3. CLASSIFICATION OF LOG CANONICAL SURFACE
SINGULARITIES: ARITHMETICAL PROOF

VALERY ALEXEEV

(3.0.0). Notation. Let (X, P) be a germ of a normal surface singularity and
B = 3 b;B; a formal sum of irreducible Weil divisors, passing through P,
with rational coefficients 0 < b; < 1. Since X is normal, we can assume that
P is the only singularity of X. Also, we have a well defined linear equivalence
class of canonical Weil divisors K x.

We use the usual definitions for log canonical, log terminal and purely log
terminal (2.13).

(3.0.1). If B = 0 and the characteristic of the base field is 0, log terminal
singularities of surfaces are the same as quotient singularities [Kawamata84]
and were classified by [Brieskorn68]. [Iliev86] contains an arithmetical proof.

In the case B is reduced, i.e. all the b; = 1, [Kawamata88] classified all log
canonical and log terminal singularities (the latter turn out to be also purely
log terminal with one trivial exception: when X is nonsingular and B consists
of two normally crossing nonsingular curves). This classification is given in
Fig.3. The notation is explained in (3.1).

The proof of [Kawamata88] is slightly tricky and uses the log canonical
cover of (X, P). Arithmetical proofs were given in [Sakai87] for the case
b; = 0 and by S. Nakamura in an appendix to [Kobayashi90].

(3.0.2). Here we suggest a purely arithmetical and quite elementary approach

for the classification. The idea is the following: let f : Y — X be the minimal

resolution of the singularity (X, P) (a priori not a good resolution of (X, P)).
Let f71C C Y denote the birational transform of a curve C C X. Write

Ky+Y fi'Bi+y Ej=f"(Ex+y B)+) aFE;

S. M. F.
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Then for any j = 1,...,n, by the adjunction formula, we have

2pa(Ej) = Ej(Ky + Ej) +2 =
=EBi(f*"(Kx+B)+Y aBk—y fi'Bi—y BEx)+2=
- ,

k3 j
= Ej(zakEk - Zf;lBi - ZEk) +2

ki

Therefore we get the following system of n linear equations in n variables

() > apBy - B = —c;,
k=1

where ¢; = 2 — 2pa(E;) — (0 f71 Bi + 215 Bx) Ej. Equivalently,

n
) > (ax — 1)Ex - B; = —d;,
k=1

where dj = 2 — 2po(E;) + E? — 3 fI'B; - Ej.

(58.0.8). Now our strategy is very simple: solve the system (x), find the aj
and check the conditions ay > 0.

(3.0.4). Some of the formulas for the coeflicients a are contained in [Alex-
eev89, 4.7,4.8]. Note also that in the log terminal case with B = §, our
treatment.has some intersections with [Iliev86]. However, our proof is more
explicit and direct.

J. Kollar points out that the present proof works in any characteristic. This
follows from the fact that the system () has a unique solution independent
of the characteristic of the base field.

3.1. Solution of (x).

(3.1.0). First, note that () does have a unique solution since by [Mumford61]
the matrix (Ej - E;) is negative definite.

(8.1.1). The weighted dual graph T’ of the resolution f : ¥ — X is the fol-
lowing: each curve E; corresponds to a vertex v;. Two vertices v;, and vj,
are connected by an edge of weight m if the corresponding curves intersect:
Ej, - E;, = m. Each vertex v; has a positive weight n; = —E?.
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Since the resolution f is minimal, we have d; = 2 — 2p.(E;) + E? —
S frtBiE; <0 for all j.

(5.1.2). By (2.19.3) every coefficient of the inverse matrix of (Ej - Ej) is
strictly negative. Therefore, (#+) implies that either all d; = 0, and then for
all k, ar — 1 = 0 or at least one d; < 0, and for all k, ar — 1 < 0. The
former happens only if all p,(E;) =0, EJ2 =-~2and E; -y f71B; = 0. Such
singularities (and the corresponding graphs) are called Du Val singularities
(resp. Du Val graphs).

The following result is easy.

(3.1.3). Lemma. (of [Alexeev89,3.2(ii-iii)]) Let T' be a weighted graph
corresponding to a minimal resolution, in particular such that all d; < 0. Let
IY ¢ T, I # T be a subgraph in the sense that all the vertices of I' are at
the same time vertices of I with the same weight n;, the weights of edges of
I and p, of vertices in I’ do not exceed the corresponding weights and p, in
T, and E; - f7'B; in ' do not exceed the corresponding Ej; - Y, f7B; in
T.

Then the corresponding coefficients satisfy ar < a}, and if T is not a Du
Val graph, then ax < aj,.

Proof. Compare the corresponding systems (x%) of linear equations and use
(3.1.2). O

(3.1.4). Suppose that I' = {v,} and p,(E;) = 1. Then in (%) ¢; = 2 —
2pa(E1) — 0 = 0 and a} = 0. If E; is a smooth elliptic curve, this is Case 4
of Fig.3. If E; is a rational curve with a node then after a single blow up we
are in Case 5 of Fig.3. If B is a rational curve with a cusp it is easy to show
that after two blow ups one gets a log discrepancy az = —1, so this is not a
log canonical singularity.

(8.1.5). Suppose that I = {v1,vs,...,u} is a circle of smooth rational
curves. Then in (%) ¢;j = 2—-0—2 = 0 and all a} = 0. This is Case §
of Figure 3. Note that all the curves E; should intersect normally: if a circle
contains two or three vertices and two corresponding curves have a common
tangent, or three curves intersect at one point, then two or one blow ups give
a log discrepancy aj = —1.

(8.1.6). Now (3.1.2-5) imply that:
(8.1.6.1). The graph of a log canonical singularity does not contain a vertex
v; with p,(E;) > 1 or an edge of weight > 2.
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(8.1.6.2). UT £ I asin (3.1.4) or (3.1.5), then I' contains only vertices that
correspond to smooth rational curves, all edges are simple, i.e. of weight 1,
and T is a tree.

From now on we always assume that we are in this final case.

(3.1.7). For any subgraph I C T, we define A’ = A(I”) as the absolute value
of the determinant of the submatrix (Ej - E;), made up by the columns and
rows corresponding to the vertices of I".

Note that if IV is a disjoint union of graphs I'; and I'p, then A’ = A; - As.
We set A(B) = 1 by definition.

The following lemmas are easy exercises.

3.1.8 Lemma. Let I' be a graph with simple edges, v a vertex of I' of weight
n, and vy,...,v, the vertices adjacent to v. Then

AM)=n-AC=-v) =Y A —v—uv).
3.1.9 Lemma. Let T be a tree with simple edges, vj,, v, two vertices of I'.
Then the (43, j2) cofactor of the matrix (Ey - Ej) is
A, = (——1)‘7.1'*"7.2]\Jjﬁ'2 = —(—1)"A(F — (path from w; to ’Ujg))

Note that since I' is a tree there is a unique (shortest) path joining vj, and
Vj,. ’
(3.1.10). The previous lemma gives the solution of (*):

1 n
( ) aj=—A—('IT);A(I‘~(path from v; to wk)) - cCk,
¥k =
=2~ B+ E)Ek

[

Here (3 f7 ' Bi+ Y14, Et) Ex is the number of connections of the vertex ve
with adjacent vertices (among 3" f;* B; and the other Ey). Therefore, ¢ =0
if and only if v has exactly 2 neighbours, ¢, = 1 if it has 1 neighbour and
¢k < 0 if if has > 3 neighbours. By ( * %), a; is a sum of ¢, with positive
coefficients. We are interested in the cases when a; > 0, therefore we call
vertices with ¢ =1 (resp. cx < 0) bonus (resp. penalty) vertices.

Now our aim is to simplify the use of the formulas (* * *).

50

FLIPS AND ABUNDANCE

(8.1.11). We need the following well known description of weighted chains.
Every weighted chain with positive integer weights (from the left to right)
N1,--.,Ns > 2 corresponds in unique way to the pair (A, ), where A = A(T)
and 1 < ¢ < A is an integer coprime to A defined by:

A 1
q

Let us show how to get this description. Let v be the end vertex of the
chain I'. Then by (3.1.8), A = A(T") can be expressed in terms of ¢ = A(T'—v)
and A(T' — v — ), then A(T' —v) can be expressed in terms of A(T — v —v;)
and A(T — v — v; — v2) and so on, the last determinant will be A(@) = 1.
One can easily see that this procedure is nothing other than the Euclidean
algorithm for finding the greatest common divisor, so (4, ¢) = 1, and one gets
the given formula.

3.1.12 Lemma. Suppose that a graph I' contains a subgraph I such that
IV is a chain with weights n; > 2 and the interior vertices of this chain have
no other neighbors in T or 3 B;. Let v;, be one of the middle vertices, a;,
the corresponding log discrepancy of I'. Then the graph of the function a; at
the vertex vj, is concave up if aj, > 0 and is concave down if a;, < 0.

Proof. Note that from (*)
@j, -1 — NGy Gj; + a5 41 = 0,
so that

Gj; 1 + @ji 41

Gji—1 + Q441 l

BESS:

laj,| = |

The rest is obvious. [

3.1.13 Lemma. Let T’ be a tree with simple edges and all weights n; > 2
(all these conditions hold in our situation). Then all the log discrepancies of
T are nonnegative (resp. positive) if and only if the same holds for all vertices
with at least 3 neighbours and for all vertices neighbouring ¥~ f! B;.

Proof. Indeed, if IV C T is a subchain such that each middle vertex has exactly
2 neighbours and one of this middle vertices has aj, < 0 (resp. a; < 0), then
by (3.1.12) the same holds for the ends of I". :
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Moreover, we can exclude the vertices with exactly 1 neighbour, because
from () we have
Qi +1 — Nj 05, = —-1

0

and aj, <0 implies aj, 41 < aj;.

(3.1.14). We explain the notation of Fig.3. We consider a minimal resolution
f:Y — X (with the exception of Case 5). o denotes an exceptional curve
of f,  denotes (local branches of) B;. Long empty ovals denote any chain
(A, q), attached at an end.

3.2. The case B = . We first consider several simple possibilities for the
graph I’

(3.2.1). Let T be a chain. Then by (3.1.13) T’ corresponds to a log terminal
singularity, because none of the vertices has > 3 neighbours.

(3.1.10) gives the formula for the log discrepancies. Let v; be a vertex
of I', so that T' — v; = I’y — I'; is a disjoint union of two chains (I'; or Ty
could be empty), let A;, Az be the corresponding (absolute values of) the
determinants (A(@) = 1 by definition). In our situation we have only 2 bonus
vertices, namely the ends of the chain I'. Therefore

AlAz(_L L)
A VA TR

1
aj; = —-A(Al + Az) =
This is Case 1 of Fig.3.

(3.2.2). Let T be a graph having a single fork at a vertex v; and suppose
that ' —v; =Ty + Ty + T3, and A; = A(T;) for i = 1,2,3. In order for " to
correspond to a log terminal (resp. log canonical) singularity one should have
aj > 0 (resp. a; > 0). In this situation we have 3 bonus vertices, namely the
simple ends of T'y, T', I's and 1 penalty vertex which is v; itself. Therefore,
by (3.1.10) one has

1
a; = Z(AIAZ + AoAg 4+ AzA; — AjARA3) =

AAsA;, 1 11
_Mbens 1L Dy,
A Tt Y

So this is a log terminal singularity in the cases

(3.2.2.1). (A1 Dg,D3) = (2,2,m), n>2
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(3222) (A17A27A3) = (27373)
(2.023).  (A1,02,40) = (2,3,4)
(3.2.2.4). (A1, 82,43) = (2,3,5)
and a log canonical (but not log terminal) singularity in the cases
(3225) (AlaA27A3) - (27376)
(5.2.2.6).  (D1,02,83) = (2,4,4)
(3.2.2.7). (Ay, Ag, A5) = (8,3,3)
This gives Cases 2 and 6 of Fig.3.

(3.2.3). Now let " be a graph with a single fork at the vertex v; and suppose
that I' — v; =014+ + T3+ Ty, Ai=A(I‘i) forie=1,...,4.
Then

aj—_:é.l_ég.ég_éﬁ(i.+..}"_+i_+_l-_
A Ay D Ay Ay
and gives a log canonical singularity only if
(32.3.1)  (Ar,00,03,A4) =(2,2,2,2)
This is Case 8 of Fig.3.
(8.2.4). In the case of graph I' with a single fork at a vertex v;, breaking up
T into N > 5 subgraphs we get a non-log canonical singularity, because

2)

N
= L8y Aiz_—(zv—z))w

a;j
i=1

for A; > 2and N > 5.

(8.2.5). Now suppose that we are in the situation of Fig.1 of a graph T" with at
least 2 forks, one of them at the vertex v;. Suppose that I'—v; = I'; +T9+1T'3,
and let A;, Dg, Az, Aa, Ap be the corresponding determinants. Then by
(3.1.10),

_ A1A2A3

1 1 1—(Aa-1)(Ap—-1
a; = 1,1 1-(aa-1)(4s )

A (A1 Ay Ag

This is nonnegative (actually, equal to zero) only in the case

~1).

Al=0r=As=Apg=2.

By (3.1.10), this is also the sufficient condition for I' to give a log canonical
singularity. This is Case 7.



Fig.1

(8.2.6). Using (3.1.10) one can easily show that in the graphs of Fig.2 the
marked vertices have negative log discrepancies, hence these graphs define
non-log canonical singularities.

/ /|

Fig.2

3.2.7 Lemma. IfT corresponds to a log terminal (log canonical) singularity
then I is one of the graphs listed in (3.2.1-2.5).

1st proof. (3.2.5) gives the general rule for what happens to a log discrepancy
when we add an additional fork: the term, denote it by T, that corresponds
to the part of the graph after the new fork is changed to a number
T (84— Ap(Aa— 1)
with the corresponding A4, Ap > 1. The other terms don’t change.
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Therefore, starting from (3.2.3), (3.2.4) or (3.2.6), adding a fork always
gives a negative log discrepancy.

2nd proof. By (3.1.3) the subgraph I' C I also defines a log canonical singu-
larity. Therefore I’ cannot have subgraphs as in (3.2.4) or (3.2.6). O

(3.2.8). Note that Case 8 is essentially a subcase of 7.

3.3. The case B # 0.

(8.8.1). In addition to the restrictions of (3.2) we have to consider additional
penalties for the connections with f;1B. Now it is an easy excercise to get
the remaining Cases of Fig.3.

(5.3.2). From Fig.3 one can see that the minimal resolution is a good resolu-
tion for K + B. Note that in Case 9 with a chain containing a single vertex vy,
the curves corresponding to the black vertices do not intersect E;. Otherwise,
a single blow up gives a log discrepancy a; = —1.

(8.3.3). Note that in the Case 9 of Fig.3 all the discrepancies are zero because
we have neither bonuses nor penalties.

(8.3.4). The index of a rational singularity, i.e. the least natural number NV
such that NKx is a Cartier divisor, is at the same time the least common
denominator of all the log discrepancies a;. One can easily see that in the
Cases 6-8 indices are 2,3,4 or 6. ‘

3.4. Final remarks.

(8.4.1). Note that the only restriction on the unmarked weights on Fig.3 is
that the quadratic form of the whole graph I' should be negative definite.
This is essential only in Cases 6-8 (where at least one weight should be > 2),
and also in Case 5 (where either all weights are at least two and at least one
at least three; or there are two vertices, one of them has weight one and the
other has weight at least five).

An easy case by case check shows that in Cases 1-3 and 6-10 any (con-
tractible) graph defines a rational singularity, so by [Artin66] a configuration
can be contracted to a normal singular point. In cases 4-5 if the quadratic
form is negative definite, then a configuration can be contracted in the ana-
lytic situation. In the algebraic situation this is a necessary condition (but
not sufficient).
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K+B is log terminal, B is reduced

(8.4.2). Our method allows one in principle to classify log terminal or log
canonical surface singularities (X, K + B) when B may have fractional coef-
ficients with denominators 2,3,..., if this should turn out to be necessary.

There will be a large number of new cases.
o D
a A A )=
1 2’ 3
(2,2,n)
)]

V ¢ (2,3,3)
(2,3,4)
(2,3,5)

o &—C D

Fig.3, beginning




K4B is log canonical but not log terminal, B is reduced

4. TERMINATION OF CANONICAL FLIPS

JANOS KoLLAR and KENJI MATSUKI

The aim of this chapter is to study flops and flips for terminal and canonical
threefolds. First we prove the basic finite generation theorem of [Reid83]. The
second main result is termination of flips (and flops) for canonical pairs (X, D)
(4.10). We start with some general results that hold for arbitrary schemes.

4.1 Definition. Let X be a normal scheme. A small modification of X is
a proper birational morphism f : ¥ — X such that ¥ is normal and the
. exceptional set of f has codimension > 2. We usually exclude the trivial case

YX.

The following proposition relates projective small modifications to the di-
visor class group Weil(X) (cf. (16.3.1)).

4.2 Proposition. [Kawamata88,3.1] Let X be a normal scheme and let D be
a Weil divisor on X '(not necessarily effective). The following two statements
- are equivalent:

(4.2.1) o0, Ox(mD) is a finitely generated O x-algebra.

(4.2.2) There is a small modification f : Y — X such that D', the birational
ransform of D on Y, is Q-Cartier and f-ample.

Furthermore f is nontrivial iff no positive multiple of D is Cartier.

2 2
o o
° /> (8) ><

o o)

®) 5 5

(7)

Proof. Assume that f : Y — X exists. Let C C Y be the exceptional set.
First we claim that

4.2.3) f+Oy(mD’) = Ox(mD) for m > 0.

(9) 0———©——0 (10)

It is always true that f.Oy(mD’) C Ox(mD). Let C CY be the exceptional

2
2
set of f. Let s : Ox — Ox(mD) be a section. We can pull it back to a section
2

s:0y_¢c — Oy_c(mD').
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