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FRACTIONAL INDICES OF LOG DEL PEZZO SURFACES
UDC 512.774

V. A. ALEKSEEV

ABSTRACT. The fractional index of a (possibly singular) Q Gorenstein del Pezzo sur 
face X is the greatest rational number r such that —Κχ = rH, where Η is a primitive
Cartier divisor. This paper describes the set of values taken by fractional indices of
del Pezzo surfaces with log terminal singularities.
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Introduction

Let X be a log del Pezzo surface, that is, a singular normal complex surface with
ample anticanonical class and log terminal singularities (see §1 for precise defini 
tions). These surfaces are a generalization of a very well studied class of surfaces,
the usual del Pezzo surfaces; their classification is interesting in its own right, and
may also be useful in the theory of minimal models of algebraic 3 folds. Among
algebraic 3 folds, the class that can naturally be thought of as parallel to these is the
class of Fano 3 folds with terminal singularities; one can expect the difficulties arising
in the study of these two classes of varieties to have something in common.

The index of a nonsingular del Pezzo surface S is the greatest natural number r
such that the anticanonical divisor  Ks is divisible by r in Pic S. It is well known
that r =  3 if S = P 2, r =  2 if S =  Ρ 1 χ Ρ 1, and r =  1 otherwise. On a log del Pezzo
surface X, the anticanonical Weil divisor —Κχ may not be a Cartier divisor, but in
the group Pic X ® Q of Q Cartier divisors it is natural to write  Κχ = rH, where Η
is an ample Cartier divisor primitive in Pic X and r a rational number. In this case,
the number r =  r(X) is called the fractional index of X. There arises the interesting
question of what the set

R = {r{X) | X is a log del Pezzo surface}

looks like. In this paper, we give the following description of R.

TH EOREM 4.3. The set R has the following accumulation points: 0 and \ / m for
any natural number m. All of these points are limit points from above and not from
below.

Moreover, for any natural number m, we can choose a sufficiently small punctured
neighborhood Q,n =  {JC e R 0 <  \ x   1 / m | < em } in such a way that all log del Pezzo
surfaces X with r{X) e Qm can be classified explicitly.
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As intermediate results, we prove theorems on the boundedness of the rank of
the Picard lattice of the minimal resolution of singularities of X, Theorems 2.3, 2.4
and 2.5. These boundedness results stem from Theorem 2.2, which is due to V. V.
Nikulin, and is based on methods developed in the theory of discrete reflection groups
in Lobachevsky space in papers of Nikulin, Vinberg, Prokhorov and Khovanskii.

The layout of the paper is as follows. In § 1 we give precise definitions and basic
information on log del Pezzo surfaces. In §2 we state the boundedness theorems. In
§3 we give the bounds which we need in the proofs of these theorems; these make
use of results of V. V. Nikulin on log terminal Lanner graphs. §4 is concerned with
fractional indices proper.

I would like to express my gratitude to V. V. Shokurov for setting the problem,
to V. V. Nikulin for allowing me to make use of as yet unpublished material, and to
V. A. Iskovskikh for interest in this work.

§1. Basic facts on log del Pezzo surfaces

Let X be a normal algebraic surface; the canonical Weil divisor Κχ of X is denned.
D EFIN ITION 1.1. We say that X has at worst log terminal singularities if the fol 

lowing conditions are satisfied:
(i) Some multiple NKX of the canonical divisor of X is a Cartier divisor.

(ii) Let π : Υ —» X be a minimal resolution of singularities and ΝΚγ =  π*(ΝΚχ)
+ Σ α< ^ ί t n e natural formula, where F, are the exceptional prime divisors. Rewrite
this formula in Pic Υ ® Q in the form

then all the a, should be greater than  1 .
It is not hard to prove that all 2 dimensional log terminal singularities are rational,

and that condition (ii) holds for any other resolution. All the log terminal singularities
are listed in [4] and [5], in [5] in a purely arithmetic way, starting from condition
(ii). The exceptional curves introduced by the blow ups form one of the graphs An,
D n , E 6, E7 or E8.

D EF IN ITION 1.2. A normal algebraic surface Λ' is a log del Pezzo surface if
(i) X has only log terminal singularities, and

(ii) some multiple  NKX of the anticanonical divisor is an ample Cartier divisor.
In [1], I proved the following simple proposition.
PROPOSITION 1.3. (i) Any log del Pezzo surface X is rational.
(ii) Let π: Υ —> X be a minimal resolution of singularities. Then the exceptional

curves of Υ (that is, the irreducible curves with negative selfintersection) are the excep 
tional curves of the resolution morphism π, together with {~\ ) curves. There are only
finitely many of them.

Since the singularities of X are normal, π*: Pic X ~» Pic Υ is an inclusion of
groups. Hence Pic X is a torsion free Abelian group of finite rank, and the difference
p{Y)   p{X) is equal to the number of exceptional curves of π .

We have a vector space Picq X   Pic X®Q and an integral lattice Pic X in it. Since
all 2 dimensional rational singularities are Q factorial (that is, any Weil divisor has a
multiple which is a Cartier divisor), any Weil divisor D can, up to linear equivalence,
be viewed as an element of P icQ X. The lattice Pic Υ and the vector space PICQ Υ
are defined similarly. All of these groups are naturally equipped with intersection
forms, which are related by morphisms

π*: P icQ X  +  P icQ Υ and π*: P icQ Υ  > P icQ X
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D EF IN ITION 1.4. The index, or Gorenstein index, of a log del Pezzo surface is the
smallest natural number Ν such that  NKX e P icX.

D EFIN ITION 1.5. The fractional index of a log del Pezzo surface is the maximal
positive rational number r such that   rKx e P icX, that is,  Kx = rH, where Η is
a primitive element of Pic X.

Obviously r =  M/ N, where Μ is a natural number.
We use the following notation for the exceptional curves of Y: write Fj for the

exceptional curves of π and Ej for the ( l) curves.
D EF IN ITION 1.6. The DP coefficients of a log del Pezzo surface X are the following

positive rational numbers:

=   π*Κχ .Ej =  \

where the Ej are the ( l) curves.

PROPOSITION 1.7. If p(Y) > 2 then r = gcd(^).

PROOF . First of all, — \Κχ is a Cartier divisor if and only ii  jn*Kx is. Secondly,
the lattice Pic Υ is unimodular, so that for this it is necessary and sufficient that
  r%*Kx •  υ e Ζ for every ν e Pic Y. Finally, if p(Y) > 2 then Pic Υ is generated by
the classes of exceptional curves, and  π*Kx •  F,•  =  0 and — n*Kx •  Ej = r\ j.

§2. Boundedness theorems
2.1. PROPERTY DP(e). Let ε be some positive real number. We say that a log

del Pezzo surface satisfies condition DP(e) if all of its DP coefficients satisfy r\ j > ε.(')
From this condition, we deduce various kinds of boundedness theorems on the

rank p{Y) of the Picard group of the minimal resolution of singularities.
Since all the subsequent arguments will be in terms of graphs, we introduce some

notation we will need. By a graph we mean a nonoriented graph with finitely many
vertices; we denote graphs by capital letters such as Γ. We have in particular the
standard graphs An,  η, E6, E7, E 8; and An, Dn, E6, E7, E8.

By a weighted graph Γ, we mean a graph where each vertex is given a weight /?,·.
The graphs An, D n , E6, E7, Eg, An, Dn, E6, E7 and E8 have a standard weighting in
which every vertex has weight p, =   2 . With a weighted graph Γ =  {v\ ,..., vk} we
associate in a natural way a quadratic form by setting vf = p, and Vj •  v} equal to the
number of edges of Γ joining v, and Vj.

We say that a weighted graph Γ is elliptic, parabolic or hyperbolic if the associated
quadratic form has signature respectively (0, k), (0, k   1) or (1, k   1). A weighted
graph Γ is Lanner if it is hyperbolic and no proper subgraph of Γ is hyperbolic.

The proofs of our boundedness theorems are based on the following theorem due
to V. V. Nikulin [6]. Let X be a log del Pezzo surface and π : Υ  * X the minimal
resolution of singularities. With Υ we associate the weighted graph of exceptional
curves as follows: to each exceptional curve C, we assign a vertex of weight p, = Cf,
and we join two vertices C, and Cj by C, Cj edges. The quadratic form corresponding
to this graph is simply the intersection form (C, •  Q ) of curves on Y.

TH EOREM 2.2. Suppose that the following two conditions hold:
(i) Every Lanner subgraph Ρ of Γ has at most I vertices.

(i)Translalor's note. An obvious reformulation is Ky + λ( π'Κχ) is nef, where λ =  1/c; since —Κχ
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(ii) For any connected elliptic subgraph Γ of Γ with η vertices, the number of pairs
of vertices of Γ at distance d < I   3 is bounded by cxn, and the number of pairs at
distance l 3<d<2l 3is bounded by c2n.

Then
p(Y)<96(a+c2p) + 69.

Instead of condition (ii), we could assume the following stronger condition (ii)'
which implies (ii).

(ii)' For any connected elliptic subgraph Γ' ofT, the number of vertices ofT' at
distance d < I   3 from any fixed vertex is at most c\ , and the number at distance
I   3 <  d < 21   3 is at most ci.

In the following section, we will prove that if a log del Pezzo surface X satis 
fies condition DP(e) then /  < 7 +  16/ e, c\  < 16 +  44/ e, and c2 < 17 +  44/ ε (see
Theorems 3.13 and 3.15).

The next theorem follows at once from these bounds and Theorem 2.2.

TH EOREM 2.3. Suppose that a log del Pezzo surface satisfies condition DP(e). Then
the rank p(Y) of the Picard group of the minimal resolution of singularities satisfies
p(Y) < F(l/ e), where F is a linear function.

It is easy to write out this function explicitly from the bounds we have given; it is
clear that this is far from being the best bound. The essential point is just that the
bound is linear in l/ ε. We will show in Example 4.5 below that this bound cannot
be made better than linear.

As corollaries of Theorem 2.3 we deduce the following boundedness theorems.

TH EOREM 2.4. p{Y) < F(l/ r), where F is a linear function and r the fractional
index of the log del Pezzo surface X.

TH EOREM 2.5. p(Y) <  F(k), where F is a linear function and k the index of the
log del Pezzo surface X.

The proof follows automatically from the following relations:

min(i/ ; ) >r = gcd (>/, ) =  M/ k > l/ k.

REMARK 2.6. The boundedness theorem (2.5) was proved by V. V. Nikulin in [7]
with the function F(k) ~ k7/ 2.

We give another much simpler proof of Theorem 2.3 for ε =  1/2.

PROPOSITION 2.7. Suppose that a log del Pezzo surface satisfies condition DP{ 1/2).
Then p{Y) < 10.

PROOF . We have Κγ = π*Κχ + X)a, F, . Introduce the "reflected" canonical class
Γ =  π*Κχ   Σα, F ,·. We will prove that

~Κ = Κγ + 2π*( Κχ)
is nef. Therefore { ~K)2 > 0; on the other hand, K\  = ( Λ7)2, and by Noether's
formula p(Y) = 10 — AT̂  < 10.

As I proved in [1], the Mori Kleiman cone NE( Y) of effective cycles is generated by
the classes of the exceptional curves F, and Ej. Hence for  K to be nef, it is necessary
and sufficient that    Ft > 0 and  ~K Ej > 0. We have  ~K F, = KyFt =   F} 2 > 0
in view of the minimality of the resolution of singularities. Moreover,

\  =   Ky Ej, r\ j =   n*Kx •  E},  ~K •  Ej

: — 1 ~:—ο « .   ̂ λ η ,,,ο <roi _~ F . Ρ > Π
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§3. Bounds on / , c\  and C2
In this section we prove the bounds on /, c\  and ci of Theorem 2.2, assuming that

X satisfies DP(e).
Let us add to our list of notation, by agreeing on how we will draw a weighted

graph. The weights of a vertex will always be negative, and so we omit the minus
sign. Vertices with p,•  =   1 will be referred to (and drawn) as white vertices; those
with Pi <  2 as black vertices. By a black graph, we mean one consisting entirely of
black vertices.

We now model in the language of weighted graphs the definitions of the coefficients
al appearing in the formula KY = π*Κχ + Σαίή, of the DP coefficients, and of blow 
ups of a surface.

D EFIN ITION 3.1. Let F  =  {fu..., fk) be an elliptic graph. The coefficients of Ρ
are the rational numbers a, = a(Y',ft) which are uniquely determined by the system
of linear equations

k
Σ o ifi •  fj =  Pj 2 for ; =  1,..., k.
i=\

(If Ρ is the graph corresponding to a system of nonsingular rational curves on a
surface Y,  and π: Υ —> X is the contraction of these curves to points, then Κγ =
π* Κ χ + X) ctjfj. This follows from the adjunction formula for the genus of the curves
fj )

D EFIN ITION 3.2. An elliptic graph Γ is log terminal if it has every coefficient Q, >
 1 .

D EF IN ITION 3.3. Let Γ be a weighted graph and Ρ c Γ an elliptic subgraph which
contains all the black vertices, and possibly some white ones: Ρ =  {/ ι,...,  fs}, Γ =
Ρ U  {e\ ,...,et}. We define DP coefficients for the remaining white vertices e,· as
follows:

(If Ρ and π are as above, and e} is a (   l) curve, then r\ j =  π*Κχ •  ej.)
D EF IN ITION 3.4. Consider a graph Γ and a subgraph P ; we say that the pair

(Γ,Ρ) satisfies condition DP(e) if Γ and Ρ are as in Definition 3.3, and all the
DP coefficients r\ t > ε.

We will say, for short, that a graph Γ satisfies DP{s), to mean that the above
condition holds, where Ρ is assumed to be the graph consisting of all the black
vertices.

D EFIN ITION 3.5. By the blow up of a weighted graph Γ in a complete subgraph
Γι =  {vu...,vk}, we mean the following transformation: the weight of each vertex
of Γι decreases by 1, that is, p\  =  p,•  — 1, and the number of edges joining υ, and Vj
decreases by 1, that is, u · •  v'j = v,• •  v}•    1. A new white vertex e is added to the graph,
attached by simple edges to the vertices {v[,..., v'k }. As a general rule, we only blow
up a vertex Γ, =  {vi} or an edge Π =  {vuv2}. (This is how the graph of smooth
curves on a surface changes under a blow up.)

A sequence of inverse transformations of blow ups is called a morphism.
D EFIN ITION 3.6. A weighted graph Ρ is called a predecessor of Γ if there exists a

morphism σ: Γ —» P . In particular, the graph Γ is its own predecessor.
Note that if a weighted graph Γ is Lanner then any predecessor of Γ is again

Ϊ annir
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Preliminary lemmas.

LEMMA 3.7. (i) Suppose that Γ =  Ρ υ {vk+\ } is an elliptic graph with Ρ =
{v\ ,...,vk} and such that vk+, is a white vertex having DP coefficient η(Γ, Ρ ; vk+ {) >
0. Then the coefficients of the graphs Γ and Ρ are related by the following inequality:

a{T,Vi) >a{Y',Vi) for i=l,...,k.

(ii) Let Γ =  Ρ U  {vk+i} be a black elliptic graph. Then

a(T,Vi)<a{r,Vi) for i=l,...,k.

(iii) Let Γ =  {vu...,vk} be an elliptic graph and Ρ a weighted graph that differs
from Γ only in the weight at the vertex V\ , with p\  < p\ . Then

α(Γ,υ, ) >  1 = > a(r,v'i) < α(Γ> , ) Ϊ

α(Γ> , ) =   1 =>> α (Γ , νί ) = α (Γ , «/ ) > for i = 1,... ,k.

α(Γ>,) <   1 = > «(P,^) > α(Γ,υ,) J
(iv) Lei Γ be a black elliptic graph and Ρ α weighted graph that differs from Γ o«(y

/« i/ ^ presence of an extra edge, v\  •  v'2 = υ ι •  ν ι + 1. 77;e« a(T\  v[) < a{Y, v,) for i =
l,...,k.

(The proof of this is actually already contained in [7].)
PROOF , (i) Set a(V,vk+l) = 0 and compare the two systems of linear equations

k+l
α ( Γ ' ' vi)vi •  VJ = ~Pj   2 for ; =  1, . . . , fc,

=  pk+x  2 + η(Υ,Γ',υΙ(+{)
ί=1

and
k + l
Σα(Γ>Vt)Vj •  Vj•  =  pj·   2 f o r y =  1 ,...,k+ 1.
( = 1

Subtracting one from the other gives
k + \
Σ{<*(Γ',νί) α(Γ,ν,))υ, ν] = 0 for j = \ ,...,k,
i=\

(α(Γ,ϋ(·)   α(Γ, «,·))«,· ·ϋΛ+ 1 =  ν(Γ ,Γ ' ; ^ +  1) > 0.
/=ι

Let V = (Vj Vj) be the matrix of the intersection form. All the entries of the inverse
matrix V~l are negative [2]. Hence «( P , v,·)   α(Γ, ν,) < 0 for /  =  1, ..., k + 1.

(ii) In the same way as in (i), we have
k + l

a(r',vi) a(r,vi))vrVj = 0 f o r j=\  ,k,

k + l k
]Γ(α(Π,ν( ·)   α(Γ,  Vi))Vi •  vk+x = pk + l + 2 + ^ α ( Γ > , ) •  vk+l < 0,
1= 1 ' = 1
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since / ^ + 1 <  2 and a(P, v,) < 0. The final statement follows from the fact that the
graph Ρ is black, and its coefficients satisfy the system of equations

Σ 
This proves the required inequality.

(iii) In an entirely similar way we have

• «;•  =  () for j =

which gives all the inequalities.
(iv) We have

k

Σ^Γ,ν1,)   α(Γ>,))υ,' · v'j =  0 for j φ 1,2,
ί= 1
k

53(α(Γ,υ;)   α(Γ,«, ))«; · υ[ =   a2 >  0,
( =  1

k
Σ(α(Γ\ υ(0   α^,υ^υ', •  v'2 =   α, > 0.
ι = 1

LE M M A 3.8. (i) Let Γ =  {e\ ,...,es,fi,...,ft} be a parabolic graph and F =
{/ ΐι· ··»/ (} C Γα subgraph such that Γ, Γ' satisfies Definition 3.3, vwY/z ?/7 /Ae cor 
responding DP coefficients. Let C — Σ a^j +  X] £,·//  be the minimal effective cycle
with integer coefficients such that C •  e}   C •  fa =  0. It is easy to show that C exists;
we call C the fundamental cycle ο/Γ.

Then

2(1 — PaC), where paC is the arithmetic genus.

(ii) Let Γ be an elliptic graph and V a log terminal subgraph; let C be the funda 
mental cycle for Τ, that is, the minimal effective cycle such that Cej < 0 and Cf < 0.
The existence of such a cycle is proved in [3]. The remaining conditions are as above.
Then

(Note that paC > 0 in (i) and (ii).)
(iii) Let Γο and Q be an arbitrary graph and cycle, and σ: Γ —> Γο a morphism;

write C — σ*Co, and suppose the remaining conditions are as above. Then

ΣaJnJ ^ 2 ( !  PaCo) + const(Co).

PROOF . Although the proof we give below is purely arithmetic in nature, and is
applicable to arbitrary graphs for which one can define the canonical class as a linear
functional, we will work in the only situation of interest to us, when Γ is the graph
of exceptional curves on a surface; this simplifies the notation and allows us to omit
unnecessary definitions, for example of the arithmetic genus.
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(i) Let / : Υ — X be the contraction of the curves of P . Then tfy =  / *ΚΧ+Σ ajr,
and

5 3 fl;f/ ; =   n'KX •  C = ( Ky + Σ <*if) · C

=  2(1  / , flC ) +  (C +  Σa'f)  C = 2(1 PaC).

(ii) In the preceding formula, note that (C +  Σαί/ ΐ) ·£ "< ( ) ; this follows from the
definition of the fundamental cycle and the fact that C > Σ f and Σ aff <  
by the log terminal property of P .

(iii) We have

Σ(c +  Σ " • /• ) · c = (c +

= ( c 0 + < τ . Σ ««••/;•) · c ° ^ c o   Σ ^ c o ,

where the g, are the vertices of Γο such that g/ Q < 0.

COROLLARY 3.9. Suppose that the weighted graph Γ satisfies condition DP(s); then
every subgraph Y\  c Γ also satisfies DP(e).

The proof follows from 3.7(ii) and the definition of D/ ' coefficients.

COROLLARY 3.10. Suppose that the weighted graph Γ satisfies DP (ε) for some ε > 0,
and that the subgraph of black vertices is log terminal. Let Ρ be a weighted graph
that is a predecessor ο/Γ, and Γ" c Ρ the subgraph of black vertices. Then T" cannot
contain A.n,  η or En as subgraphs, nor have multiple edges.

PROOF . Suppose that Ρ contains a black subgraph F, of one of the types An, Dn

or En, and let Γ, c Γ be the inverse image of Γ\  under the morphism σ: Γ —> P . Let
C — Σα]βΐ + Yjbifi be the fundamental cycle of the graph Fj as in Lemma 3.8.

If T\  has weight  2 at each vertex then paC   1 and Σ ajnj =  0 by Lemma 3.8(i).
But since Γ] is parabolic, it must contain at least one white vertex and so Σαίηι > 0>
a contradiction.

If F , has weight less than  2 at some vertex then Γι is elliptic. By the description
of log terminal singularities, Γ\  cannot coincide with Γ], that is, it must contain at
least one white vertex. It follows from Lemma 3.7(iii) that the sum Σαΐη) must
be less than in the preceding case, that is, Σαίηί < 0· Οη the other hand, we have
r\ j > ε > 0, and hence Σα'ιηι > 0> a contradiction.

Next, an edge of multiplicity 2 is a subgraph Ai. An edge of multiplicity > 2 gives
a contradiction a fortiori by Lemma 3.7(iv).

COROLLARY 3.11. Suppose that a weighted graph Γ satisfies condition DP(e) for
some ε > 0. Then for any weighted graph Ρ that is a predecessor of Γ, the black
vertices form a disjoint union of graphs An, Dn and En.

PROOF . Indeed, these are the only graphs that satisfy Corollary 3.10.
We now proceed to the bounds for the constants / , c\  and C2 of Theorem 2.2. For

these, we make use of the following description of Lanner graphs given by V. V.
Nikulin. The proof of the next theorem is contained in [7], (1.1.8).

TH EOREM 3.12. Let Γ be a Lanner graph satisfying condition £>Ρ(ε) / or some ε > 0.
Then one of the following conditions holds:

(i) Γ has at most 3 vertices.
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(ii) The weighted graph Γ contains a parabolic subgraph r p a r a whose fundamental
cycle satisfies pa{Cpar!i) — 1.

(iii) The weighted graph Γ contains a parabolic subgraph r p a r a with pa(Cpam) =  0,
and there exists a morphism σ: Γ ^ G2(\ , \ ,b) or σ: Γ > G 3( l, \ ,b), where G 2( l, \ ,b)
and Gi{\ , 1, b) are the graphs corresponding to the quadratic forms

 b
1
0

1
  1

1

0
1

  1
and 1  1 1 for b>\ .

(iv) There exists a morphism σ: Γ  * G (l,2;2) or σ: Υ  + (7(1,3;2), where
G{ 1,2; 2) and G{ 1,3; 2) are ?/*e graphs corresponding to the quadratic forms

 2 2\  , /  3 2
2  l j flm/  ( 2  1

TH EOREM 3.13. Suppose that the weighted graph Γ satisfies DP(e) with ε > 0.
ί/ze number of vertices of any Lanner subgraph of Υ in Υ does not exceed 7 +  16/ε.

PROOF . By Corollary 3.9, Γι also satisfies  Ρ(ε). We consider one by one the
various cases of Theorem 3.12. Case (i) does not concern us, since if ε < 1 then
3 < 7 +  16/ε, and if ε > 1 then there are no graphs satisfying DP(e). Case (ii)
does not occur by Lemma 3.8(i); one gets a contradiction exactly as in the proof of
Corollary 3.10.

Case (iii). Thus we have a subgraph r p a r a c Γ, and for the morphism σ we have
σ: rPara —> O, where Ο is the following graph:

V\ V2

Then the fundamental cycle C p a r a of r p a r a must be C p a r a — σ*{ν{ +  ν2). Suppose
that CPara =  Hajej +  Y^bif, where the ej are white vertices and the f black. The
natural numbers aj and 6, occuring in this expression will be called the multiplicities
of the vertices. It is easy to see how these multiplicities change under blow ups. Let
π: Ρ —> Γ" be a blow up of a weighted graph Γ" in a complete subgraph P " consisting
of vertices V\ ,... ,vk with multiplicities C\ ,...,Q:. Then the new vertex e will have
multiplicity c\  + •  •  •  + Q, and the other multiplicities remain unchanged.

The idea of the present proof is to write the morphism σ: r p a r a —•  Ο in a convenient
way as a sequence of blow ups, and to keep track of the way in which the sum
Α = Σα} of the multiplicities of the white vertices changes under the blow ups.

LEMMA 3.14. The morphism σ: r p a r a —» Ο can be represented as the following
composite of blow ups:

Step 1. We blow up only vertices; moreover, the number of new black vertices
appearing is at most 4/ ε.

Step 2. We first blow up an edge; then optionally the newly appeared vertex, then
again optionally the most recently appeared vertex, and so on. The number of new
vertices appearing in this step is at most 6.

Step 3. We blow up only black vertices which appeared in Step 2.
Then Step 2 and Step 3 may be repeated any number of times.

PROOF OF TH E LEMMA. We can obviously write the morphism as a composite of
blow ups such that first only vertices of multiplicity 1 appear, then of multiplicity 2,
then of multiplicity 3, and so on. If the newly appeared vertices have multiplicity
1 then only vertices have been blown up; this is precisely what Step 1 consists of.
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c) d)

FIG U RE 1, (a), (b), (c), (d), (e)

Consider the graph Γι obtained on completion of this step. Γ] is a very simple type
of weighted graph: it has simple edges forming a tree, with the weight at each vertex
equal to the number of its neighbors. In particular, each branch of the tree ends with
a white vertex. If we recall that Γ is obtained from r p a r a by adding a single "special"
vertex, then we find that our graph Γι has distinguished vertices: either one of them,
v\ , or two of them, υ and V\—these are the neighbors of the "special" vertex.

Consider now an arbitrary vertex w of Γι. Since Γ( is a tree, there exists a unique
chain joining ν and w. Blow down all the remaining vertices not belonging to this
chain; from our description of Π we have given it is easy to see that this can be done.
Then we conclude that there exists a weighted graph of the form given in Figure l(a)
or (b) that is a predecessor of Γ.

Suppose that we delete the vertex w from this graph; by definition of a Lanner
graph, what is left is either elliptic or parabolic. For this graph we introduce new
multiplicities, in terms of the fundamental cycle. Then the new multiplicity of the
white vertex ν will be t 1. It follows from this that Γ contains an elliptic or parabolic
subgraph, and a white vertex in it of multiplicity >t—\ . Then by Corollary 3.9 and
Lemma 3.8(i), (ii), we have (/    1)ε < 2, that is, t < 1 +  2/ e.

We return to the graph Γι; in it, the black vertices form a connected subgraph,
which by Corollary 3.11 is of the form An, Dn or En. The length of the chain from
any vertex to a distinguished vertex is at most 1 +  2/ ε. Hence the number of black
vertices of Π is at most 4/ ε.

We now consider the sum A = YJaJ of the multiplicities of the white vertices, and
observe how A and the number of vertices changes in Steps 1, 2 and 3.

Proof of Theorem 3.13, continued. In Step 1, the number of white vertices is exactly
equal to A. In Step 2, the number of vertices increases by at most 6. Consider what
happens to the sum A. Let w be the vertex appearing on blowing up the edge {vuv2y,
the multiplicity of w equals the sum of the multiplicities of ν ι and v2  If both of
these are white then A remains unchanged; but this situation can occur once only,
since in this case the graph being blown up consists just of ν ι and v2. If at least one
of vi and v2 is black then the sum increases by at least 1. Thus in this case, the
number of vertices increases at most 6 times as fast as A. At Step 3, A obviously
increases faster than the number of vertices.
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Now consider the final graph r p a r a . By Lemma 3.8(i), we have A •  m in (^) < 2,
and since r p a r a satisfies DP{e), it follows that A < 2/ ε.

Taking the sum of all that was said above, we get the bound 1 +  4/ε +  6 +  6 · 2/ e =
7 +  16/ε for the number of vertices of Γ. To finish the proof in case (iii), it remains
only to notice that a vertex not belonging to Ο cannot be blown up, since this violates
the condition that the graph is Lanner.

Case (iv). Take, for example, the graph (7(1,2; 2). After successive blow ups, the
possibilities are Figure l(c) or (d) . (c) is the case when a cycle occurs, made up
of white or black vertices indiscriminately. In this case we assert that only edges
are blown up. Indeed, suppose that a vertex is blown up. If the internal cycle is
hyperbolic then the graph we obtain is not Lanner; otherwise, we get a contradiction
from Lemma 3.8(i) and (ii), as in Corollary 3.10.

In (7(1,2; 2), consider the cycle Co =  V\  +  v2. By Lemma 3.8(iii), the sum A
of multiplicities in the cycle C = σ*Co satisfies A •  ε < 3. Since only edges are
blown up, the sum A grows faster than the number of vertices, and we get the bound
2 +  3/e < 7 +  16/ε for the number of vertices of Γ.

In the case of Figure 1 (d), only one blow up is allowed, and this leads to the graph
(e). If a vertex is blown up following a sequence of blow ups which does not pass
through the graph (e) then we use the same argument as in (c). Here we use the fact
that a parabolic or elliptic graph that is a tree with a fork, having a white vertex at
the fork, always has arithmetic genus greater than zero. If the sequence of blow ups
passes through (e) then there cannot be any blow ups of vertices, for otherwise there
would exist a predecessor graph with a black subgraph of type £)„. Furthermore, as
in case (c), we get the bound 4 +  3/ε < 7 +  16/ e.

The graph G{\ , 3;2) is treated in the same way, and we get the same bound.

TH EOREM 3.15. Suppose that a weighted graph f satisfies DP{e) with ε > 0. Then
for any connected elliptic subgraph Γ c f we have the bounds C\  < 16 +  44/ ε and
ci < 17 +  44/ ε for the constants C\  and c2 of Theorem 2.2.

The proof of this theorem is similar to that of Theorem 3.13. We note again that
by Corollary 3.9, the graph Γ also satisfies  Ρ(ε). In [7] it is proved that Γ is log
terminal. In our treatment, this follows immediately from Lemma 3.7(i) and (ii).
Now in Γ we contract all the white vertices; we obtain a morphism σ: Γ —> Γο where
Γο is the graph of a minimal resolution of a log terminal singularity. These graphs
are listed in [5] and, as already mentioned, are weighted graphs of type An, Dn or
En 

LEMMA 3.16. The morphism σ: Γ —•  Γο can be written as a composite of blow ups
as follows: Step 1, then repeated use of Step 2 A, then repeated use of Step 2B and Step
3.

Step 1. We blow up only vertices.
Step 2A. We first blow up an edge {v\ ,v2) where vx and v2 are vertices of multiplicity

1, then blow up the newly appeared vertex {compulsory), then optionally the newly
appeared vertex, then again optionally the most recently appeared vertex, and so on.

Step 2B. We blow up an edge (V[,v2). Either both v\  and v2 have multiplicity 1
{and then nothing more takes place), or we have a sequence of blow ups as in Step 2A.
The number of vertices appearing in this step is at most 6.

Step 3. We blow up only black vertices which appeared in Step 2.
The proof of the lemma is similar to that of Lemma 3.14. We note only that if

after blowing up an edge we contract white vertices in the left hand and right hand



624 V. A. ALEKSEEV

graphs to obtain graphs consisting of only one vertex, then vt and v2 have multiplicity
1.

Proof of Theorem 3.15, continued. The essential remark is that after Step 1 and
Step 2 A, the black vertices form a connected subgraph which by Corollary 3.11 is a
graph of type An, Dn or En. In this black subgraph, the number of vertices at distance
d < I from a fixed vertex is at most 2/  +  2. Obviously, C\  is bounded by 2/  +  2 plus
the number of remaining vertices introduced in Steps 1, 2A, 2B and 3. As in the
proof of Theorem 3.13, this number is bounded by 12/ε. Thus using (3.13), we get
the bound cx < 2(7 +  16/ε) +  2 +  12/ε =  16 +  44/ ε. Similarly, c2 < 17 +  44/ e.

§4. Fractional indices
Let X be a log del Pezzo surface and r{X) its fractional index. If X is obtained

by contracting the negative section on the rational scroll Fn then r — 1 +  2/ n; in
particular, r(P2) =  3. In all other cases, it follows from Proposition 1.7 that r < 1.

Consider the set R given by

R = {r(X) | X is a log del Pezzo surface} c [0, 3].

In this section we describe the accumulation points of R and their nature.

LEMMA 4.1. Let σ: Υ —•  Μ be a birational morphism of a smooth surface Υ to P2

or Fn; suppose that p(Y)   p{M) = k. Then for fixed Μ and k, the selfintersection of
an exceptional curve CofY is bounded, that is, 0 > C2 > const.

PROOF . The blow up of P 2 at one point is F i, so that we consider at once the
general case. We have σ: Υ —» Fn; let C be an exceptional curve of Y,  that is, an
irreducible curve with C2 < 0. Then σ» C =  D is an irreducible curve of Fn, and C is
obtained from D by blowing up several times in points of multiplicity m\ ,..., m^,
where k' < k and m, > 1. Thus C2 = D2   Y^m2. The two natural conditions
—KyC < 1 and 2paC > 0 can be rewritten in the form

and J2(m2   m,) < D2 +KD + 2,

where Κ — KFn. Obviously, (Y2{m/    1)) > J2imi ~  I ) 2 c a n be rewrit ten as
2 c2 > {DK)2,

where C\  and ci are certain constants. We assume that D does not coincide with the
negative section of Fn, so that D2 > 0. Since the lattice P icF n is hyperbolic, we have

D; <  ψ . . >(DJt)1.
Thus C\DK + ci > \ {DK)2 and  DK < c3. There are obviously only a finite set of
numerically nonequivalent curves D with D2 > 0 satisfying this condition. Hence
^ mj is bounded, and with it  C2.

LEMMA 4.2. Let o:Y—*Fnbea birational morphism of smooth surfaces with
η > k = p{Y)   p(Fn). Then, except for the proper transform of the negative section,
all the exceptional curves of Υ are contained in fibers of the morphism Υ  +  Fn —> P 1.

PROOF . In fact, let C be another exceptional curve on Υ with D = a+C ~ asn +
bf φ sn, where sn and /  are the negative section and fiber of ¥„. Then D2 > a2n and
all m , < a (since D is an irreducible curve and D •  sn > 0). Hence C2 = D2   Σ mj >
a2n   a2k > 0.
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T H E O R E M 4.3. The set R has the following accumulation points: 0 and \ jm for
any natural number m; all of these points are limit points from above and not from
below.

PROOF . We show first that there are no other accumulation points in R. Fix some
ε > 0 and consider the accumulation points of the set R Π [ε, + oo[. If r(X) > ε, then
by Theorem 2.4 we have a bound p(Y) < jF(e) for the rank p(Y) of the Picard lattice
of the minimal resolution of singularities of X. There exists a birational morphism
σ: Υ —» Μ from Υ to a nonsingular minimal model. If we are only interested in the
limit points of R, we can assume that η > F(s); indeed, for any fixed surface M, the
selfintersection number C} of the exceptional curves C, is bounded by Lemma 4.1.
As we know from Proposition 1.3, the exceptional curves Ft on Υ with Ff < —2
form a log terminal graph. There are only finitely many such graphs, since we have
bounded the number of vertices and the weight of each vertex; thus there are only
finitely many possibilities for the Z)P coefncients r\ }•  = 1 +  J2 aiFi " Fj a n c ^ therefore
only finitely many possible fractional indices r = gcd(?/ j).

Suppose then that η > F(e). Then from Lemma 4.2 we deduce a description of
the graph of exceptional curves on Y. We get a finite number of series of weighted
graphs; in each series, the graphs differ only in a natural number n, the weight of
one of the vertices. It is enough to keep track of how r changes in one such series;
consider Yn for η = F(e), F(e) + 1, Let FQ be the inverse image of the negative
section, F 0

2 =   n. We divide up all the remaining curves into sets

according as to which fiber of Υ  > Fn —> P 1 they belong to; here Ej =  1 and
Ff <  2. Write /  for one fiber of this morphism. We have the numerical equality

j€J, iei, jeJs /e/s

We have
 π*Κχ •  f = { KY +  £ a , F , ) •  f = 2 + a0.

On the other hand,

 π*Κχ •  /  =  Σ  afli =  •  · •  =  Σ

Let ∆   ∆ (Λ) =  An +  Β be the determinant of the connected black subgraph of
Tn containing Fo. Then all r\ } are of the form η] =  ι/ ;·(«)/∆(«), where the Uj{n) are
linear functions with rational coefficients; r = gcd(?/ y) =  gcd(^ («))/ A(«). If not all
of the functions Vj(n) are linearly proportional then r — gcd(# i, b\  η +  Ζ>2)/∆(«) —> 0.
Now suppose that all the vj{n) are proportional. We write If] and 7 for the limiting
values. Then 7 = gcd(^) =  gcd(rf]). We have

Σ Σ
LEMMA 4.4. Let Tn be a series of elliptic graphs with variable weight at one vertex FQ,

and a, the coefficients defined in Definition 3.1. Then lim ^oo ao(n) —  1 ; moreover,
' / ao(«o) >  1 for some n0 then ao(n) is a decreasing function, and ifao(no) <  1
then it is an increasing function.
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PROOF . From the system of linear equations X)a,F , · Fj =   Fj   2, we get

Y^( 1 +  ati)Fi •  Fj = qj   2, where q, =  ] P F t •  Fj.

From this system we get a0 =  1 + const/ A(«), and the assertion of the lemma follows
from this.

Thus

Let µ,, = gcd{?/7 | j e Jk} and η] = tkj •  µ*· Then µ* Σ*Λ. /  =  1, where sk =
is an integer, and µ* =  1/ ^. Finally,

r = gcd{l/ sk \ k=l,...,s} = l/ lcm(sk).

Thus all the accumulation points of R are of the form l/ m, and by Lemma 4.4 they
are limit points from above.

We now show that all points of the form l/ m really are accumulation points. For
m — 1 we have already proved this. Corresponding series for m > 2 are given in the
following example.

EXAMPLE 4.5. Blow up one point on Fn, then the point of intersection of the two
components of the resulting fiber. We get the graph of exceptional curves shown in
Figure 2(a). We now repeat the following operation a number of times: blow up
a point on the surface corresponding to the edge connecting the white vertex to a
black one—the left hand or right hand one, at will. We get a surface Υ containing
in particular the exceptional curves corresponding to the graph of Figure 2(b), in
which the shaded boxes represent chains of black vertices. There is a standard way
of associating with each such chain a reduced fraction 0 <  a/ d < 1 (see [4]). It is
easy to see that every such fraction can be obtained as described. Now contract on
Υ the curves corresponding to black vertices; this is possible by [3]. We get a normal
projective surface X with log terminal singularities and PicA" =  Z. This is a del
Pezzo surface, since the curve Ε corresponding to the white vertex satisfies

nd a

In this series, r =  π*Κχ Ε tends to \ / d. This completes the proof of Theorem 4.3.
Consider the particular case a = d  1, n = 2. In this case η = 2/ d, r = 2/ d, k =  d

or d/ 2, and p(Y) = d + I . Thus the bounds in Theorems 2.3, 2.4 and 2.5 cannot be
made better than linear in l/ ε, 1/r and k respectively.

EXAMPLE 4.6. If we consider del Pezzo surfaces not with log terminal singularities,
but with a wider class of singularities, for example rational singularities, then frac 
tional indices can accumulate from below. In Example 4.5, we performed blow ups
in one fiber of F n ; if however, we blow up 5 fibers of F n in the same way, we can
obtain a surface with the graph of exceptional curves shown in Figure 2(c).

If we now contract the curves corresponding to black vertices, we get a series of
surfaces Xn with P icX, = I in which the indices tend to l/ m from below.

If Theorem 2.4 holds for the chosen class of singularities, then a word for word
repetition of the proof of Theorem 4.3 shows that there are no accumulation points
other than {0, l/ m}.
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Theorem 4.3 and Example 4.6 give food for certain reflections. If we consider the
absence of limiting from below as "good" behavior, we see that log del Pezzo surfaces
form a natural class of singular surfaces, rather than an arbitrarily selected class. (2)

We also note that for every natural m, the proof of Theorem 4.3 actually allows us
to describe all possible graphs of exceptional curves on a log del Pezzo surface with
0 <  \ r(X)   l/ m\  < em for sufficiently small em.

For explicit computations of fractional indices, we need explicit formulas for the
coefficients a,. We give such formulas below for singularities corresponding to a
graph having at most one fork; these include the graphs An, Dn, and En, the only
graphs appearing in the log terminal case.

LEMMA 4.7. Let Τ be a weighted graph with simple edges, ν one vertex of T, having
weightpv, and V\ ,...,vk the neighboring vertices. Then

∆(Γ) =   pv •  ∆(Γ   ν)   Σ ∆(Γ   υ   vt),
i

where A is the absolute value of the determinant of the corresponding quadratic form.

The proof is obvious.

PROPOSITION 4.8. The coefficients a, of a graph Γ can be calculated as follows.
(i) Suppose that Γ is a chain, and that the vertex ν breaks Γ up into graphs Π and

Γ2; let Α, ∆ι and A2 be the absolute values of the determinants of the corresponding
quadratic forms. Then

. . , ∆ι +  ∆ 2a(v) =  l+ ' A

(here, if ν is an end vertex and Γ , say, is empty, then ∆ι =  1).
(ii) Suppose that Γ is a tree with a single fork not at v, and that υ breaks Γ up into

a chain Γ  and a graph ]"V write Γ' A and Υ Β for the connected components of the graph

(^Translator's note. This view is unnecessarily defensive: by work of Iitaka and Kawamata, the log
category is now firmly established on an equal footing with the usual category of classification theory. As
Shokurov points out, the appropriate reflection here is that we should expect similar limiting behavior for
other phenomena in classification of varieties with —K ample.
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G \  {fork} not containing v. Let Α, ∆ 1( ∆2> ΑΑ and AB be the absolute values of the
determinants of the corresponding quadratic forms. Then

a(v) =   1 +

Γ, , Γ2 and Υ2,•  Then

A
(iii) Suppose that Γ is a tree with one fork at v, and thai υ breaks Γ up into graphs

. , , ∆ 1∆ 2∆ 3 \  1 1a(v) =   1 +  —  f ±     +  — +  —   1
∆ \A{ A2 ∆ 3

PROOF . We substitute the a, into the linear equations J2 a,F , •  Fj =  —Fj — 2 and,
using Lemma 4.7, verify that they are satisfied identically.

I proved in [1] that on a log del Pezzo surface X of index 1 or 2, the linear system
—2Κχ\  contains a smooth element; the result of this paper allows us to generalize

this somewhat.

PROPOSITION 4.9. Let X be a log del Pezzo surface of index k and fractional index
r. Then for Ν > p(Y)/ 2r, the linear system \  NkKx\  is nonempty, has no fixed part,
and contains a smooth element.

In particular, by Theorem 2.5, there exists an absolute constant A such that all the
above holds for the linear system \  Ak^Kx\ .

PROOF . Let π: Υ  > X be a minimal resolution of singularities. It is enough to
proof all the assertions for the linear system \  Nn*(kKx)\  on Υ. The whole proof
proceeds in complete analogy with that of [ 1 ], Theorem 1.4.1, except for one point: to
prove that there are no fixed components, one has to prove the following inequality.
Let Ε be the fixed part of Ι  Λ^π*^ ^ ) !· Then

( 2Nn*{kKx)  Κγ Ε)·Εφ0.

For β < NK, write Ε = β( π*Κχ) + F with F e {π'Κχ)1  in Pic Υ ® Q. Then

( 2Nn*(kKx)  KY E) E = (2Nk + 1   β)βΚ\    [J2a'fi +  F) ' F

> Nk •  βΚ\   

The first term in this sum is >  Nkr, since \βΚ\  =  Ε •  ( T,:*Kx/ r) is an integer. The
second term takes a minimum value \  (]T a,/ }) when F     \  ^Ta,/ 7,2. But

since  a,· < 1 and F} < 2k. Thus it is sufficient that the inequality Nkr  jkp(Y) > 0
holds; that is, N>p(Y)/ 2r.
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