On quotient surfaces of P^2 by a finite group

V.A. Alekseev and I.Ya. Kolpakov-Miroshnichenko

Let X be a normal algebraic surface over the field C. The canonical Weil divisor K_X is defined on X. The surface X is called a *del Pezzo log surface* if it has only quotient singularities, and some multiplicity $-nK_X$ is an ample Cartier divisor. All these surfaces are rational. Quotient surfaces of P^2 by finite groups are examples of del Pezzo log surfaces with Pic X = Z. We show that these do not exhaust the class of such surfaces. It is known that there are three surfaces with ample anticanonical divisor and with Pic X = Z, each of which has exactly one singular point: E_6, E_7 , and E_8 , respectively (see, for example, [1], [2]). It turns out that they do not have the form P^2/G .

Notation. The symbols G and A denote finite subgroups of PGL(3, C), and the symbols G' and A' denote finite subgroups of GL(3, C) such that $\alpha(G') = G$ and $\alpha(A') = A$ under the natural homomorphism $\alpha : GL(3, C) \to PGL(3, C)$.

We recall some facts about two-dimensional quotient singularities. They are all rational. For the minimal resolution there is attached a tree of rational curves that form a weighted graph of type A_n , D_n , or E_n if a vertex with weight $-C_i^2$ is associated with each rational curve C_i , and two vertices are joined by an edge when $C_i \cdot C_j = 1$. All such graphs are listed in [3]. Graphs with weight 2 at all vertices correspond to Du Val singularities. These singularities are denoted by A_n , D_n , and E_n . The toroidal singularities are precisely those having weighted graphs of type A_n . Another description of them is: quotients by Abelian groups.

Lemma. Let (U, P) be a toroidal singularity, and $i: U \to U$ an involution leaving the point P fixed. Then the quotient singularity (V, Q), V = U/i, has graph of type A_n or D_n .

The proof of the lemma is immediate.

Theorem. Among the quotient surfaces P^2/G there are no surfaces with precisely one singular point E_6 , E_7 , or E_8 , respectively.

Proof. Let $G' \subset GL(3, \mathbb{C})$ be a finite group acting on $V \cong \mathbb{C}^3$. Three cases are possible: 1) G' is an imprimitive group, that is, there is a decomposition $V = V_1 \oplus V_2 \oplus V_3$ such that dim $V_i = 1$ and $g(V_i) = V_i$ for any element g of G'. In this case G' contains a normal Abelian subgroup $A' = \{a \in G' \mid a(V_i) = V_i, i = 1, 2, 3\}$ and $G'/A' \subset S_3$. 2) G' is a reducible group, that is, there is a decomposition $V = V_1 \oplus V_2$ such that dim $V_1 = 1$, dim $V_2 = 2$, and $G(V_i) = V_i$, i = 1, 2. Since we are interested only in the image of G' in PGL(3, \mathbb{C}), it can be assumed that $G' = 1 \oplus H, H \subset GL(2, \mathbb{C})$. 3) G' is a primitive group, that is, it does not occur in the preceding cases.

These cases will be analyzed successively.

1) We have that $P^2/G = (P^2/A)/(G/A) = (P^2/A)/(G'/A')$. The surface P^2/A has three or fewer singular points, which correspond to the spaces V_1 , V_2 , and V_3 . These singularities are toroidal. The group G'/A' permutes them in some way. With the help of the lemma we see that there are no singularities E_6 , E_7 , nor E_8 on P^2/G .

2) It can be assumed that *H* is primitive, for otherwise *G'* falls in the first case. All such groups are listed in [4], Lemmas 2.3-2.5. We use the notation from that paper. Let us consider the group \mathcal{G}_1 with $Z(\mathcal{G}_1) = \{\pm E\}$ in Lemmas 2.3, 2.4, and 2.5, or the group \mathcal{G}_2 in Lemma 2.5. Let *x*, *y*, *z* be homogeneous coordinates on P^2 . At infinity (that is, on the hyperplane x = 0) there are three types of points with non-trivial isotropy subgroup. The isotropy subgroup of the point (0, 0, 1) has the form $x \to x$, $y \to iy$, $z \to -iz$. This point is mapped into a non-singular point on P^2/G if the roots of degree 4k are added, and into the singularities A_1 otherwise. But if the 4th-degree roots are added to the groups under consideration, then we get groups generated by reflections, therefore, we have a toroidal singularity on the finite part after addition of the roots of degree 4k. The "infinite points" always pass into toroidal singularities.

We now consider the group \mathcal{G}_2 in Lemma 2.3. The element $1 \oplus (-\alpha A)$ has the form $x \to x, y \to -\alpha \varepsilon y, z \to -\alpha \varepsilon^2 z$, where $\varepsilon = e^{2\pi i/3}$, in a suitable basis. This element together with the element $x \to x, y \to \mu y, z \to \mu z$ generates the isotropy subgroup of the points (0, 0, 1) and (0, 1, 0). For these points to pass into non-singular points on P^2/G it is necessary that $3^r | d$; but then \mathcal{G}_2 coincides with the group \mathcal{G}_1 already analyzed.

Finally, the last case concerns the group $\mathfrak{G}_{\mathfrak{g}}$ in Lemma 2.4. Let

$$C = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -i \\ i & -1 \end{pmatrix}.$$

In a suitable basis the element $1 \oplus \beta C$ has the form $x \to x, y \to \eta \beta y, z \to \eta^{-1}\beta z$, where $\eta = e^{\pi i/4}$. This element together with the elements $x \to x, y \to \beta^2 y, z \to \beta^2 z$ and $x \to x, y \to \nu y, z \to \nu z$ generates the isotropy subgroup of the point (0, 0, 1). If $r \neq 3$, then, again, for this point to pass into a non-singular point it is necessary that $2^{r}|d$, and once more we arrive at the case of the group \mathcal{G}_1 . Let r = 3. Exactly as in the case of the group \mathcal{G}_2 we see from Lemma 2.3 that 3|d. By formulae in [4], it can be verified that \mathcal{G}_2 is generated by reflections for d = 3. Consequently, there is a toroidal singularity on the finite part when the roots of degree 3k are added.

3) All three-dimensional primitive groups are listed to within scalar matrices in [5]; there are six in all. It can be verified directly that none of the desired surfaces occurs in this case. The theorem is proved.

References

- P. Du Val, On isolated singularities of surfaces which do not affect the condition of adjunction. I, II, III, Proc. Cambridge Phil. Soc. 30 (1934), 453-465, 483-491. Zbl. 10-176, 10-177.
- [2] D. Bindschadler, L. Brenton, and O. Drucker, Rational mappings of del Pezzo surfaces, and singular compactifications of 2-dimensional affine varieties, Tôhoku Math. J. 36 (1984), 591-609. MR 86i:14011.
- [3] E. Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1968), 336-358. MR 36 # 5136.
- W.C. Huffman, Polynomial invariants of finite linear groups of degree two, Canad. J. Math. 32 (1980), 317-330. MR 81g:15033.
- [5] H.F. Blichfeldt, Finite collineation groups, Chicago Univ. Press, Chicago 1917.

Moscow State University

Received by the Board of Governors 1 June 1987