃ A7 also corresponds to a degeneration of P2, this time to a
cone over a rational normal curve of degree four P2  F0

4.

The case D̃10 ⊃ D10 is the degeneration F1  F3 and D̃16 ⊃ D16 is F4  F6.
Both of these are special cases of a well-known degeneration Fn  Fn+2 for any

n, see e.g. [MK71, p.26] or [BHPvdV04, Section VI.8]. Finally, the case Ẽ8 ⊃ A8

is the degeneration F0
2 = P(1, 1, 2)  P(1, 2, 9) constructed as a degeneration of

a general cubic hypersurface in P(1, 1, 2, 3) to a cubic not involving the degree 3
variable. The embedding P(1, 2, 9) ↪→ P(1, 1, 2, 3) is the Veronese-type embedding
(x, y, z) 7→ (x3, xy, y3, z).

Let now Γs be elliptic. We can assume that Γs is not a single vertex di because
we ignore these by Rule 4.2(6). Then X is a surface with ρ = 2 or 3, cf. Table 3. If
ρ = 2 then Γs is Dn, En (n = 6, 7, 8), or A′n, and Γ′s = An−1. The surface Xs is a
toric surface corresponding to a 4-gon, and X ′s corresponds to a triangle obtained
from it by “smoothing a corner”. We think of the diagram Γs as a fork centered
at the vertex a0 with three legs of lengths p, q, r, so that q = 2 and 1

p + 1
q + 1

r > 1.

One has p = 1 for A′n, p = 2 for Dn, and p = 3 for En. Γ′s is obtained from Γs by
removing the vertex b0 from the q-leg.

The case Dn  An−1 with even n is again an application of the standard de-
generation Fn/2−2  Fn/2. In all cases the following degeneration works. Consider

the generators ui, uc in the graded ring k[x±1, y±1, z±1][t±1] defined by:

u0 = x3, uc = xyz − 1

t
x3,

u1 = x5y, u2 = x2y, , u3 = x3y3, . . . u17 = tx5z, u16 = tx2z, u15 = t3x3y3.

The grading is given by deg x = deg y = deg z = 1, deg t = 0, and deg uc = 3 (resp.
6) for i even (resp. odd). Let R be a k[t] subalgebra generated by the ui’s for which
the vertices ai are present in Γs. Let Xs = ProjR and let πs : Xs → A1 = Spec k[t]
be the induced map. We have the following relations. For i ∈ Z18 even, i 6= 0:
u4
i = ui−1ui+1; for i odd: ui = ui−1ui+1; plus the relation

(tuc + u0)u3
0 = u1u17.
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For t 6= 0 they define a toric surface X for the 4-gon determined by Γs. For t = 0,
the last relation becomes u4

0 = u1u17 and the a0-corner is “smoothed out”. The
central fiber is X ′ for the diagram Γ′s.

Finally, let X be a surface with ρ = 3, corresponding to a 5-gon. Then Γ is one
of D′10, D′16, A′′9 , A′′15. We use a similar parametric degeneration to the above, with
the following changes which we illustrate in the case of D′10:

uc = xyz − 1

t
x3 − 1

t
y3, u0 = x3, u1 = x5y, u2 = x2y, . . . , u6 = y3,

u17 = tx4(xz − 1

t
y2)2, u16 = tx(xz − 1

t
y2), u7 = ty4(yz − 1

t
x2)2.

A computation is similar to the one above.
Step 2. This part is easy: this is simply a toric degeneration of a toric surface Xs

into a union of toric surfaces ∪X ′ss′ corresponding to a subdivision of the polytope
Qi of Xs into subpolytopes ∪Q′ss′ by edges from the center of the big triangle. �

Using this, we may reduce our problem to that of proving that the surfaces cor-
responding to the maximal subdiagrams of ΓVin occur as stable limits. A maximal
subdiagram is an elliptic or parabolic subdiagram of ΓVin that has rank 18. As
every subdiagram Γ ⊂ ΓVin is contained in a maximal one, by Lemma 4.14, this is
enough to prove that the stable limits corresponding to all subdiagrams exist.

It follows from Lemma 2.4 that, up to equivalence 4.6, there are 103 maximal
subdiagrams of ΓVin, 99 of which are elliptic and 4 of which are parabolic. They
are listed in the table in the appendix to this paper. As may be seen from that
appendix, most of the stable limits corresponding to these maximal subdiagrams
may be constructed by the toric method of Section 4.2; indeed, any case labeled
“Toric” may be constructed from a subdivision of the 6-6-6 triangle, and any case
labelled “Unigonal” may be constructed from a subdivision of the 3-3-12 triangle.

Most of the remaining cases are constructed by the following method. We begin
by constructing a carefully chosen (usually non-maximal) 1-parameter degeneration
X → A1, using the toric method of Section 4.2. Then we perform a number of
birational elementary modifications, as described below, to obtain a new family
X ′ → A1 with a new central fiber of the required type.

The singularities of the pair
(
X ′, ( 1

2 + ε)B
)

are made worse by this operation.
But we may pick a new divisor B′ by taking a generic section of | − 2KX ′ |, as in
the proof of 4.14, so we only need pay attention to the structure of the central fiber
X ′0.

4.4.1. Elementary modifications of type 1. Suppose there is a toric 1-parameter de-
generation (X ,L)→ S in which part of the central fiber appears as in the following
diagram:

n1 n2

C
n3

D1 D2

Label the three surfaces in this diagram Y1, Y2, Y3 from left to right; they can
be any of the surfaces Y allowed by Remark 4.8. The red marked curve is a generic
smooth rational curve linearly equivalent to −KY2

−D (where D = D1+D2 denotes
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the double curve on Y2), we denote it by C. The ni are half-integers indicating self-
intersections of curves.

Assume that the central fiber X = X0 is reduced and that the threefold total
space X satisfies the following assumption on singularities:

Assumption 4.15. The only singularities in a neighborhood of C in X lie on the
double curves Di that meet C. They have the following form:

• If Di is a “short” side (i.e. if Y2 contains a 1
2 (1, 1) singularity at the inter-

section C ∩Di), then X has an isolated 1
2 (1, 1, 1) singularity at C ∩Di and

is smooth at the generic point of Di.
• If Di is a “long” side (i.e. if Y2 is smooth at the intersection C ∩Di), then
X has an A1 singularity at the generic point of Di.

Now perform a blow-up of X along C. We have the following diagram:

n2

−n2 − 1
0 0

n1 − 1
2

n2 + 1 n3 − 1
2

Indeed, this is an easy toric computation: the blow-up is simply obtained by
cutting an edge.

Let E be the exceptional divisor and let L′ = L − 2E. Then L′ is nef and
it restricts to the strict transform of Y2 as zero. The line bundle L′ defines a
contraction to the surface which equals X outside of our fragment, and contracts
our fragment to the union of three surfaces.

n1 − 1
2

n2 + 1

C ′

n3 − 1
2

Indeed, we claim that any relatively nef line bundle on X is semiample. Since the
central fiber X0 has slc singularities, by Inversion of Adjunction [Kaw07] the pair
(X ,X0) is log canonical in a neighborhood of X0, thus X is canonical. One easily
sees that −KX is relatively ample by restricting to the irreducible components of
X0. Now the Base Point Free Theorem (see e.g. [KM98, Thm.3.3]) applies.

If ni >
1
2 for both i ∈ {1, 3}, then the curve C ′ in the new threefold X ′ also

satisfies Assumption 4.15 and we may repeat the process if necessary. If ni = 1
2 ,

for i = 1, 3, the corresponding surface Yi also gets contracted; after this contraction
has been performed Assumption 4.15 is no longer satisfied, so we cannot modify
this component further.

The effect of this elementary modification upon the subdiagram corresponding to
the component Y2 is given in Table 4; it corresponds to the subdiagram obtained by
deleting any internal (bi, di) vertices and extending the remaining diagram by one
vertex in each direction. The subdiagrams corresponding to the two neighboring
components lose one outer (ai) vertex each.
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Case Subdiag. Elementary modification
Type 1 Type 2

1 Ae2n−1 Ac2n+1 n/a
2 A2n A2n+2 n/a
3 Ac2n−1 Ae2n+1 n/a
4 D2n Ac2n+1 D2n+1

5 D2n−1 A2n D2n

6 A′2n−1 A2n A′2n
7 A′2n Ae2n+1 A′2n+1

8 E7 A8 n/a
9 E8 Ac9 n/a
10 E6 Ac7 n/a
13 D′2n A2n D2n, A′2n
14 A′′2n−1 Ac2n−1 A′2n−1

Ã1 Ac3 n/a

Ẽ7 Ac9 n/a

D̃10 Ac11 D11

D̃16 Ac17 D17

Table 4. Effect of elementary modifications on subdiagrams.

4.4.2. Elementary modifications of type 2. Now, in a completely similar way, con-
sider a toric 1-parameter degeneration (X ,L)→ S in which part of the central fiber
appears as follows:

n1

C
n2

C ′
n′
1

D1

D2

The shaded surface on the left is a toric surface Y with Picard rank ≥ 2. The
red curve C is an irreducible rational curve, so that C + C ′ is linearly equivalent
to −KY − D (where D = D1 + D2 denotes the double curve on Y2), for some
effective divisor C ′. As before, the ni, n

′
i are half-integers giving intersection num-

bers of curves; here we assume that n′1 ∈ {0,− 1
2} (which implies that Y does not

correspond to a subdiagram of type En). We further assume that the central fiber
X = X0 is reduced and that the singularities of the threefold total space X in a
neighborhood of C satisfy Assumption 4.15. As before, we perform a blow-up along
the curve C to obtain a new family X ′ → S as follows.

0

n1

−n1 − 1
2

n′
1

C ′

0

n1 +
1
2 n2 − 1

2
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Let E be the exceptional divisor and let L′ = L − 2E. If n′1 = 0, then L′ is nef
and restricts to the strict transform of Y as a ruling. If n1 = − 1

2 , then we need to
perform a flip along the curve C ′.

The existence of this operation can be proved as follows. Consider the double
cover Y → X ramified along a generic divisor in | − 2KX |. The curve C ′ is part of
the fixed locus of the linear system | − 2KX |, where it appears with multiplicity 2.
Thus, the central fiber of Y has a double curve with self-intersection (−1,−1) over
C ′, and KY is numerically trivial along this double curve by adjunction. Therefore,
since flops exist for threefolds [KM98, Section 6], we may flop this double curve.
Taking the Z2 quotient, we obtain a flip of C ′. We have the following picture.

− 1
2

−n1 − 5
2

− 1
2

0

n1 +
1
2 n2 − 1

2

After performing this flip, the line bundle L′ becomes nef and trivial on the
strict transform of Y . Thus, for both n′i ∈ {0,− 1

2} the line bundle L′ defines a
contraction to the surface which equals X outside of our fragment, and contracts
our fragment to the union of two surfaces:

n1 +
1
2

C ′′

n2 − 1
2

n′
1

As before, if n2 >
1
2 , the curve C ′′ in the new threefold X ′ also satisfies Assump-

tion 4.15, so we may repeat the process if necessary. If n2 = 1
2 , then the right-hand

surface gets contracted; after this contraction has been performed Assumption 4.15
is no longer satisfied, so we cannot modify this component further.

The effect of this elementary modification upon the subdiagram corresponding to
the component Y is given in Table 4; note that in case 13 there are two possibilities,
corresponding to different choices of curve C. The subdiagram corresponding to
the neighboring component on the right loses one outer (ai) vertex.

Remark 4.16. We note that the assumptions required to perform these elementary
modifications are also satisfied by the Type II degenerations corresponding to the
parabolic subdiagrams D̃10Ẽ7 and D̃16Ã1 (in which case D1 and D2 represent
the two “halves” of the unique double curve D). In particular, if we take a smooth
degeneration to one of these surfaces, after performing a base change we can arrange
for the threefold X to have a curve of A1 singularities along the double curve D,
so Assumption 4.15 is satisfied. The result of performing elementary modifications
upon the components in these Type II degenerations is given by the last four lines
in Table 4.

4.4.3. Constructing maximal subdiagrams. We now use these operations to con-
struct stable limit surfaces corresponding to maximal subdiagrams. In many cases,
such stable limits may be constructed by starting from a Type II degeneration
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D̃10Ẽ7 or D̃16Ã1 and performing a series of elementary modifications; these cases
are detailed in the table in the Appendix.

This leaves 13 cases. Most can be constructed by starting with a carefully chosen
1-parameter degeneration X → A1, built using the toric method of Section 4.2, then
performing elementary modifications to get the required degeneration.

All of the toric degenerations that we use are constructed from the 6-6-6 triangle.
As in Section 4.3, to define such a toric degeneration, we need to specify a set of
heights {h0, . . . , h17} associated to the points {a0, . . . , a17} from Figure 3b (the
central point is always taken to have height 0). These heights must be chosen so
that Assumption 4.15 is satisfied in the neighbourhood of any curve C that will
be used in an elementary modification. This assumption may be checked using the
following lemmas.

For concreteness, choose a system of coordinates for Z2 in which the center has
coordinates (0, 2) and the edge C01 to be modified along has end points (m0, 0) and
(m1, 0).

Lemma 4.17. The curve C01 corresponding to this edge is smooth (resp. has an
A1 singularity along it) iff the distance d01 from the segment (m0, h0)− (m1, h1) to
the origin (or to any point (2a, 2b)) is even (resp. odd).

Proof. The points (mi, 0, hi) are integral vectors in the lattice M ' Z3. We com-
pute a part of the normal fan in the dual lattice N ' Z3. We compute a vector
perpendicular to the facet through the points (0, 2, 0), (m0, 0, h0), (m1, 0, h1) to be

v01 =
(
2(h0 − h1), m0h1 −m1h0, 2(m1 −m0)

)
A vector perpendicular to the vertical facet, corresponding to the second toric divi-
sor containing the curve C01 is (0, 1, 0). Let u01 be a primitive vector proportional
to v01. Then the condition for X to be smooth along C01 is that the vectors u01

and (0, 1, 0) generate a cotorsion-free sublattice of N . This is seen to be equivalent
to the following condition:

GCD(2(h1 − h0), 2(m1 −m0)) = GCD(2(h1 − h0), 2(m1 −m0),m0h1 −m1h0)

Let G = GCD(h1 − h0,m1 − m0). Then G is the lattice length of the interval
(m0, h0)− (m1, h1), and m0h1 −m1h0 is the lattice area of the triangle with base
on the above interval and height d01; it equals Gd01. Thus the above condition
holds iff d01 is even.

If d01 is odd then the two vectors generate a sublattice with cotorsion group Z2,
and X has generically an A1 singularity along C. �

Next, we consider two edges (m0, h0) − (m1, h1) and (m1, h1) − (m2, h2) and
the singularity along the curve D which is the intersection of the corresponding
irreducible components in the central fiber X0.

Notation 4.18. Let v̄ij =
(
2(hi−hj), 2(mj −mi)

)
∈ Z2 and let ūij be a primitive

vector in Z2 proportional to it. Let dij denote the distance from the segment
(mi, hi)− (mj , hj) to the center. Finally, let Di denote the edge from the center to
(mi, 0, hi) and let Pi denote the point corresponding to the end point of this edge.

Lemma 4.19. If the vectors ū01, ū12 span Z2 then the 3-fold X is smooth along
D1 and at the point P1.

If the vectors ū01, ū12 span a sublattice of index 2 in Z2 then:
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• If 1
2d01 + 1

2d12 is odd, then X is smooth along D1 and has a 1
2 (1, 1, 1)

singularity at the point P1.
• If 1

2d01 + 1
2d12 is even, then X has an A1 singularity along D1.

Proof. One has

Z3/〈u01, u12, (0, 1, 0)〉 = Z2/〈ū01, ū12〉
and the first half follows. For the second half: two primitive vectors generate a
sublattice of index 2 in Z2 iff ū01 + ū12 = 2w̄ for some w̄ ∈ Z2. The condition we
are after is that u01 + u10 6= 2w for some w ∈ Z3. This means that the second
coordinate 1

2d01 + 1
2d12 should be odd. �

Corollary 4.20. Suppose that m1 −m0 = m2 −m1 = 1. Then:

(1) The 3-fold X is smooth along the outside edges C01, C12 iff the heights hi
are even for the even numbers mi among m0,m1,m2.

(2) If m1 is even then X has an A1 singularity along D1 ⇐⇒ h2−2h1+h0 = 2.
(3) If m1 is odd then X is smooth along D1 ⇐⇒ X has a 1

2 (1, 1, 1) singularity
at P ⇐⇒ h2 − 2h1 + h0 = 2.

At the edges corresponding to the corners the computation is similar. We give
some partial results:

Lemma 4.21. In the 6-6-6 triangle, suppose that there is an edge at the corner
a0 and the lengths of the adjacent edges are both 1. Then the 3-fold has an A1

singularity along the edge D0 ⇐⇒ h0 is even and h17 − 3
2h0 + h1 = 2.

Using this, we give constructions of for all but one of the missing stable limits
corresponding to maximal subdiagrams in Table 5. In this table, “#” gives the
number of the maximal subdiagram, using the enumeration from the table in the
Appendix, “Subdg.” gives the corresponding maximal subdiagram, “Starting De-
gen.” gives the subdiagram corresponding to the toric degeneration we begin with,
which is defined by assigning “Heights” to the points {a0, . . . , a17} (unlisted heights
may be obtained as appropriate linear combinations of listed ones), and “Construc-
tion” gives the sequence of elementary modifications that must be performed on
the starting degeneration to obtain the required one.

4.4.4. Case 6. There is one stable limit corresponding to a maximal subdiagram
that we have yet to construct: case 6 from the table in the Appendix, corresponding
to the subdiagram D′16A2. It can be shown that this stable limit cannot be obtained
by elementary modifications from any toric degeneration constructed using the 6-
6-6 triangle. Moreover, if one attempts to construct this degeneration using the
3-3-12 triangle, Assumption 4.15 is not satisfied, so the elementary modification
process is not well-defined. We therefore have to construct this degeneration by a
different method.

We consider each component of this subdiagram in turn. Start with the A2. This
corresponds to an irreducible component of a stable pair that may be constructed
in the 6-6-6 triangle, as shown in Figure 6a. As described in Section 4.3, we may
write a system of parametric equations for such a component:

uc = x2y2z2, u1 = tT1x5y, u2 = tT2x4y2, u3 = tT3x3y3, u4 = tT4x2y4,

where (x, y, z) are variables of degree 1 and the Ti satisfy the equations Ti+1−2Ti+
Ti−1 = 0 induced from their relative positions in the polytope from Figure 6a.
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# Subdg. Starting Heights Construction
Degen.

11 A′13A4 A′′9A4A4 (h0, h6, h7, h12, h17) 5 type 2 mod. on A′′9
= (0, 0, 0, 10, 0)

13 A14A2 D5A
′
5A4A2 (h0, h4, h6, h9, h12, h17) 5 type 1 mod. on A′5

= (0, 0, 4, 4, 10, 0)
16 A′12A

′
6 A′′9A

c
3A

c
3A
′
2 (h0, h6, h7, h11, h12, h13, h17) 4 type 2 mod. on A′′9

= (0, 0, 0, 8, 12, 8, 0) 4 type 2 mod. on A′2
18 Ac13A

′
4 A′6A

′
6A

c
3A
′
2 (h0, h5, h6, h11, h12, h13, h17) 2 type 2 mod. on A′2

= (0, 0, 2, 7, 10, 8, 0) 4 type 1 mod. on A′6
21 A′11D7 A′′9D7A2 (h0, h6, h7, h10, h12, h17) 3 type 2 mod. on A′′9

= (0, 0, 0, 6, 15, 0)
23 A12D5 A′7D5A2A2 (h0, h6, h9, h12, h14, h17) 3 type 1 mod. on A′7

= (0, 0, 6, 15, 6, 0)
26 A′10E8 A′′9E8A

c
1 (h0, h6, h7, h9, h12, h17) 2 type 2 mod. on A′′9

= (0, 0, 0, 4, 40, 0)
27 Ac9E8 E8A

′
6A

c
1A

c
1 (h0, h5, h6, h7, h12, h15, h17) 2 type 1 mod. on A′6

= (0, 0, 2, 3, 58, 4, 0)
29 A10E7 E7A

′
7A

e
1A

c
1 (h0, h6, h8, h12, h15, h17) 2 type 1 mod. on A′7

= (0, 0, 4, 28, 4, 0)
33 D′10A8 D′10A

′
3A2A2 (h0, h1, h4, h6, h12, h13, h16) 3 type 1 mod. on A′3

= (0, 0, 6, 36, 18, 6, 0)
50 A10A

′
7 A′7A

e
3A

c
3A
′
3 (h0, h2, h6, h12, h13, h17) 4 type 1 mod. on A′3

= (0, 0, 8, 14, 8, 0)
51 Ae9D8 D8A

′
4A2A2 (h0, h3, h6, h12, h14, h17) 3 type 1 mod. on A′4

= (0, 0, 6, 24, 6, 0)

Table 5. Construction of stable limits corresponding to maximal
subdiagrams

(a) A2 component

(b) D′
16 component

Figure 6. Toric components of D′16A2
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Next, consider the D′16. This corresponds to an irreducible component of a
stable pair that may be constructed in the 3-3-12 triangle, as shown in Figure 6b.
As above, we may write a system of parametric equations for such a component:

uc = u2v2w2, u0 = tT0u12, u1 = tT1u8v, u4 = tT4v2w4, u5 = tT5vw8,
u6 = tT6w12, u7 = tT7uw11, . . . u17 = tT17u11w,

where (u, v, w) are variables of degree (1, 4, 1) respectively and the Ti satisfy the
equations

Ti+1 − 2Ti + Ti−1 = 0 for i /∈ {0, 6}

Ti+1 −
3

2
Ti + Ti−1 = 0 for i ∈ {0, 6}

induced from their relative positions in the polytope from Figure 6b.
We wish to realize these two components as part of the same degeneration. To

do this, we first need to embed the D′16 into a degeneration of P2’s, instead of
F0

4 = P(1, 1, 4)’s. This is achieved by performing a Veronese embedding of the
central fiber

P(1, 1, 4) ↪→ P(1, 1, 1, 2)

(u,w, v) 7→ (x, y, z, s) = (u2, w2, uw, v)

and imposing the additional relation tns = xy − z2. Putting this together, we
obtain a system of parametric equations

uc = z2(xy − z2)2, u0 = tT0x6,
u1 = tT1x4(xy − z2), u4 = tT4y2(xy − z2)2, u5 = tT5y4(xy − z2),

u6 = tT6y6, . . . u12 = tT12z6, . . . u17 = tT17x5z.

Note here that the Ti in this equation are not necessarily the same as the Ti we
had before; they may have been modified by adding/subtracting multiples of n.
However, after performing a linear rescaling we may assume that they satisfy the
same set of relations, so we abuse notation and use the same symbols to denote
them.

Now we need to glue this component together with the A2 component we had
before. To do this, we have to make the parametric equations for uc, u1, u4 agree.
This is simply achieved by making the substitution xy 7→ (xy−z2) in the parametric
equations for A2.

Thus, we have a system of parametric equations:

uc = z2(xy − z2)2,
u0 = tT0x6, u1 = tT1x4(xy − z2), u2 = tT2x2(xy − z2)2,

u3 = tT3(xy − z2)3, u4 = tT4y2(xy − z2)2, u5 = tT5y4(xy − z2),
u6 = tT6y6, u7 = tT7y5z, . . .
u12 = tT12z6, . . . u17 = tT17x5z.

Here the Ti satisfy the relations as given above. It just remains to find a system of
heights Ti satisfying these relations. One may see that

(T0, . . . , T12, T13, T14, T15, T16, T17) = (18, . . . , 18, 9, 0, 3, 6, 9)

suffice.
Of course, this is not a proof. However, one may check the parametric equations

given above using a computer algebra package (we used Sage) and see that they do
indeed define a degeneration of P2’s to a stable limit of type D′16A2, as required. In
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fact, this is a very special case of a more general construction that will be discussed
further in Section 6.

This completes the proof of the following theorem.

Theorem 4.22. All of the surfaces claimed in Theorem 4.1 are smoothable to P2.

4.5. Only surfaces claimed in Theorem 4.1 occur as stable limits: prelim-
inary reductions. Let (X ∗,B∗) = (Xt = P2, ( 1

2 + ε)Bt)→ S \ 0 be a 1-parameter
degeneration of plane sextics. We would like to find its stable limit. First, we are
going to make a number of simplifying reductions.

Lemma 4.23. We can assume that the limit sextic B0 in P2 is GIT-semistable
and even more, that it lies is a closed PGL3-orbit.

Proof. Indeed, we get a map φ : S →M
GIT

, since the latter variety is proper. Then
φ(0) corresponds to a unique GIT-semistable B0 whose orbit is closed. The map φ
can be lifted, perhaps after a finite base change, to a map from S to the open set
of GIT-semistable sextics which gives an isomorphic family over S \ 0. This new
family is obtained from the old one by an element of PGL3

(
k((t))

)
. �

At this point recall the classification of GIT-semistable sextics, with closed orbits:

(a) Stable.
(b) A triple conic.
(c) Properly semistable and not of type (b).

We consider each of these cases in turn. In case (a) the pair (X0,
1
2B0) is lc and,

according to [Sha80, Thms 2.3, 2,4], the sextics for which the pair (X0, (
1
2 + ε)B0)

is not lc are all of Type II and are as follows:

(a1) Double conic C1 + conic C2, such that |C1 ∩ C2| = 4.
(a2) Double cubic.

It is easy to compute the stable limits in these cases: simply blow-up the double
loci until (X0, (

1
2 + ε)B0) becomes lc, then contract any unstable components. The

result is a type II degeneration corresponding to the subdiagram D̃16Ã1 in case
(a1) and Ã17 in case (a2).

In case (b), Shah [Sha80, Thms 4.3, 6.1] show that, after a possible further base
change, we may assume that the limit is a curve of degree 12 in P(1, 1, 4) ∼= F0

4 that
is either:

(b1) Stable, or
(b2) Properly semistable.

Moreover, in case (b1) the pair (X0,
1
2B0) is lc and, according to [Sha80, Thm 4.3],

the only case where the pair (X0, (
1
2 + ε)B0) is not lc is that of a double conic Q1

and single quartic Q2, such that |Q1 ∩Q2| = 4. As before, this gives rise to a type

II degeneration corresponding to the subdiagram D̃16Ã1.
Thus, we may assume that the limit (X0, B0) is of type (b2) or (c). In both

cases, the pair (X0,
1
2B0) is lc. By the Hilbert-Mumford criterion for semistability,

this means that for some choice of coordinates x, y, z on P2 (resp. P(1, 1, 4)) the
equation f of B0 contains the monomial x2y2z2 and all monomials lie on one side
of a certain line passing through (2, 2, 2).

Lemma 4.24. Using these coordinates x, y, z, one can construct a toric degenera-
tion (X ,B)→ S with the following properties:
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(1) X0 is a union of toric varieties Yi corresponding to cutting the 6-6-6 triangle
of sextic monomials in P2 (resp. the 3-3-12 triangle of degree 12 monomials
in P(1, 1, 4)) into several polytopes ∪Pi from the center (2, 2, 2) out to the
border. Thus, every polytope Pi is 2-dimensional, contains (2, 2, 2) on its
border, and all the other vertices lie on the boundary of the big triangle.

(2) The divisor B0 on X0 is Cartier with an equation F , and the restriction
Fi of this equation to Yi has a Newton polytope (the convex hull of nonzero
monomials) Qi such that: Qi is 2-dimensional, and Qi has the same corner
as Pi at the vertex (2, 2, 2).

Note that f is one of the equations Fi if the Newton polytope of f is two-
dimensional.

Proof. Suppose first that the limit is of type (c). To prove the statement in this
case, we look at the leading monomials in the equation f6 ∈ k[x, y, z][[t]] of the
family of sextics, i.e. those monomials clmnx

lymzn that appear in the lower convex
hull of the points

(l,m, n, val(clmn)) ∈ Z4.

This gives a polytopal decomposition of the 6-6-6 triangle which contains the poly-
topes Qi near the point (2, 2, 2). Then we extend Qi to the boundary to obtain the
polytopes Pi (note that the vertices on the boundary are automatically integral),
and take the corresponding toric degeneration of P2.

Next suppose that the limit (X0, B0) is of type (b2). In this case the proof of
[Sha80, Thm. 6.3] shows that (possibly after a further base change) we may embed
our family X into P5 × S as a family of quadrics (on the generic fiber this is just a
degree 2 Veronese embedding), and that the family of sextics B can be lifted to a
family of cubic hypersurfaces C in P5. The central fiber X0 in this family is a copy
of F0

4
∼= P(1, 1, 4), embedded by a degree 4 Veronese embedding.

Now consider the family X0×S ⊂ P5×S. The restriction of C to a generic fiber
in this family is a divisor of degree 12 in P(1, 1, 4) ∼= F0

4, so we obtain a family of
degenerating curves of degree 12 in P(1, 1, 4) whose limit is (X0, B0). Using this
new family, the argument proceeds exactly as in the type (c) case above. �

Note that the monomials appearing in the equations Fi can be any of the 28
monomials xlymzn.

After these steps, we are reduced to classifying the pairs (Y,∆ + ( 1
2 + ε)B),

where Y are toric varieties corresponding to the polytopes P as above, the Newton
polytope of B is Q, and ∆ is the boundary divisor corresponding to the sides
of P through the vertex (2, 2, 2). In type II, ∆ is irreducible, and in type III,
∆ = ∆1 + ∆2 has two components. The polytope P corresponds to a polarized
toric variety (Y, L), and OY (B) ' L.

In type II, there are 3 possible P ’s in the 6-6-6 triangle, corresponding to the
parabolic subdiagrams Ẽ7, Ẽ8, and D̃10, and 3 possible P ’s in the 3-3-12 triangle,
corresponding to the parabolic subdiagrams Ã1, Ẽ8, and D̃16.

In type III, we can classify P ’s and Y ’s according to the length of their boundary
lying on the boundary of the 6-6-6 (resp. 3-3-12) triangle. In the 6-6-6 triangle we
obtain:

(1) length-1: 1 case, quadratic cone (F0
2,O(1)) only (corresponding to A0).

(2) length-2: 3 cases, including (P2,O(2)) (corresponding to Ae1, Ac1, A′2).
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(3) length-3: 2 cases (corresponding to A2, A′3).
(4) length-4: 4 cases (corresponding to Ae3, Ac3, D4, A′4).
(5) length-5: 3 cases (corresponding to A4, D5, A′5).
(6) length-6: 4 cases (corresponding to Ae5, D6, A′6, E6).
(7) length-7: 3 cases (corresponding to D7, A′7, E7).
(8) length-8: 3 cases (corresponding to D8, E8, A′′9).
(9) length-9: 1 case (corresponding to D′10).

In the 3-3-12 triangle, in addition to most of those listed above, we also obtain:

(6) length-6: 1 case (corresponding to Ac5).
(7) length-7: 1 case (corresponding to A6).
(8) length-8: 3 cases (corresponding to Ae7, Ac7, A′8).
(9) length-9: 3 cases (corresponding to A8, D9, A′9).

(10) length-10: 4 cases (corresponding to Ae9, Ac9, D10, A′10).
(11) length-11: 3 cases (corresponding to A10, D11, A′11).
(12) length-12: 3 cases (corresponding to Ae11, D12, A′12).
(13) length-13: 2 cases (corresponding to D13, A′13).
(14) length-14: 2 cases (corresponding to D14, A′′15).
(15) length-15: 1 case (corresponding to D′16).

We obtain 47 cases in total and the polytopes P have 3, 4, or 5 sides, when P
straddles 1, 2, or 3 sides of the big triangle, respectively (and the corresponding
diagrams are of types Aen/A

c
n/An, Dn/A

′
n/En, or D′n/A

′′
n respectively).

Example 4.25. Let Y = (F0
2,O(1)). Then ∆1 is a line through the vertex of the

quadratic cone, and ∆2, B are two conic sections not passing through the vertex.
Then (Y,∆1 + ∆2 + 1

2B) is lc, and the only case when it is not lc for the coefficient
1
2 + ε is when B is tangent to ∆2.

Example 4.26. Let Y = (P2,O(2)). Then ∆1,∆2 are two lines. Then again
(Y,∆1 + ∆2 + 1

2B) is lc, and the only case when it is not lc for the coefficient 1
2 + ε

is when B is a conic in P2 which is either a double line or a conic tangent to either
of ∆i’s or to both of them.

Lemma 4.27. Suppose that a polytope P is contained in a strip of height 2. Write
B = B1 + 2B2, where 2B2 is the double part. Moreover, if Y has one or two
structures of generically P1-fibrations over P1 (e.g. Y = Fn or P1×P1), let 2B′2 be
the part of 2B2 not contained in the fibers. Then:

(1) (X,∆ + 1
2B) is lc.

(2) (X, ( 1
2 + ε)B1) is lc.

(3) B′2 ∩B1 = ∅.
Proof. Either P has two parallel sides at lattice distance 2, or one boundary of the
height-2 strip intersects P at the point (2, 2, 2). In the first case, Y has a structure
of a generically P1-fibration |f |, and B.f = 2. In the second case, there is such a
structure after a blowup at the point corresponding to the vertex (2, 2, 2). Thus,
there is again a pencil of curves |f | on Y such that B.f = 2.

Let P ∈ Y \ ∆. Let F be a curve from the above pencil |f | passing through
P . Let the coefficient of F in B be 0 ≤ a ≤ 2. The pair (F, 1

2 (B − aF )|F is

lc, since F. 12 (B − aF ) = 2. By inversion of adjunction, this implies that the pair

(Y, 1
2 (B+ (2− a)F )) is lc in a neighborhood of P . Moreover, the pair (Y, 1

2B) is lc,
which proves (1) outside of ∆. Near ∆, again, we can use adjunction to ∆.
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Moreover, if a ≤ 1, i.e. F 6⊂ B2 then it follows that minimal discrepancy over P
is > −1. In particular, (X, 1

2B) is klt at P unless there is a double component of
B passing through P . This proves (2). Part (3) follows similarly. �

Remark 4.28. This lemma leaves out only 3 out of a total of 47 polytopes. All
of them are 4-gons and correspond to subdiagrams of type En. The sides on the
boundary have lengths 3 + 3 (corresponding to E6), 3 + 4 (corresponding to E7),
and 4 + 4 (corresponding to E8).

Lemma 4.29. In the remaining 3 cases in type III, the 4-gons with boundary
lengths 3 + 3, 3 + 4, and 3 + 5, the following holds:

(1) (X,∆ + 1
2B) is lc.

(2) (X, ( 1
2 + ε)B1) is lc.

Proof. Let P be the 4-gon with the boundary lengths 3 + 3. The corresponding
polarized toric variety is obtained from (P2,O(4)) by making weighted blowups at
the coordinate points x = z = 0 and y = z = 0, and then contracting the line z = 0.

The equation of B in this case is x2y2 + zg(x, y, z). Considering this as an
equation of a quartic on P2, this implies that the pair (P2,∆ + 1

2B) is lc in a
neighborhood of ∆ and is maximally lc at the points x = z = 0, y = z = 0.

If B is a reduced quartic then B can have at worst an Ẽ7-singularity or Du Val
singularities, see [BG81]. Obviously, B does not contain a triple line. It follows
that the pair (P2,∆ + 1

2B) is lc at it is maximally lc at the points x = z = 0,

y = z = 0. It follows that the same is true for the pair (Y,∆ + 1
2B), after the toric

blowups and contraction. The case of the 4-gon with the boundary lengths 3 + 4 is
done by very similar arguments.

Finally, the case of the 3+5 4-gon may be treated as follows. The corresponding
polarized toric variety is obtained from (P(1, 1, 2),O(6)), with weighted coordinates
(x, y, z) in weights (1, 1, 2) respectively, by making a weighted blow-up at the point
y = z = 0.

The equation of B in this case is given by x2z2 + az3 + yg(x, y, z), where a 6= 0
(otherwise the polygon would be 2+5, not 3+5) and g is a quintic. The intersection
of this curve with ∆ = {y = 0} in P(1, 1, 2) is two points, one of which is doubled,
so the pair (P(1, 1, 2),∆ + 1

2B) is lc in a neighborhood of ∆ and is maximally lc at
the point y = z = 0.

If B is a reduced divisor, then it follows from [Wal99, Theorem 5.1]1 that the
double cover {w2 = x2z2 + az3 + yg(x, y, z)} ⊂ P(1, 1, 2, 3) is a rational elliptic
surface and the singularities on B are no worse than A-D-E. Moreover, it is obvious
that B cannot contain a triple component, as it intersects ∆ in two distinct points.
It follows that the pair (P(1, 1, 2),∆ + 1

2B) is lc as it is maximally lc at the points

x = z = 0, y = z = 0. Thus, the same is true for the pair (Y,∆ + 1
2B) after the

toric blowup. �

Corollary 4.30. Assume that that P is not the entire 6-6-6 or 3-3-12 triangle,
ie. Y 6= (P2,O(6)) and Y 6= (P(1, 1, 4),O(12)). Assume that B intersected with
any ∆j = P1 corresponding to a face passing through (2, 2, 2) does not contain

1We note that [Wal99] was never published, due to a substantial overlap between its main

results and those in an earlier paper of Degtyarev [Deg90], which was discovered late in the
editing process. However, we find the broader treatment in [Wal99] more directly applicable to

our setting, so we prefer to use that reference here.
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double points, i.e. that (Y,∆ + ( 1
2 + ε)B) is lc in a neighborhood of ∆j. Then

(Y,∆ + ( 1
2 + ε)B) is lc everywhere.

With these reductions in place, our strategy is to make elementary operations,
similar to those in Section 4.4, until the central fiber is a stable surface

(
X, ( 1

2 +ε)B
)
.

At every step, we see that the surfaces do not go out of the class of the “umbrella”
type surfaces claimed in Theorem 4.1.

Example 4.31. Let X0 = P2 and B0 be a double cubic C. Blow up C in the
3-fold. A P1-fibration over C is inserted, and the restriction of B to the new model
is a 2-section on this P1-fibration, which is disjoint from the exeptional section. If
this 2-section is not a double section, then the pair (X0,

1
2 + ε)B0 is slc, and passing

to the canonical model consists of blowing down the original P2 component, leaving
a cone over C with a 2-section. If, however, the 2-section is a double section, then
we simply repeat the procedure by blowing this section up, etc. The end result is
always a cone over C with a 2-section.

4.6. Only surfaces claimed in Theorem 4.1 occur as stable limits: end of
the proof. From the previous section, possibly after performing a base change, we
may assume that the following condition holds:

Condition 4.32. (X ,B)→ S is a family of pairs with generic fiber isomorphic to
a sextic in P2 and special fiber (X0, B0), satisfying:

(1) X0 is a surface of umbrella type, corresponding to an elliptic/maximal
parabolic subdiagram of ΓVin as in Theorem 4.1.

(2) B is a horizontal Q-Cartier divisor.
(3) 2KX + B ∼ 0.
(4) (X ,B)→ ∆ admits a semistable log resolution.
(5) The pair (X , 1

2B +X0) is log canonical.

(6) The divisor KX + ( 1
2 + ε)B is relatively ample over S for some ε > 0.

Our aim is to prove the following:

Proposition 4.33. After a finite series of birational modifications, we may assume
that (X ,B) → ∆ is a family of stable pairs with central fiber of umbrella type,
corresponding to an elliptic/maximal parabolic subdiagram as in Theorem 4.1.

Proof. We begin the proof of this proposition by noting that most of the conditions
needed for (X ,B) to be a family of stable pairs follow immediately from Condition
4.32. Indeed, we only need to show that the pair (X0, (

1
2 + ε)B0) can be made lc.

Moreover, by Condition 4.32(5) and adjunction, we know that the pair (X0,
1
2B0)

is lc.
To prove the proposition, we will show that there exists a sequence of elementary

modifications, which are birational and preserve Condition 4.32. These elementary
modifications are applied to loci in X0 where (X0,

1
2B0) is lc but (X0, (

1
2 + ε)B0) is

not (i.e. (X0,
1
2B0) is maximally lc). It follows from Corollary 4.30 that such loci

fall into two classes: curves of multiplicity two in B0 and points where B0 intersects
a double curve in X0 non-transversely.

The elementary modifications we will use are of the following two types:

(a) Our first elementary modification generalizes those discussed in Section 4.4.
Suppose that B0 contains an irreducible curve C of multiplicity two and
let Y denote the component of X0 containing C. Since C is a log canonical
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center for the pair (X , 1
2B+X0), we can extract a divisor E with discrepancy

−1 from C to obtain a new threefold X̂ . Let B̂ denote the strict transform
of B, and let X̂0 denote the total transform of X0. Note that B̂ is relatively
nef away from Y . Examining the possibilities for Y given by Tables 2 and
3, we thus see that B̂ only fails to be relatively nef when B ∩ Y contains
a curve of multiplicity two with self-intersection − 1

2 (which can occur for
diagrams of types A′n, D′n and A′′n). The argument given in Section 4.4.2

shows that we may flip such curves, after which B̂ becomes relatively nef.
Conclude the elementary modification by contracting any curves C ′ in X̂0

with B̂.C ′ = 0.
(b) Suppose that B0 intersects a double curve in X0 non-transversely in a

point P . Since P is a log canonical center for the pair (X , 1
2B+X0), we can

extract a divisor E with discrepancy −1 from P to obtain a new threefold
X̂ . Let B̂ denote the strict transform of B. Examining the possibilities for
the components of X0 containing P , as given by Tables 2 and 3, we see
that B̂ must be relatively nef. Conclude the elementary modification by
contracting any curves C ′ in X̂0 with B̂.C ′ = 0.

These elementary modifications preserve Condition 4.32. Indeed, the only dif-
ficult part is showing that Condition 4.32(1) is preserved. In the case of an ele-
mentary modification of type (a), one may use an analogous argument to that in
Section 4.4 to show that the resulting surface is still of umbrella type. To see that
the resulting surface corresponds to an elliptic/parabolic subdiagram, note that
the exceptional component of the blow-up is ruled over C. After contracting, this
exceptional component corresponds to a subdiagram of type Aen/A

c
n/An (if B̂ is nef

and C is contracted), Dn (if B̂ is nef and C is not contracted), A′n (if one curve is
flipped and C is contracted), D′n (if one curve is flipped and C is not contracted),
or A′′n (if two curves are flipped).

In the case of an elementary modification of type (b), the new component is
introduced between two existing ones, so the resulting surface is again of umbrella
type. Moreover, the new component has Picard rank 1, so must correspond to a
subdiagram of type Aen/A

c
n/An.

To prove Proposition 4.33, we perform the following algorithm:

(1) If B0 contains a curve C of multiplicity two, perform an elementary modi-
fication of type (a) along C.

(2) Repeat step (1) until there are no curves of multiplicity two remaining in
B0.

(3) If there is a point P in X0 where B0 intersects a double curve non-trans-
versely, perform an elementary modification of type (b) at P .

(4) Return to step (1).

If this algorithm terminates, by Corollary 4.30 all loci in X0 where (X0,
1
2B0) is

lc but (X0, (
1
2 + ε)B0) is not will have been removed, so (X0, (

1
2 + ε)B0) must be

lc. By the following lemma, this completes the proof. �

Lemma 4.34. The algorithm above terminates after finitely many steps.

Proof. Begin by noting that since (X , 1
2B + X0) is lc (by Condition 4.32(5)), for

suitable choices of 0 < ε � δ the pair (X , ( 1
2 + ε)B + (1− δ)X0) is klt. Fix such ε

and δ.
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Let a(E,X , ( 1
2 + ε)B + (1− δ)X0) denote the discrepancy of the divisor E with

respect to the pair (X , ( 1
2 +ε)B+(1−δ)X0). Suppose that we perform an elementary

modification taking (X ,B) to (X ′,B′). If E is the new component arising from this
operation, then we will show that

0 > a(E,X ′, ( 1
2 + ε)B′ + (1− δ)X ′0) = a(E,X , ( 1

2 + ε)B + (1− δ)X0) + 2ε,

i.e. the discrepancy of E increases by 2ε but remains negative; whilst if F is any
other divisor,

a(F,X ′, ( 1
2 + ε)B′ + (1− δ)X ′0) ≥ a(F,X , ( 1

2 + ε)B + (1− δ)X0),

i.e. the discrepancy of F does not decrease. As, by [KM98, Proposition 2.36], there
are only finitely many components E with negative discrepancy, this can only occur
finitely many times, so the algorithm must terminate.

Consider an elementary modification of either type. Let f : X̂ → X denote the
extraction, let B̂ denote the strict transform of B, let E denote the exceptional
divisor, and let f−1

∗ X0 denote the strict transform of X0. Since the discrepancy
of E with respect to the pair (X , 1

2B + X0) is equal to −1 by construction, we

obtain KX̂ + 1
2 B̂ + f−1

∗ X0 ≡ f∗(KX + 1
2B + X0) − E. Moreover, by Condition

4.32(4), we obtain X̂0 ∼ f∗(X0) ∼ f−1
∗ X0 + E. Putting these together gives

KX̂ + 1
2 B̂ ≡ f∗(KX + 1

2B) ≡ 0, and thus

KX̂ + ( 1
2 + ε)B̂ + (1− δ)X̂0 ≡ f∗(KX + ( 1

2 + ε)B + (1− δ)X0)− 2εE,

which gives

a(E,X , ( 1
2 + ε)B + (1− δ)X0) = −1 + δ − 2ε,

a(E, X̂ , ( 1
2 + ε)B̂ + (1− δ)X̂0) = −1 + δ < 0.

and, by [KM98, Lemmas 2.27 and 2.30], for any other divisor F we have

a(F, X̂ , ( 1
2 + ε)B̂ + (1− δ)X̂0) ≥ a(F,X , ( 1

2 + ε)B + (1− δ)X0).

The next step in the elementary modification is to flip any curves Ĉ in X̂0 with
B̂0.Ĉ < 0 (which only occur for certain elementary modifications of type (a)), then

contract any curves with B̂0.Ĉ = 0. As E is not contracted this process does not
affect the discrepancy of E and, by [KM98, Lemma 3.38], the discrepancy of F does
not decrease for all other divisors F . This shows that elementary modifications have
the required properties. �

5. Maximally log canonical sextics in the plane and the Γ21 diagram

We now digress to discuss a closely related result, which classifies maximally lc
plane sextics in terms of parabolic/hyperbolic subdiagrams of a graph Γ21, which
is closely related to ΓVin.

As before, we let (X ∗,B∗)→ S \0 denote a one-parameter degeneration of plane
sextics. By results of Hacking [Hac04, Theorem 2.6], after a finite surjective base
change the family (X ∗,B∗) → S \ 0 may be completed (possibly non-uniquely) to
a flat family of semistable pairs (X ,B)→ S of degree 6, defined below, so that KX
and B are Q-Cartier divisors with 2KX + B ∼ 0.

Definition 5.1. [Hac04, 2.4] Let X be a surface and let B be an effective Q-Cartier
divisor on X. Then (X,B) is a semistable pair of degree 6 if
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(1) the surface X is normal and log terminal,
(2) the pair (X, 1

2B) is lc,
(3) the divisor 2KX +B is linearly equivalent to zero, and
(4) there is a deformation (X ,B) → ∆ of the pair (X,B) so that the general

fiber of X is isomorphic to P2 and the divisors KX and B are Q-Cartier.

Now, let (X,B) be a semistable pair of degree 6 and let f : X̂ → X be a minimal

log resolution of (X,B). Define an effective Q-divisor B̂ to be the divisor on X̂

with Supp(B̂) = Supp(f∗B) and KX̂ + 1
2 B̂ ≡ f∗(KX + 1

2B) ≡ 0. Then (X,B) is
said to be of

• Type I if the integral part b 1
2 B̂c of 1

2 B̂ is empty,

• Type II if b 1
2 B̂c is nonempty and smooth (but not necessarily connected),

and
• Type III if b 1

2 B̂c contains simple normal crossing singularities.

The rationale behind these names is as follows. Let Y → ∆ denote the double
cover of X → ∆ ramified over B. Then Y → ∆ is a flat family of K3 surfaces of
degree 2. Let Ŷ → ∆ denote a semistable resolution of Y → ∆ with special fiber
Ŷ , then Ŷ is a degenerate K3 surface of Type I (resp. II, III) if and only if the
special fiber (X,B) of (X ,B)→ ∆ is of Type I (resp. II, III).

5.1. Statement of the result. The aim of this section is to classify semistable
pairs (X,B) of degree 6, where we make the following simplifying assumptions:

Assumption 5.2. We assume that (X,B) is a semistable pair of degree 6 satisfying

(1) the surface X ∼= P2, and
(2) the pair (X, 1

2B) is maximally lc, i.e. (X, 1
2B) is lc but (X, ( 1

2 + ε)B) is not
lc for any ε > 0.

Remark 5.3. Part (1) of this assumption implies that KX is Cartier so, by Defini-
tion 5.1, B is Cartier also. It is easy to see that part (2) of this assumption occurs
if and only if the pair (X,B) is of Type II or Type III.

Our aim is to classify semistable pairs (P2, B) satisfying these assumptions, up
to the following notion of equivalence:

Definition 5.4. Let (P2, B) and (P2, B′) be two semistable pairs of of degree 6,

let f : X̂ → P2 (resp. f ′ : X̂ ′ → P2) be minimal log resolutions of the log canonical

loci of the pairs (P2, 1
2B) (resp. (P2, 1

2B
′)), and let B̂ (resp. B̂′) denote the strict

transforms of B (resp. B′) under these resolutions. Then we say that (P2, B) and
(P2, B′) are equivalent if:

• X̂ and X̂ ′ are isomorphic, and
• B̂ and B̂′ are linearly equivalent divisors on X̂ ∼= X̂ ′.

Our classification will be given in terms of certain subdiagrams of the diagram
Γ21, which is given in Figure 7. For later use we have labeled the 21 vertices of Γ21

with letters si and tj . This labeling divides the vertices into two types: 3 corner
vertices, which are labeled si in Figure 7, and 18 outer vertices, which are labeled
tj .

Now we are ready to state the main theorem of this section.
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t0
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t15
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t13

t12

t11
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t9

t8

t7

t6t5t4t3t2t1

s0

s12

s6

Figure 7. The diagram Γ21

Theorem 5.5. Let (P2, B) be a semistable pair of degree 6 satisfying Assumption
5.2. There is a bijective correspondence between equivalence classes of such pairs
(P2, B) (under the equivalence given by Definition 5.4) and subdiagrams Γ of Γ21,
up to the action of S3, such that every connected component of Γ is either parabolic
or hyperbolic. Furthermore,

• the pair (P2, B) is of Type II (resp. Type III ) if and only if every connected
component of the corresponding subdiagram is parabolic (resp. hyperbolic),
and
• degeneration of pairs corresponds to inclusion of subdiagrams, with larger

subdiagrams being more degenerate.

5.1.1. Interpretation. This result may be interpreted as follows. Define a sextic by∑
ui = 0, where

uc = (−xyz + s0x
3 + s6y

3 + s12z
3)2

u0 = t0x
6 u1 = t1x

4(−xy + s12z
2) u2 = t2x

2(−xy + s12z
2)2

u3 = t3(−xy + s12z
2)3 u4 = t4y

2(−xy + s12z
2)2 u5 = t5y

4(−xy + s12z
2)

u6 = t6y
6 u7 = t7y

4(−yz + s0x
2) u8 = t8y

2(−yz + s0x
2)2

u9 = t9(−yz + s0x
2)3 u10 = t10z

2(−yz + s0x
2)2 u11 = t11z

4(−yz + s0x
2)

u12 = t12z
6 u13 = t13z

4(−xz + s6y
2) u14 = t14z

2(−xz + s6y
2)2

u15 = t15(−xz + s6y
2)3 u16 = t16x

2(−xz + s6y
2)2 u17 = t17x

4(−xz + s6y
2)

The coefficients si, tj appearing in this expression can be associated to vertices
of the Γ21 diagram as shown in Figure 7. Thus, given a parabolic/hyperbolic sub-
diagram, one may define a sextic equation by setting the si, tj which correspond to
vertices in that subdiagram to zero. The resulting sextic in P2 is a generic member
of the equivalence class corresponding to that parabolic/hyperbolic subdiagram.

Remark 5.6. The rule for generating the above expressions for ui is as follows.
To each of the 18 vertices on the boundary of Figure 7, associate the corresponding
monomial x`ymzn from Figure 3b, and add in an additional monomial x2y2z2
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corresponding to the centre. Multiply the monomials on the boundary by the
corresponding ti (formally, tc = 1), to give 19 monomial expressions

uc = (xyz)2 u0 = t0x
6 u1 = t1x

4(xy) u2 = t2x
2(xy)2 u3 = t3(xy)3 etc.

Setting ti = thi for some heights hi ∈ Z gives all the possible 1-parameter limits
in the first toric family of Section 4.2 (c.f. Section 4.3). This is essentially the
meaning of the toric construction.

Now “deform” these formulas by making the substitutions

xy 7→ −xy + s12z
2, yz 7→ −yz + s0x

2, zx 7→ −xz + s6y
2,

xyz 7→ −xyz + s0x
3 + s6y

3 + s12z
3.

Adding the minus signs is not strictly necessary at this stage, but will make the
formulas in the next section somewhat easier.

5.2. Beginning the proof of Theorem 5.5. The remainder of this section will
be devoted to proving Theorem 5.5. We will make repeated use of the fact that any
semistable pair (P2, B) of degree 6 satisfying Assumption 5.2 determines a sextic
double plane Y , given by the double cover of P2 branched along the divisor B.
Note that Y may be non-normal (if B is not reduced), but that the assumptions
on (P2, B) imply that it must have Gorenstein semi log canonical singularities.

Definition 5.7. A surface Y is said to have semi log canonical (slc) singularities
if the pair (Y, 0) is slc (see Definition 3.2). Y has Gorenstein semi log canonical
singularities if, in addition, KY is Cartier.

A coarse classification of singularities of this type was given by Kollár and
Shepherd-Barron in [KSB88, Theorem 4.21]; their result states that a Gorenstein
surface singularity is slc if and only if it is isomorphic to one of

• a rational double point (RDP) 0 ∈ {z2 = f(x, y)} ⊂ C3, where the branch
curve {f(x, y) = 0} ⊂ C2 has an A-D-E singularity at 0 ∈ C2;

• a double normal crossing point 0 ∈ {xy = 0} ⊂ C3;
• a pinch point 0 ∈ {x2 = zy2} ⊂ C3;
• a simple elliptic singularity;
• a cusp;
• a degenerate cusp.

In this classification, simple elliptic, cusp and degenerate cusp singularities are
defined by the form of their minimal semi-resolutions (see [KSB88, Section 4] for
the definition of a minimal semi-resolution).

Definition 5.8. [KSB88, 4.20] A Gorenstein surface singularity is called:

• Simple elliptic if it is normal and the exceptional divisor of the minimal
resolution is a smooth elliptic curve.

• A cusp if it is normal and the exceptional divisor of the minimal resolution
is a cycle of smooth rational curves or a rational nodal curve.

• A degenerate cusp if it is not normal and the exceptional divisor of the
minimal semi-resolution is a cycle of smooth rational curves or a rational
nodal curve.

We will use this classification as the starting point for our analysis. However, as
any RDP arising in a sextic double plane comes from an A-D-E singularity in the
branch divisor B, which is not a maximally log canonical singularity of the pair
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(P2, 1
2B), by Assumption 5.2(2) we may assume that Y is a sextic double plane

that contains at least one Gorenstein slc singularity that is not an RDP.
To further simplify matters, we also note that the sextic double plane Y can be

realized as a hypersurface Y = {z2 = f6(xi)} ⊂ P(1, 1, 1, 3), where {f6(xi) = 0} is
the equation of the divisor B in P2. From this it is easy to see that any singularity
arising in Y must have embedding dimension 3 (i.e. be a hypersurface singularity)
and multiplicity 2.

5.3. Simple elliptic singularities. We begin by assuming that Y is normal and
has at worst simple elliptic singularities (i.e. Y does not contain any cusps). As
these singularities are resolved by a single smooth elliptic exceptional curve, in this
case the pair (P2, B) is always of Type II.

Simple elliptic singularities of embedding dimension 3 have been classified by
Saito [Sai74, Satz 1.9]. He finds three cases, distinguished by the self-intersection
number of the exceptional elliptic curve in the minimal resolution. Only two of
these cases, Ẽ7 (where B has a quadruple point) and Ẽ8 (where B has a consecutive
triple point), have multiplicity 2; these correspond to exceptional elliptic curves
with self-intersection numbers −2 and −1 respectively. The local equations of
these singularities are

Ẽ7 : 0 ∈ {z2 = xy(y − x)(y − λx)} ⊂ C3, λ ∈ C− {0, 1},
Ẽ8 : 0 ∈ {z2 = y(y − x2)(y − λx2)} ⊂ C3, λ ∈ C− {0, 1}.

It is easily seen that both of these singularities can occur in sextic double planes.
Furthermore, by [Wal99, Theorem 3.2], any sextic double plane having at worst

simple elliptic singularities must have either one Ẽ7, one Ẽ8 or two Ẽ8’s. By
explicitly computing resolutions, it may be seen that each of these three cases
forms a single equivalence class under Definition 5.4.

Each of these simple elliptic singularities already corresponds to a parabolic
diagram, specifically, the extended Dynkin diagrams Ẽ7 and Ẽ8. These parabolic
diagrams embed into our standard diagram as shown in Figure 8: Ẽ7 embeds as
Figure 8a (which, for consistency with the rest of the paper, we call T4,4) and Ẽ8

embeds as Figure 8b (which we call T3,6).
Note that it is also possible to simultaneously embed two diagrams of type T3,6

into our standard diagram without them intersecting; this corresponds to the case
when Y has two singularities of type Ẽ8. By [Wal99, Theorem 3.2], this can only
happen when the divisor B consists of three conics (one of which may degenerate
to a pair of lines) meeting in two consecutive triple points.

5.4. Cusp singularities. Next we assume that Y is normal but contains at least
one cusp singularity. As the exceptional divisors arising from resolving these sin-
gularities always contain simple normal crossing singularities, in this case the pair
(P2, B) is always of Type III.

Cusp singularities of embedding dimension 3 generalize the simple elliptic sin-
gularities studied in Section 5.3. They have been studied by Arnold [Arn76], who
found that they have the general form

Tp,q,r : 0 ∈ {xp + yq + zr + λxyz = 0} ⊂ C3,
1

p
+

1

q
+

1

r
< 1, λ ∈ C− {0},

where the integers p, q, r are determined by the form of the exceptional locus in the
minimal resolution. Of these, the cusp singularities with multiplicity 2 correspond
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(a) The T4,4 subdiagram (b) The T3,6 subdiagram

Figure 8. Parabolic subdiagrams of Γ21 corresponding to pairs
(P2, B) where B contains a quadruple point or consecutive triple
point

.

to those Tp,q,r with p = 2. Such singularities fall into two classes: T2,3,r with r ≥ 7
(where B has a higher triple point) and T2,q,r with q ≥ 4 and r ≥ 5 (where B
has a higher quadruple point). The forms of the exceptional loci appearing in the
minimal resolutions corresponding to these cases have been calculated by Laufer in
[Lau77, Section V]: in both cases the exceptional locus is a cycle of rational curves
E =

∑
iEi with components satisfying E2

i ≤ −2, that has E2 = −1 (in the T2,3,r

with r ≥ 7 case) or E2 = −2 (in the T2,q,r with q ≥ 4 and r ≥ 5 case).
Normal sextic double planes with cusp singularities are discussed in [Wal99].

In particular, [Wal99, Theorem 3.3] implies that if Y is normal and has a cusp
singularity, then any other singularities it has must all be RDP’s.

5.4.1. Higher triple points. Assume first that the cusp singularity has type T2,3,r,
with r ≥ 7. Such singularities are discussed in [Wal99, Section 5]. We find:

Proposition 5.9. Let Y be a normal sextic double plane determined by a semistable
pair (P2, B) satisfying Assumption 5.2, and suppose that Y has a cusp singularity
of type T2,3,r with r ≥ 7. Then B is a reduced curve in P2 and, up to the notion of
equivalence from Definition 5.4, either:

• Y has a singularity of type T2,3,r, with 7 ≤ r ≤ 15, and B is irreducible,
• Y has a singularity of type T2,3,8 and B contains a line through the higher

triple point, or
• Y has a singularity of type T2,3,14 and B contains a conic through the higher

triple point.

Moreover, all cases are realized.

Proof. The fact that B is reduced is immediate from normality of Y . By the
argument in [Wal99, Section 5], B has the general form

{x3z3 + x2z2a(y, z) + xzb(y, z) + c(y, z) = 0} ⊂ P2,

where a, b and c are homogeneous functions in y and z of degrees 2, 4 and 6 respec-
tively. After performing a blow-up and a change of coordinates, this function defines
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a rational elliptic surface. The form of B and the type of singularity occurring in
it can then be read off from the form of this rational elliptic surface. Furthermore
this construction can be reversed, so every rational elliptic surface gives rise to a
sextic with a higher triple point.

Suppose first that B does not contain a line through the higher triple point. Then
the corresponding rational elliptic surface does not contain any multiple fibers and,
by [Wal99, Table 5], we see that a singularity of type T2,3,r gives rise to a singular
fiber of type Ir−6 (here we remark that, in Wall’s notation, a singularity of type
T2,3,r is denoted E2,r−6).

Given this, Persson’s classification of rational elliptic surfaces [Per90] shows that
rational elliptic surfaces with a singular fiber of type Ik exist for exactly 1 ≤ k ≤ 9,
giving the required bounds on r. Furthermore, it follows from Persson’s classifica-
tion that, in all cases except k = 8, up to equivalence the curve B may be taken to
be irreducible (corresponding to a rational elliptic surface with one singular fiber
of type Ik and all other fibers of type I1). When k = 8 (so r = 14) there are two
distinct rational elliptic surfaces in Persson’s classification with one I8 fiber and all
other fibers of type I1; these correspond to cases where B is irreducible and where
B splits as the union of a conic and a quartic. By explicitly computing resolutions,
it is easy to see that these two cases are not equivalent.

Finally, suppose that B has a line L as a component. Write B = B′ + L. Then
c is divisible by z in the above expression. If b is not also divisible by z then,
by [Wal99, Theorem 5.4], B′ and L meet away from the higher triple point in an
additional A1 singularity and, by computing a resolution, we see that this case is
equivalent to the irreducible case above. This leaves the case where b is divisible
by z, in which case an application of [Wal99, Theorem 5.5] gives that Y has a
singularity of type T2,3,8. Another explicit resolution shows that this case is not
equivalent to any of the others. �

5.4.2. Higher quadruple points. Assume next that the cusp singularity has type
T2,q,r, with q ≥ 4 and r ≥ 5. Such singularities are discussed in [Wal99, Section 6].
In analogy with the previous section we find:

Proposition 5.10. Let Y be a sextic double plane determined by a semistable pair
(P2, B) satisfying Assumption 5.2, and suppose that Y has a cusp singularity of type
T2,q,r with q ≥ 4 and r ≥ 5. Then, up to the notion of equivalence from Definition
5.4, either:

• Y has a singularity of type T2,q,r, for q+r ≤ 18 and (q, r) 6= (4, 14), (6, 12),
(8, 10), and B is an irreducible curve.

• Y has a singularity of type T2,q,r, for (q, r) = (4, 14), (6, 12) or (8, 10), and
B is a union of two cubics, both of which pass through the quadruple point.

• Y has a singularity of type T2,14,r, for 4 ≤ r ≤ 5, and B is the union of a
smooth conic and a quartic, both of which pass through the quadruple point.

• Y has a singularity of type T2,8,r, for 4 ≤ r ≤ 11, and B is the union of a
line and a quintic, both of which pass through the quadruple point.

• Y has a singularity of type T2,8,8 and B is the union of two lines and a
quartic, all of which pass through the quadruple point.

Moreover, all cases are realized.

Proof. By the results of [Wal99, Section 6], B can be written in the general form

{F (x, y, z) = x2a(y, z) + xb(y, z) + c(y, z) = 0} ⊂ P2,



MODULI OF K3 SURFACES OF DEGREE 2 43

where a, b and c are functions of y and z of degrees 4, 5 and 6 respectively.
Given this, the possible higher quadruple points in B are given by partitions of

4 and 10, corresponding to factorization types of a and δ = b2 − 4ac respectively
(i.e. the numbers in each partition correspond to the multiplicities of the linear
factors appearing in the corresponding factorization), that have been marked to
show which factors of a also divide δ and, for any that do, which also divide F .
Note that not all higher quadruple points are cusp singularities of type T2,q,r, so
we will also have to fulfill certain compatibility conditions:

(1) No term appearing in the partition of 4 may be greater than 2.
(2) Any factor of a that also divides δ must do so with equal or greater multi-

plicity.

Furthermore we note that, by [Wal99, Lemma 6.1], if B does not contain a line
through the quadruple point, then B is reducible if and only if all values appearing
in the partition of 10 are even.

We begin with the simplest partition of 4, given by [1, 1, 1, 1]. In this case, Y

is a sextic double plane with a singularity of type Ẽ7, which is a simple elliptic
singularity and was treated in Section 5.3.

The next partition of 4 that we will consider is [2, 1, 1]. In this case we have
several possibilities to consider:

• If the double factor of a is not a factor of δ, then Y is a sextic double plane
with a singularity of type T2,4,5. Resolving we see that, up to equivalence,
B is an irreducible sextic, corresponding to the partition [110] of 10.
• Suppose next that the double factor of a is a factor of δ, but that this factor

is not also a factor of F . Then in order to satisfy (2) the corresponding par-
tition of 10 must contain at least one value 2 ≤ k ≤ 10, which corresponds
to the double factor of a. Partitions of this type give rise to singularities
of type T2,4,k+4. Resolving, we see that each case 2 ≤ k ≤ 9 gives rise to
a single equivalence class, the generic member of which is a smooth sextic
corresponding to the partition [k, 110−k] of 10.

The case k = 10 remains. In this case [Wal99, Lemma 6.1] shows that B
must be reducible. Moreover, as we have assumed that the common factor
of a and δ is not also a factor of F , we see that B cannot contain a line
through the quadruple point. Resolving the T2,4,14 singularity we thus see
that, up to equivalence, there are two distinct possibilities: B is a union of
two irreducible curves of degrees either (3, 3) or (2, 4), and both components
pass through the quadruple point. By the proof of [Wal99, Lemma 6.1],
both cases may occur.
• Finally, suppose that the double factor of a is a factor of both δ and F .

Then B splits as the union of a line and a quintic, both of which pass
through the singularity. In this case the quadruple point has type T2,4,6

or T2,4,8, depending upon the degree of tangency between the line and the
quintic. Resolving, we find that the first case is equivalent to an irreducible
sextic, which has already been covered, but the second is distinct.

The last partition of 4 that we need to consider is [2, 2]. In this case again there
are several possibilities:
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• If no factor of a is a factor of δ, then Y is a sextic double plane with a
singularity of type T2,5,5. Resolving we see that, up to equivalence, B is an
irreducible sextic, corresponding to the partition [110] of 10.
• If one factor of a is also a factor of δ, but not a factor of F , then the

corresponding partition of 10 must contain at least one value 2 ≤ k ≤ 10,
which corresponds to the double factor of a. Such partitions give rise to
singularities of type T2,5,k+4. Resolving, we see that each case 2 ≤ k ≤ 9
gives rise to a single equivalence class, the generic member of which is a
smooth sextic corresponding to the partition [k, 110−k] of 10.

In the case k = 10, [Wal99, Lemma 6.1] shows that B must be reducible.
Resolving the T2,5,15 singularity, we see that B must be equivalent to a
union of two irreducible curves of degrees (2, 4). In particular, a singularity
of type T2,5,14 may only occur if B contains a conic.
• If both factors of a are also factors of δ, but neither is a factor of F , then

in order to satisfy (2) the corresponding partition of 10 must contain two
values m,n ≥ 2, with m + n ≤ 10, which correspond to the two common
factors with a. Such partitions give rise to singularities of type T2,m+4,n+4.
Resolving, we see that each pair (m,n), except (m,n) = (2, 8) and (4, 6),
gives rise to a single equivalence class, the generic member of which is a
smooth sextic corresponding to the partition [m,n, 110−m−n] of 10.

In the cases where (m,n) = (2, 8) or (4, 6), by [Wal99, Lemma 6.1] we
see that B must be reducible. Resolving the quadruple point singularity,
we find that B must be a union of two irreducible curves of degrees (3, 3),
both of which pass through the quadruple point.

• a, δ and F all have a common factor if and only if B contains a line through
the quadruple point. There are three subcases:

– Suppose that precisely one factor of a is also a factor of δ and F .
Then B splits as the union of a line and a quintic, which gives rise
to a singularity of type T2,5,6 or T2,5,8, depending upon the degree of
tangency between the line and the quintic. The first case is equivalent
to an irreducible sextic, which has already been covered, but the second
is distinct.

– Next suppose that both factors of a are also factors of δ and one of these
is also a factor of F . Then in order to satisfy (2) the corresponding
partition of 10 must contain two values m,n ≥ 2, with m + n ≤ 10,
which correspond to the common factors with a, and one of these (m
say) also corresponds to a common factor with F . In this case B splits
as the union of a line and a quintic, which gives rise to a singularity
of type T2,6,n+4 (if m = 2) or T2,8,n+4 (if m = 3). In the case T2,6,n+4

we find that B is equivalent to an irreducible sextic, so this case may
be ignored. However, the case T2,8,n+4 is new, and may occur for any
2 ≤ n ≤ 7. This also shows that a singularity of type T2,8,11 may only
occur if B contains a line.

– If both factors of a are also factors of both δ and F , then B consists
of two lines through the quadruple point and a quartic. In this case B
contains a singularity of type T2,6,6, T2,6,8 or T2,8,8, depending upon
the degrees of tangency between the lines and the branches of the
quartic. The first two of these cases are equivalent to an irreducible
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sextic and the union of a line and a quintic respectively, but the third
is new.

As we have considered all possible partitions subject to the compatibility conditions
(1) and (2), this exhausts the possibilities for B. �

5.4.3. Corresponding hyperbolic subdiagrams. It remains to see how equivalence
classes of semistable pairs (P2, B) of degree 6 satisfying Assumption 5.2 that deter-
mine normal sextic double planes Y with cusp singularities correspond to hyper-
bolic subdiagrams of Γ21. Note first that a cusp singularity of type T2,q,r already
corresponds to a hyperbolic diagram (also denoted T2,q,r), which embeds into our
standard diagram. However, the type of embedding depends upon the form of the
divisor B in a generic member of the equivalence class. There are 4 cases:

(1) The divisor B does not contain any components that are lines or smooth
conics. By Propositions 5.9 and 5.10, in this case Y contains a cusp singu-
larity of type T2,q,r with either q = 3, r ≥ 7 or q ≥ 4, r ≥ 5, and in both
cases q + r ≤ 18. The hyperbolic diagram T2,q,r embeds into Γ21 in a way
that incorporates precisely one of the corner vertices. Subdiagrams of this
type will be referred to as subdiagrams of type Tq,r. Figure 9a illustrates
the T6,9 subdiagram, corresponding to a pair (P2, B), with B irreducible,
that determines a sextic double plane Y with a singularity of type T2,6,9.

(2) The divisor B contains precisely one line. By Propositions 5.9 and 5.10,
in this case Y contains a cusp singularity of type T2,8,r with 3 ≤ r ≤ 11.
The hyperbolic diagram T2,8,r embeds into Γ21 in a way that incorporates
precisely two of the corner vertices. For consistency with later notation and
to avoid confusion with case (1), subdiagrams of this type will be referred
to as subdiagrams of type U1,r. Figure 9b illustrates a diagram of type U1,9,
corresponding to a pair (P2, B), where B contains precisely one line, that
determines a sextic double plane Y with a singularity of type T2,8,9.

(3) The divisor B contains two lines. By Proposition 5.10, this can only occur
if Y contains a cusp singularity of type T2,8,8. In this case the hyperbolic
diagram T2,8,8 embeds into Γ21 in a way that incorporates all three of the
corner vertices (see Figure 9c). For consistency with later notation and to
avoid confusion with cases (1) and (2), this subdiagram will be referred to
as the subdiagram of type W1,1.

(4) The divisor B contains a smooth conic. By Propositions 5.9 and 5.10, in
this case Y contains a cusp singularity of type T2,14,r with 3 ≤ r ≤ 5.
The hyperbolic diagram T2,14,r embeds into Γ21 in a way that incorporates
precisely two of the corner vertices. For consistency with later notation
and to avoid confusion with the other cases, subdiagrams of this type will
be referred to as subdiagrams of type V1,r. Figure 9d illustrates a diagram
of type V1,4, corresponding to a pair (P2, B), where B contains a smooth
conic, that determines a sextic double plane Y with a singularity of type
T2,14,4.

5.5. Non-normal singularities. This exhausts the possibilities where the sextic
double plane Y determined by (P2, B) is normal. In the remaining sections we
turn our attention to non-normal sextic double planes, i.e. those containing double
normal crossing points, pinch points and degenerate cusps.
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(a) The T6,9 subdiagram. (b) The U1,9 subdiagram.

(c) The W1,1 subdiagram. (d) The V1,4 subdiagram.

Figure 9. Hyperbolic subdiagrams of Γ21 corresponding to pairs
(P2, B) where B contains a higher triple point or higher quadruple
point

In terms of the divisor B, such singularities occur when B contains a double
component. We divide our analysis between the cases where this double component
is a line, a pair of lines, a smooth conic or a (possibly singular) cubic.

Before we begin, however, we briefly discuss degenerate cusps. Degenerate cusps
of embedding dimension 3 and multiplicity 2 have been classified by Shepherd-
Barron in [SB83, Lemma 1.3]. In the proof of this lemma he shows that there
are two possibilities, with local equations 0 ∈ {z2 = x2y2} ⊂ C3 and 0 ∈ {z2 =
y2(yn + x2)} ⊂ C3 (where n ≥ 1).

Thus, we see that degenerate cusps can arise as follows. Either

• two double components of B meet at a node, giving a degenerate cusp of
type 0 ∈ {z2 = x2y2} ⊂ C3 in Y , or
• a double component and a single component of B meet with local equation

0 ∈ {0 = y2(yn + x2)} ⊂ C2, where n ≥ 1. This gives rise to a degenerate
cusp of type 0 ∈ {z2 = y2(yn+x2)} ⊂ C3 in Y . Given the obvious similarity
to an A-D-E singularity of typeDn+2, we denote such a singularity by Dn+2.
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From this classification, it is easy to see that (P2, B) is of Type II if and only
if both the double and single components of B are smooth and meet transversely
(giving only pinch point singularities); in all other cases (P2, B) is of Type III.

5.5.1. A double line. We now turn our attention to the case where B contains
precisely one double line L. In this setting B is the sum of 2L and a reduced
quartic curve Q. The singularities present in the sextic double plane Y will depend
upon the singularities present in the quartic Q and their position with respect to
L. Singular quartics have been studied by Bruce and Giblin [BG81], we will rely
heavily upon their results here.

If Q contains a singularity that is worse than A-D-E, then Bruce and Giblin
[BG81, Section 1] show that it must consist of 4 lines meeting in a simple elliptic

singularity of type Ẽ7 and be otherwise nonsingular. Aside from this case, we may
assume that Q contains only A-D-E singularities. Then we have:

Proposition 5.11. Suppose that Q has only A-D-E singularities. Then, up to the
notion of equivalence in Definition 5.4, we may assume that B contains precisely
two singularities of type Dn, for n ≥ 2 (here D2 denotes a pair of pinch points),
and is smooth away from the double line.

Under this assumption, if we denote these two singularities by Dm and Dn, then:

• If Q does not contain a line, then m+ n ≤ 12 and all cases occur.
• If Q contains a line, then m = 8 and 2 ≤ n ≤ 5, and all cases occur.

Proof. By the classification of degenerate cusps above, Q and L may only inter-
sect in pinch points or degenerate cusps of type Dn. As Q and L intersect with
multiplicity 4, there are precisely two points of type Dn on B.

Now, any degenerate cusp of type Dn arises from either

• a pair of points where Q and L cross transversely (type D2),
• a point where Q lies tangent to L (type D3), or
• a point where L crosses a singularity of type An−3 in Q (type Dn for n ≥ 4).

Given this, the statement about the singularities arising when Q does not contain
a line follows easily from Bruce and Giblin’s [BG81, Section 1] enumeration of
singular quartics. In particular, we note that if Q contains an A6 singularity then
it must otherwise be smooth, so must intersect L in a D9 and either a D2 or D3;
and if Q contains an A7 singularity it must be a union of two conics that meet only
at the singularity, so must intersect L in a D10 and a D2. Explicit resolutions show
that each case forms a distinct equivalence class.

Finally, suppose that Q contains a line. Then Q is the union of a line and a
cubic. Resolving, one sees that the only situation not equivalent to one already
studied is when the line and cubic meet in a singularity of type A5 on L, giving
rise to a D8. As the cubic component may be either smooth, nodal or cuspidal, we
find that Q and L intersect in a D8 and a Dn, for 2 ≤ n ≤ 5. �

It remains to see how equivalence classes of semistable pairs (P2, B) of degree 6
satisfying Assumption 5.2, where B = 2L + Q, correspond to hyperbolic subdia-
grams of Γ21. Suppose first that Q does not contain a line. Then, by the proposition
above, L and Q meet in two singularities, Dm and Dn, with m+n ≤ 12. We denote
the corresponding subdiagram by Um,n; it embeds into Γ21 in a way that contains
precisely two of the corner vertices, as illustrated in Figure 10a. Here the “tails” on
the left and right of the diagram have length m and n vertices respectively (so the
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(a) The U4,8 subdiagram. (b) The W1,4 subdiagram.

Figure 10. Subdiagrams of Γ21 corresponding to pairs (P2, B)
where B contains a double line

diagram in Figure 10a is U4,8). Note that this diagram is parabolic if (m,n) = (2, 2)
and hyperbolic otherwise, corresponding to the fact that (P2, B) is of Type II if L
and Q meet in two singularities of type D2 and of Type III otherwise.

Next, suppose that Q contains a line but still has at worst A-D-E singularities.
Then, by the proposition above, L and Q meet in two singularities, D8 and Dn, with
n ≤ 5. For consistency with later notation, we denote the corresponding hyperbolic
subdiagram by W1,n; it embeds into Γ21 in a way that contains all three of the
corner vertices, as shown in Figure 10b. Here the “tail” on the right of the diagram
has a length of n vertices (so the diagram shown in Figure 10b is W1,4).

Finally, consider the case where Q contains an Ẽ7 singularity. Then Q and L
meet in two singularities of type D2 and (P2, B) is of Type II. The correspond-
ing subdiagram is the parabolic subdiagram given by simultaneously embedding
a subdiagram of type T4,4 and a subdiagram of type U2,2 into Γ21 without them
intersecting.

5.5.2. Two double lines. Next suppose that B consists of two double lines, 2L1 and
2L2, that meet transversely, along with a (possibly reducible) conic C. This conic
meets each Li in a singularity of type Dn. It is easy to see that the two singularities
occurring must be either (D2,D2), (D2,D3), (D2,D4), or (D3,D3), each case forms
a single equivalence class, and (P2, B) is of Type III in all cases. We denote the
hyperbolic subdiagram corresponding to a pair (Dm,Dn) by Wm,n; it embeds into
Γ21 in a way that contains all three of the corner vertices, as shown in Figure 11a.
Here the “tails” on the left and right of the diagram have length m and n vertices
respectively (so the diagram pictured in Figure 11a is W2,3).

5.5.3. A double conic. Next suppose that B consists of a double conic, 2Q, along
with a single conic C. The single conic meets Q in two singularities of type Dn.
In a similar way to the previous section, it is easy to see that the two singularities
occurring must be either (D2,D2), (D2,D3), (D2,D4), or (D3,D3), each case forms a
single equivalence class, and (P2, B) is of Type II if and only if the two singularities
are (D2,D2). We denote the subdiagram corresponding to a pair (Dm,Dn) by Vm,n;
it embeds into Γ21 in a way that contains precisely two of the corner vertices, as
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(a) The W2,3 subdiagram. (b) The V2,3 subdiagram.

(c) The ∆2 subdiagram.

Figure 11. Subdiagrams of Γ21 corresponding to pairs (P2, B)
where B contains two double lines, a double conic or a double
cubic

shown in Figure 11b. Here the “tails” on the left and right of the diagram have
length m and n vertices respectively (so the diagram pictured in Figure 11b is V2,3).
Note that V2,2 is parabolic, whilst the other Vp,q are all hyperbolic.

5.5.4. A double cubic. Finally, suppose that B is a (possibly singular) double cubic.
By the classification of degenerate cusps given in Section 5.5, we see that B must
have at worst nodes as singularities. There are thus four possibilities; either B is
a smooth double cubic, a double nodal cubic, a double line and double conic, or
three double lines, with each forming a distinct equivalence class under Definition
5.4.

The corresponding subdiagrams consist of the entire outer edge of Γ21, along
with 0, 1, 2 or 3 of the corner vertices respectively (here the number of corner
vertices corresponds to the number of nodes in the double cubic). We denote these
subdiagrams by ∆0, ∆1, ∆2 and ∆3 respectively. ∆2 is illustrated in Figure 11c.
Note that ∆0 is parabolic and the other ∆p are hyperbolic.
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5.6. Finishing the proof of Theorem 5.5. In the previous sections, we have
seen that every equivalence class of semistable pairs (P2, B) of degree 6 satisfy-
ing Assumption 5.2 uniquely determines a subdiagram Γ of Γ21, such that every
connected component of Γ is either parabolic or hyperbolic.

Furthermore, this correspondence works both ways: by inspection, every subdi-
agram of Γ21 whose connected components are all parabolic/hyperbolic determines
an equivalence class of semistable pairs (P2, B) of degree 6 satisfying Assumption
5.2.

In addition it is easy to see that, if a subdiagram has a parabolic connected
component, then all connected components are parabolic and the corresponding
pair (P2, B) is of Type II (in fact, the only disconnected cases are T4,4 ∪ U2,2

and T3,6 ∪ T3,6), and if a subdiagram has a hyperbolic connected component, then
that must be the only connected component and the corresponding pair (P2, B)
is of Type III. Finally, one can easily check that degeneration of pairs (P2, B)
corresponds to inclusion of the corresponding diagrams. This completes the proof
of Theorem 5.5.

6. Family of stable pairs over F
refl

2

Recall from Section 2.2 that the toroidal compactification F
refl

2 is modeled on a
single toric variety U refl. The corresponding cone σ̌ in the lattice M2 of monomials

is generated by the 24 vectors ~ai,~bi, ~d
′
i = 1

2
~di. In the lattice N2 of 1-parameter

subgroups of the torus (where the fan lives) we have the dual cone with 24 facets
and 535 rays.

In this section, we derive sufficient conditions for a family of stable pairs
(
X, ( 1

2 +

ε)B
)

and their double covers (S, 2εD) over an open neighborhood U 3 0 of the

vertex 0 ∈ U refl to define a map U → F
refl

2 which is étale over a neighborhood
of 0. Such a family would give an extension of the universal family of K3 pairs

(S, 2εD) over the stack F2 to the toroidal compactification F refl

2 . We conclude by
constructing an explicit candidate family that comes very close to satisfying these
conditions.

6.1. Equations of U refl. Our first task is to give a more explicit description U refl

by equations.

Lemma 6.1. The affine toric variety U refl is the normalization of SpecA, where
A = C[ai, bi, d

′
i]/
√
I, and the ideal I generated by the multiplicative versions of Type

II relations of Section 2.3, that is:

2Ẽ8Ã1 : a6
0a

4
1a

2
2b

3
0a

5
17a

4
16a

3
15a

2
14a13 = a6

6a
4
5a

2
4b

3
6a

5
7a

4
8a

3
9a

2
10a11 = b12d

′
3
2

D̃10Ẽ7 : a17b0(a0 · · · a6)2b6a7 = a4
12b

2
12a

3
11a

3
13a

2
10a

2
14a9a15

D̃16Ã1 : a1b0(a0 · · · a6)2b6a5 = a3d
′
3
2,

etc., by S3-symmetry.

Proof. This is simply the definition from toric geometry: U refl is the Spec of a
semigroup algebra over C; the semigroup is generated by the 24 vectors in the lattice
of monomials, and the relations follow from the relations between the vectors. We
take the radical of

√
I and then normalize because we did not check if the the ideal

I is radical, and if one has to saturate the ideal of relations. �
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Lemma 6.2. Alternatively, U refl is the normalization of SpecA′, where A′ is a
subring of C[ti, sj ], where 0 ≤ i < 18, j = 0, 6, 12 generated by

ai =
ti−1ti+1

t2i
(i 6= 0, 6, 12), ai =

ti−1ti+1si
t2i

(i = 0, 6, 12),

bi =
ti
s2
i

(i = 0, 6, 12), d′i = tisi+9 (i = 3, 9, 15),

where the indices i are considered modulo 18.

Proof. This is simply reformulation of the above Lemma using the coordinates ~si,~ti
for the cone σ̌, as in (2.6). Since A′ is a subring of a polynomial ring, A′ is an integral
domain. �

6.2. Monodromy in the toric families. We are going to write equations for
our family over U refl in terms of the coordinates ti, sj . Recall from Section 4.2
that we have 4=1+3 toric 16-dimensional subvarieties UT0 ⊂ U refl and for each of
them a family over an open subset UT0 ⊃ U 3 0 of the origin. Two of these toric
subvarieties are

(1) For the 6-6-6 triangle of Figure 3b. It is defined by setting b0 = b6 = b12 = 1,
in other words ti = s2

i for i = 0, 6, 12.
(2) For the 3-3-12 triangle of Figure 4. It is defined by setting b0 = b6 = d′3 = 1,

in other words ti = s2
i for i = 0, 6 and t3s12 = 1.

The last two toric subvarieties are obtained by applying the S3-action to (2).

We denote the corresponding sublattices of N2 by N0 = 〈~b0,~b6,~b12〉⊥, N1 =

〈~b0,~b6, ~d′3〉⊥, N2 = 〈~b6,~b12, ~d
′
9〉⊥, N3 = 〈~b12,~b0, ~d

′
15〉⊥.

Consider a one-parameter subfamily A1 → UT0 for one of the toric families. This
defines a 1-parameter degeneration of polarized K3 surfaces

(
S,O(D)

)
. Associated

with it, there is a monodromy vector n ∈ N2 defined up to O(N2). We recall the
following fundamental result of Friedman and Scattone [FS86]:

Theorem 6.3 (Friedman-Scattone). Let SKul → A1 be any Kulikov model of S →
A1, that is: S is smooth, the central fiber is a reduced divisor with normal crossings,
and ωS/A1 is trivial. Then the number of triple points in the central fiber SKul

0 equals

n2 ∈ 2Z.

This theorem allows to compute the induced monodromy map N i → N2 for each
of the toric varieties, by computing the number of triple points for each 1-parameter
subfamily.

Lemma 6.4. Consider a one-parameter toric degeneration of a pair (P2, B6) de-
fined by a subdivision of the 6-6-6 triangle given by a choice of heights T0, . . . , T17,
Tc as in Section 4.3. Then the number of triple points in a Kulikov model of the
corresponding one-parameter degeneration of K3 surfaces of degree 2 equals F toric

3 ,
where

1

4
F toric

3 =

17∑
i=0

(
−2T 2

i + 2TiTi+1

)
+

1

2

(
T 2

0 + T 2
6 + T 2

12

)
+ Tc

(
3

2
Tc − T0 − T6 − T12

)
Proof. Let M = Z2 be the lattice of monomials of the toric variety P2, and let P in
M⊕Z = Z3 be the polyhedron corresponding to the one-parameter degeneration X.
As we explained in Section 4.3, P is the convex hull of the sets vi+R≥0(0, 0, 1) ∈ Z3,
where vi = (~ui, Ti), and ~ui were defined in Theorem 2.6, i ∈ {0, . . . , 17, c}.
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Let P+ be a polyhedron obtained by cutting P by a horizontal plane near the
vertex (~uc, Tc). It corresponds to a blowup X+ of X. The central fiber X+

0 is given
by the surface of the lower convex hull of P+. We assume that a divisible enough
ramified base change s = td was made on the base S of X → S, so that X+

0 is
reduced.

At every interior vertex q of P+ (i.e. lying on the cutting plane), exactly 3
polygons meet, and the corresponding dual cone in the lattice N ⊕ Z is simplicial
and is generated by the 3 vectors

(vi−1 − vc)× (vi − vc), (vi − vc)× (vi+1 − vc), (0, 0, 1).

(Here u × v stands for the cross product of two vectors in R3). Thus, X+ has a
cyclic toric singularity at the corresponding point. A resolution of X+ replaces this
singularity by deti normal crossing triple points, where deti is the determinant of
the 3× 3 matrix given by the above three vectors. Explicitly,

det0 = −3T 2
0 + 2T0T17 + 2T0T1 + Tc(2T0 − 2T1 − 2T17 + Tc)

det1 = −4T 2
1 + 2T1T0 + 2T1T2 + Tc(4T1 − 2T0 − 2T2),

etc., by symmetry. The number of triple points F toric
3 is the sum of these numbers,

multiplied by 2 because of the double cover from the family of K3s to the family of
P2’s. This gives the formula. �

Remark 6.5. Note that
∑17
i=0(−2T 2

i + 2TiTi+1) = −∑17
i=0(Ti − Ti+1)2.

Remark 6.6. This computation is similar to a computation made by Adrian Brun-
yate [Bru15] in the case of elliptic K3 surfaces.

One the other hand, every vector n in the lattice L2 = E2
8 ⊕U can be written as

n =

17∑
i=0

Ti~ai + (S0
~b0 + S6

~b6 + S12
~b12).

because by (2.5) the vectors ~a0, . . . ,~a17,~b0,~b6,~b12 generate N2.

Lemma 6.7. One has

n2 =

17∑
i=0

(
−2T 2

i + 2TiTi+1

)
− 2

(
S2

0 + S2
6 + S2

12

)
+ 2 (T0S0 + T6S6 + T12S12)

and

4n2 = F toric
3 − 2

∑
i=0,6,12

(Ti − Tc − 2Si)
2 − 8Tc

∑
i=0,6,12

Si.

Proof. Immediate calculation. �

Corollary 6.8. When Tc = 0 and Si = 1
2Ti for i = 0, 6, 12, one has (2n)2 = F toric

3 .

Remark 6.9. Recall that

n · ~ai = Ti−1 − 2Ti + Ti+1 + Si (Si appear only for i = 0, 6, 12),

n ·~bi = Ti − 2Si (i = 0, 6, 12),

n · ~d′i = Ti + Si+9 (i = 3, 9, 15).
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Thus, after setting Tc = 0, the condition Si = 1
2Ti is equivalent to the condition

n ⊥ ~bi, and the formula above becomes

(2n)2 = F toric
3 − 2

∑
i=0,6,12

(n ·~bi)2.

We may perform similar computations for the F0
4 toric degeneration correspond-

ing to the 3-3-12 triangle and the monodromy vector

n =

17∑
i=0

Ti~ai + S0
~b0 + S6

~b6 +R3
~d3.

In that case, we find:

Lemma 6.10. One has

n · ~ai = Ti−1 − 2Ti + Ti+1 + Si (Si appear only for i = 0, 6),

n ·~bi = Ti − 2Si (i = 0, 6),

n · ~d′3 = 2Ti − 2R3

and

4n2 = Gtoric
3 − 2(T0 − Tc − 2S0)2 − 2(T6 − Tc − 2S6)2 − 2(T3 − Tc −R3)2

− 8Tc (S0 + S6 + 2R3)

Corollary 6.11. If Tc = 0 and n ⊥ 〈~b0,~b6, ~d3〉 then one has (2n)2 = Gtoric
3 .

Corollaries 6.8 and 6.11 together give the following theorem.

Theorem 6.12. For each of the 1+3 toric families, the monodromy of the standard
toric family is consistent with the induced monodromy map N i → N2 being the
standard inclusion N i → N2.

Proof. We only need to explain the appearance of the extra coefficient 4 in the
formulas (2n)2 = F toric

3 , (2n)2 = Gtoric
3 . The families above are families of the

surfaces X = P2 or F0
4 which appear as bases of the double covers S → X. The

families of the K3 surfaces X are constructed on the square roots of these families.
This gives an extra coefficient 4. �

6.3. Sufficient conditions for extending the universal family of K3s. We
are now prepared to write an explicit family of stable pairs

(
X, ( 1

2 + ε)B
)

over an

open subset U 3 0 of the affine toric variety U refl which defines an extension of the
family of degree 2 K3 surfaces over the moduli stack F2.

Theorem 6.13. Suppose that we are given a family of pairs
(
X , ( 1

2 + ε)B
)
→ U refl

that satisfies the following conditions:

(1) Over some open subset U of the origin 0 ∈ U refl, it is a family of stable
pairs of the types described in Theorem 4.1.

(2) Over each of the 1+3 toric families it coincides with the standard toric
families.

Then this family defines a morphism U ′ → F refl

2 from a square root of U to the
moduli stack of polarized degree 2 K3 surfaces, and this morphism is étale in a

neighborhood of the origin 0 ∈ U ′, resp. the maximal degeneration point in F refl

2 .
Moreover, this family gives an extension of the universal family of K3 surfaces

over F2 to a family of stable pairs
(
X, ( 1

2 + ε)B
)

over F refl

2 .
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Proof. The family defines a rational map U ′ → F refl

2 . It also induces a monodromy
homomorphism Φ: N2 → N2. We first claim that Φ is an isomorphism. This
follows from the fact that the pullback of the intersection form under Φ to each of
the sublattices N i ⊂ N2 for the 1+3 toric families coincides with the intersection
form on N i by Theorem 6.12, and that these 4 families span the lattice N2 and
have sufficiently large intersections.

The rational map U ′ → F refl

2 above is regular if the cone σ̌ maps into a cone in
the fan τ refl, and it is étale if it maps isomorphically to a cone in τ refl. But this is
true by construction: under an isometry Φ, the cone σ̌ simply maps to a copy of σ̌
in τ refl, where it is a unique up to an O(N2) maximal cone. So the induced map is
étale.

This gives an extension of the universal family of K3 surfaces to an open neigh-

borhood of the 0-cusp. To have an extension to the whole F
refl

2 , we also have to
construct extensions to open neighborhoods of the 1-cusps for the Type II degener-
ations. But with our descriptions of the corresponding stable surfaces, cf. Example
4.7, this part is straightforward. �

6.4. Explicit family. We start with the system of equations considered in Sec-
tion 5.1.1. Treating these as parametric equations, as in Section 4.3, we may define
a family as ProjR→ SpecA, where A ⊂ C[t±i , s

±
j ] is the normalization of the sub-

algebra generated by the variables ai, bi, d
′
i, i.e. SpecA = U refl, and R is the graded

subalgebra of A[x, y, z] generated by the 19 polynomials ui given in in Section 5.1.1.
To simplify the equations defining this system, we recast it in a weighted pro-

jective space, where the variables have the following degrees:

degree variables
1 x, y, z, u0, u6, u12

2 u3, u9, u15

3 u2, u4, u8, u10, u14, u16

6 u1, u5, u7, u11, u13, u17

Note that this gives rise to fractional powers of the ti’s, such as t
1/6
0 x, but in the

variables of degree 6, such as t0x
6, these roots disappear. The resulting family is

given by:

uc = −xyz + s0x
3 + s6y

3 + s12z
3

u0 = t
1
6
0 x u1 = t1x

4(−xy + s12z
2) u2 = t

1
2
2 x(−xy + s12z

2)

u3 = t
1
3
3 (−xy + s12z

2) u4 = t
1
2
4 y(−xy + s12z

2) u5 = t5y
4(−xy + s12z

2)

u6 = t
1
6
6 y u7 = t7y

4(−yz + s0x
2) u8 = t

1
2
8 y(−yz + s0x

2)

u9 = t
1
3
9 (−yz + s0x

2) u10 = t
1
2
10z(−yz + s0x

2) u11 = t11z
4(−yz + s0x

2)

u12 = t
1
6
12z u13 = t13z

4(−xz + s6y
2) u14 = t

1
2
14z(−xz + s6y

2)

u15 = t
1
3
15(−xz + s6y

2) u16 = t
1
2
16x(−xz + s6y

2) u17 = t17x
4(−xz + s6y

2)

We can further simplify this family by introducing three new variables u, v, w of
degree two, as follows:
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u = −yz + s0x
2

v = −xz + s6y
2

w = −xy + s12z
2

uc = 2xyz + xu+ yv + zw

u0 = t
1
6
0 x u1 = t1x

4w u2 = t
1
2
2 xw

u3 = t
1
3
3 w u4 = t

1
2
4 w u5 = t5y

4w

u6 = t
1
6
6 y u7 = t7y

4u u8 = t
1
2
8 yu

u9 = t
1
3
9 u u10 = t

1
2
10zu u11 = t11z

4u

u12 = t
1
6
12z u13 = t13z

4v u14 = t
1
2
14zv

u15 = t
1
3
15v u16 = t

1
2
16xv u17 = t17x

4v

We would like to apply Theorem 6.13 to this family, but condition (2) of that
theorem is not satisfied. To rectify this, we make two further changes. Firstly, we
bring this family into agreement with the toric family corresponding to the 6-6-6

triangle by making the substitution sj 7→ sj − t
1
2
j for each j ∈ {0, 6, 12}. Then, to

achieve agreement with the three toric families corresponding to the 3-3-12 triangle,
we introduce coefficients to u, v, w which vanish when the corresponding di = 0, as
follows:

(1− s2
0t

2
9)u = −yz + (s0 − t

1
2
0 )x2

(1− s2
6t

2
15)v = −xz + (s6 − t

1
2
6 )y2

(1− s2
12t

2
3)w = −xy + (s12 − t

1
2
12)z2

uc = 2xyz + xu+ yv + zw

u0 = t
1
6
0 x u1 = t1x

4w u2 = t
1
2
2 xw

u3 = t
1
3
3 w u4 = t

1
2
4 yw u5 = t5y

4w

u6 = t
1
6
6 y u7 = t7y

4u u8 = t
1
2
8 yu

u9 = t
1
3
9 u u10 = t

1
2
10zu u11 = t11z

4u

u12 = t
1
6
12z u13 = t13z

4v u14 = t
1
2
14zv

u15 = t
1
3
15v u16 = t

1
2
16xv u17 = t17x

4v

Then we have:

Lemma 6.14. When restricted to the subfamilies

(1) t0 = s2
0, t6 = s2

6, t12 = s2
12,

(2) t0 = s2
0, t6 = s2

6, t3s12 = 1, (and its images under S3-symmetry),

over an open subset U of the origin 0 ∈ U refl ⊃ U , this family gives the standard
toric families, as in Section 4.3.

Proof. In case (1), near the origin the variables u, v, w are simply nonzero multiples
of yz, xz and xy respectively. So the (powers) of the variables u0, . . . , u17, uc are
just the monomials from the toric family of Section 4.3.

In case (2), the third parametric equation makes the surface into a cone F0
4

(considering x, y, z, w as coordinates on P(1, 1, 1, 2), this is just the image of a
Veronese embedding P(1, 1, 4) ↪→ P(1, 1, 1, 2)). Then, by observation, the other
monomials become nonzero multiples of the corresponding boundary and center
monomials in the 3-3-12 triangle. �
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To apply Theorem 6.13, we need to check whether the fibers of this family are
stable pairs

(
X, ( 1

2 + ε)B
)
. It suffices to check this on each of the 103 types of

divisors on U refl, corresponding to the 103 types (modulo S3) of rays of σ̌refl. Each
ray gives a system of heights, defined uniquely up to a multiple: ti = tTi , sj = tSj .
A direct computation (which in the easy cases was done by hand and in more
complicated cases was performed by Singular) then shows that in 99 out of 103
cases the answer is consistent with the stable pairs described in Theorem 4.1, but
in the remaining 4 cases (corresponding to very long A′18, D18, A′16A

c
1 and D17A0

subdiagrams of ΓVin) the limits of the one-parameter degenerations are unstable.
In light of this, it seems reasonable to expect that a family of stable pairs sat-

isfying Theorem 6.13 does exist, perhaps given by further deforming the families
constructed here by the addition of terms of higher order in the ti, sj . However,
computational limits have prevented us from searching for such a family. We there-
fore make the following conjecture:

Conjecture 6.15. There exists a family of pairs
(
X , ( 1

2 + ε)B
)
→ U refl satisfying

the conditions of Theorem 6.13. This gives rise to an extension of the universal

family of K3 surfaces over F2 to a family of stable pairs
(
X, ( 1

2 + ε)B
)

over F refl

2 .
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[Sca87] Francesco Scattone, On the compactification of moduli spaces for algebraic K3 sur-
faces, Mem. Amer. Math. Soc. 70 (1987), no. 374, x+86.

[Sha80] Jayant Shah, A complete moduli space for K3 surfaces of degree 2, Ann. of Math.
(2) 112 (1980), no. 3, 485–510.

[Sha81] J. Shah, Degenerations of K3 surfaces of degree 4, Trans. Amer. Math. Soc. 263

(1981), no. 2, 271–308.
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Appendix

In this appendix we give a list of all 103 maximal (i.e. rank 18) subdiagrams of
ΓVin, up to equivalence 4.6. The subdiagrams are listed in the second column of
the table; here we use the subdiagram naming convention from Table 3, omitting
any subdiagrams supported on internal vertices, but including A0 subdiagrams for
F0

2 components. There is thus a bijection between the components of subdiagrams
listed in the second column and the components in the corresponding stable limit.
The third column gives the number of isolated internal vertices (bi, di) in the sub-
diagram; by equivalence 4.6 these may be ignored in our theory, but are needed to
uniquely reconstruct the subdiagrams. Cases 1-99 are elliptic subdiagrams corre-
sponding to Type III degenerations, and cases 100-103 are parabolic subdiagrams
corresponding to Type II degenerations.

The final column gives a construction for the stable limits corresponding to these
subdiagrams. If this column contains the word “Toric” (resp. “Unigonal”), then
the degeneration may be constructed using the method of Section 4.2 applied to
a subdivision of the 6-6-6 triangle (resp. 3-3-12 triangle). Otherwise, this column
describes how to construct the degeneration; this consists of either a description of a
series of elementary modifications that may be performed on a Type II degeneration
to obtain the required degeneration, or a reference to Table 5 or Section 4.4.4, where
more difficult cases are considered separately.

No. Subdiagram Int. Construction
# Vert.
1 A′18 0 4 type 2 mod. on A′′15 in A′′15A

c
3 (#8)

2 D18 0 2 type 2 mod. on D̃16 in D̃16Ã1

3 Ac17 1 Type 1 mod. on D̃16 in D̃16Ã1

4 A′16A
c
1 1 2 type 2 mod. on A′′15 in A′′15A

c
3 (#8)

5 D17A0 1 Type 2 mod. on D̃16 in D̃16Ã1

6 D′16A2 0 See Section 4.4.4
7 D′16A

c
1A0 1 Unigonal

8 A′′15A
c
3 0 Type 1 mod. on Ã1 in D̃16Ã1

9 A′′15A
c
1A

c
1 1 Unigonal

10 Ae17 1 4 type 1 mod. on D̃10 in D̃10Ẽ7

11 A′13A4 1 See Table 5

12 D14A
e
3 1 4 type 2 mod. on D̃10 in D̃10Ẽ7

13 A14A2 2 See Table 5
14 A′13A2A

c
1 2 Unigonal

15 D14A2A0 2 Unigonal
16 A′12A

′
6 0 See Table 5

17 D13A
′
5 0 3 type 2 mods. on D̃10 in D̃10Ẽ7

18 Ac13A
′
4 1 See Table 5

19 A′12A
′
4A

c
1 1 Unigonal

20 D13A
′
4A0 1 Unigonal

21 A′11D7 0 See Table 5

22 D12D6 0 2 type 2 mod. on D̃10 in D̃10Ẽ7

23 A12D5 1 See Table 5
24 A′11D5A

c
1 1 Unigonal
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25 D12D5A0 1 Unigonal
26 A′10E8 0 See Table 5
27 Ac9E8 1 See Table 5

28 D11E7 0 Type 2 mod. on D̃10 in D̃10Ẽ7

29 A10E7 1 See Table 5

30 Ac11E6 1 Type 1 mod. on D̃10 in D̃10Ẽ7

31 A′10E6A
c
1 1 Unigonal

32 D11E6A0 1 Unigonal
33 D′10A8 0 See Table 5
34 D′10E7A

c
1 1 Toric

35 A′9E7A
c
1 1 Unigonal

36 D10E7A0 1 Unigonal
37 D′10D6A2 0 Toric
38 D′10A

′
5A

c
3 0 Toric

39 D′10A4A
e
3 1 Toric

40 D′10A
′
6A2 0 Toric

41 D′10D7A
e
1 0 Toric

42 D′10E8A0 0 Toric
43 D9E8A0 1 Unigonal

44 Ac9A
′′
9 0 Type 1 mod. on Ẽ7 in D̃10Ẽ7

45 A′′9E8A
c
1 0 Toric

46 A′8E8A
c
1 1 Unigonal

47 A′′9D7A2 0 Toric
48 A′′9A

′
6A

c
3 0 Toric

49 A′′9A4A4 1 Toric
50 A10A

′
7 1 See Table 5

51 Ae9D8 1 See Table 5
52 D8A

′
7A2 1 Toric

53 D8D8A
e
1 1 Toric

54 A′7A
′
7A

c
3 1 Toric

55 Ae11A
e
5 2 2 type 1 mod. on Ẽ7 in D̃10Ẽ7

56 A′7A
e
5A4 2 Toric

57 D8A
e
5A

e
3 2 Toric

58 A′7A
′
6A4 1 Toric

59 D8A
′
5A4 1 Toric

60 D7A
′
7A

e
3 1 Toric

61 D8D6A
e
3 1 Toric

62 E8A
′
7A2 1 Toric

63 E8A6A2 2 Unigonal
64 D8E7A2 1 Toric
65 Ae7E7A2 2 Unigonal
66 A8E6A2 2 Unigonal
67 Ae9A2D5 2 Unigonal
68 A10A

′
4A2 2 Unigonal

69 Ae11A2A2 3 Unigonal
70 A′6A

′
6A
′
6 0 Toric

71 D7A
′
6A
′
5 0 Toric

72 E8A
′
6A
′
4 0 Toric
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73 E8A
c
5A
′
4 1 Unigonal

74 D7D6A
′
5 0 Toric

75 E8D5A
′
5 0 Toric

76 E8D5A4 1 Unigonal
77 D7E7A

′
4 0 Toric

78 E7A6A
′
4 1 Unigonal

79 E8E6A
′
4 0 Toric

80 E8E6A
c
3 1 Unigonal

81 Ac7E6A
′
4 1 Unigonal

82 A8D5A
′
4 1 Unigonal

83 Ac9A
′
4A
′
4 1 Unigonal

84 E8E7A
′
3 0 Toric

85 E8E7A2 1 Unigonal
86 E8E8A

′
2 0 Toric

87 E8E8A
c
1 1 Unigonal

88 D6D6D6 0 Toric
89 E7D6D5 0 Toric
90 E7A

e
5D5 1 Unigonal

91 E7E6D5 0 Toric
92 E7E6A4 1 Unigonal
93 A6E6D5 1 Unigonal
94 Ae7D5D5 1 Unigonal
95 E7E7D4 0 Toric
96 E7E7A

e
3 1 Unigonal

97 E6E6E6 0 Toric
98 E6E6A

c
5 1 Unigonal

99 Ae5A
e
5A

e
5 3 Toric

100 D̃16Ã1 0 Unigonal

101 Ẽ8Ẽ8 2 (Ã1) Toric

102 D̃10Ẽ7 0 Toric

103 Ã17 0 Cubic cone
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