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AMPLE WEIL DIVISORS ON K3 SURFACES
WITH DU VAL SINGULARITIES

VALERY ALEXEEV

0.1. The motivation of this paper comes from the study of Q-Fano varieties.
Q-Fanos are one of the classes of (singular) varieties that naturally appear in the
Minimal Model Program; see [KMM], [Ko-I, [Mr], or [W] for the introduction.

0.2. Nonsingular Fano varieties (i.e., varieties with the ample anticanonical class
Kx) with Picard number p(X) 1 were classified by G. Fano and V. A. Iskov-

skikh; see [I1], [12]. Among the first steps in this classification are the following.

(i) Find a smooth surface S in the anticanonical linear system I-Kxl (done in
[Sh]). By adjunction formula and Kodaira vanishing, it is a K3 surface.

(ii) Restrict I- Kxl on S. It is an ample linear system. Now use the following to
obtain the description of I-Kxl.

THEOREM 0.2.1 ([SD]). Let IDI be an ample complete system on a smooth K3
surface. Then DI is either free or has the single base component C of multiplicity
one and DI C + nEI where EI is an elliptic pencil.

0.3. For the singular Q-Fanos one can try to use the same approach. The first
difference is that, if X has a non-Gorenstein singularity, then locally in a neighbor-
hood of such a point a general element of I-Kxl should have Du Val singularity.
The second observation is that -Kx, restricted on S, is not a Cartier divisor any
more but only a Weil divisor such that its multiple is an ample Cartier divisor.

Therefore, we see that in order to work with the singular case we have to consider
a K3 surface with Du Val singularities and an ample Weil divisor on it.

0.4. Some results in the direction of 0.2.(i) are contained in [A]. Among them is
the following theorem.

THEOREM 0.4.1.
following is true.

Let X be a Q-Fano of degree d (-Kx)3 > 4. Then one of the

(i) A general element S 1-Kx[ has (not worse than) Du l/’al singularities;
(ii) X is birationally equivalent to another Q-Fano X1 such that a general element

S l-Kxl has Du Val singularities;

0.5. This paper gives some answers for the second half of 0.2. Here we study the
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question when IDI can have multiple base curves. The main result is the following
theorem.

THEOREM 2.3. Let D be an ample Well divisor on a K3 surface with Du Val
singularities and p(S) 1. Assume that one of the followin9 is true.

(i) D2> 12;
(ii) h(D) > 7.

Then the linear system DI does not have multiple base curves.

Both inequalities in (i) and (ii) are sharp.

Remark 0.6. A general K3 surface in I-Kxl on a nonsingular Fano variety X
with Picard number one also has Picard number one (by [Msh] and classificational
results [I1], [I2]). So the condition p(S) 1 does not seem to be unnatural.

In the case p(S) > 1 there are examples due to V. V. Nikulin IN] when D2 and
h(D) are arbitrarily large, but [D[ has base curves of multiplicity up to 5.

Remark 0.7. Theorem 2.3 might also help for 0.2.(i). Combined with other re-
sults, it can lead to a stronger statement than 0.4.1, possibly with other conditions
on the degree of X.

Remark 0.8. Lemma 1.8. below and part (i) of Theorem 2.3 with the estimate
D2 > 20 wer proved independently by V. V. Nikulin in IN]. The method of IN]
is to consider the base components of a linear system on the minimal desingulariza-
tion g of S, i.e. a usual smooth K3 surface; the method involves very hard computa-
tions with weighted graphs. See also [U].

1. Fixed curves on S

1.1. We restrict ourselves to the following situation.

(i) S is a K3 surface with Du Val singularities. In particular, Ds(Ks) Os and
hl(Os) O.

(ii) p(S) 1. In particular, any nonzero effective divisor D on S is ample.

We use the following two basic results.

FORMULA 1.2. (Riemann-Roch formula for surfaces with Du Val singularities;
JR, 9.1]).

D(D Ks) i(r- i)
.(Os(D)) z(Os) + 2 2

Here the summation goes over singular points. For a cyclic Du Val point (i.e., a
point of type A,), one has r n + 1, and the number 0 < < r 1 describes the
type of the divisor D at Q.

Every noncyclic point (i.e., of type D, or E,) corresponds to the "basket" of cyclic
points. For example, D4 splits into 4 points of type A1. It is essential that the
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correspondence between divisors and coefficients i Zr is a homomorphism of
groups.

THEOREM 1.3. (vanishing theorem of Kawamata and Viehweg; [KMM, 1-2-5]).
If a divisor D Kx is ample, then Hi(S, Ox(D)) 0 for > O.

LEMMA 1.4. Let S be a K3 surface with Du Val singularities and C be an effective
curve on S. Suppose that one of the followin9 conditions is true.

(i) C is connected and reduced, or
(ii) rk Pie S 1.

Then h(Os(C))= pa(C) + 1.

COROLLARY 1.5. For a connected and reduced curve C h(Os(C)) 1 if and only
if C is a tree of nonsinoular rational curves.

Proof of Lemma 1.4. It is almost the same as for the nonsingular case. One has
the exact sequence

o - i - o - oc - o

where I is the ideal sheaf of the curve C. By the definition it is the ideal of functions
vanishing on C, i.e., Os(-C)and

z(os(c)) zs(Os(-c))

(o)- (o)

2 (1 pa(C)) 1 + Pa(C).

A little secret of these formulas that look almost like a tautology is that, for a
function f(i) i(r i)/2r, one has f(i) f(r i).
Now by duality h2(Os(C)) h(Os(-C)) 0. Ifrk Pie(S) 1, then hl(Os(C)) 0

by the vanishing theorem, Theorem 1.3. In case (i), one has h(Oc) 1, and by the
same exact sequence

h(O(C)) h(Os(-C)) h(Oc) h(O) O.

Therefore,

h(Os(C)) z(Os(C)) Pa(C) + 1.

From now on we suppose that p(S) 1.

1.6. For purposes that will be explained below, let us introduce the functions

r-1

f(k)
k(r- k)

2r
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f-(k) k(r- k______), and
2r

h(k) f(k) f(k),

where k is the residue of k modulo r. One can easily see that f(k) f(k + r) k.
Therefore, if 0 < k < r, then

h(k) O,

h(k + r)= k,

h(k + 2r) k + (k + r), etc.

1.7. Let C be a smooth rational curve on S. Suppose that C passes through
several singular points and (rl, il)... (rs, is) is the corresponding "basket" of cyclic
singularities as in Formula 1.2. Symbols (r, i) and (r, r i) denote the same singu-
larities up to choosing another generator in the group Z,. Hence, we can always
assume that 2i < r.
By Corollary 1.5, h(C) 1. The Riemann-Roch formula, 1.2, and the vanishing

theorem, 1.3, give
C2

2 + f(i)= 1. (1)

Similarly, if h(nC) 1, n > 1, then

C2

2+n2 f(ni) 1. (n)

LEMMA 1.8. (i) h(2C) 1/f and only if
(a) s 3 and i 2 3 1,
(b) s 2 and i 1, 2 2,
(c) s=landi=3;

(ii) h(3C) 1/f and only if
in case (a), rx 2, r2 >/3,
in case (b), rl 2, r2/> 6;

(iii) h(4C) 1/f and only if
in case(a),r= 2, r2= 3, r3>4;

(iv) h(5C) 1/f and only if h(4C) 1;
(v) h(6C) > 1 for any case.

Proof.
to

Eliminating C2 from (1) and (n), we see that the formula (n) is equivalent

n(n 1)
2

i= (n2 1) + h(ni). (n*)
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With our assumptions (see 1.7), h(2i) 0; so the condition h(2C) 1 is equiva-
lent to

and we get (i). It is an easy exercise to get (ii)-(v) from (3*)-(6*).

1.9. Note that, since p(S) 1, C2 > 0; so, from (1), one has

This is an additional condition on rl, r2, r3. For example, in case 1.8(i)(a),

1

2. Base curves in linear systems

2.1. Let DI be an arbitrary nonempty system on S. Suppose that DI has a base
component C (which is a smooth rational curve) of multiplicity at least 2;
so h(D) h(D C) h(D 2C). Let us denote by 0 < ml < rx... 0 < ms < rs
invariants corresponding to the "basket" of cyclic singularities and the divisor
D- 2C, as in 1.2. Then by the Riemann-Roch formula, 1.2, and the vanishing
theorem, 1.3,

D2

h(D) 2 + --- f(m + 2i), (d)

(D C)2h(D C)= 2 + 2
f(m + i), (dl)

(D- 2C)2h(D 2C)= 2 + 2
f(m). (d2)

From equalities (d), (dl), and (1), one can find that

DC -1 + f(m + 2i)+ f(i) f(m + i).

Similarly, from (d), (d2), and (2),

2DC 1 + f(m + 2i) + f(2i) f(m).

(dc)

(2dc)
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Eliminating DC in (dc) and (2dc), one gets

f(m + 2i) + f(m) + 2f(i)- 2f(m + i) f(2i) 1.

It is easy to verify that for the function f (not f-) one has f(m + 2i) + f(m) + 2f(i)
2f(m + i) f(2i) 0.

Therefore, with our assumptions on and m we get the final equality

h(m + 2i)- 2h(m + i)= 1. (**)

THEOREM 2.2. Suppose that C is a base curve in DI of multiplicity at least 2. 7hen
in the previous notations (see Lemma 1.8) one has

in case (a), m rl 1, mz < rz 2, m3 < r3 2;
in case (b), either ml r 1, m2 < r 4,

or m < r 2, m2 r2 3,
or m r 2, m2 r2 1;

in case (c), either m rl 5 or m r 1.

Proof. By the definition of function h(k), one has

f
h(m + 2i)=

m+2i-r
if m+2i<r
if m+2i>r

and

y 0 if m + < r
h(m + i)

m+i-r if m+i>r.

So

h(m + 2i)- 2h(m + i)=

0 if m+2i<r

m+2i-r if m+2i>r and m+i<r

r-m if m+2i>r and m+i>r.

Finally, (**) easily implies the statement.

Now we are ready to prove the main theorem.

THEOREM 2.3. Let D be an ample Weil divisor on a K3 surface S with Du Val
singularities and p(S) 1. Assume that one of the following is true.
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(i) D2> 12,25"
(ii) h(D) > 7.

Then the linear system DI does not have multiple base curves.

Proof. Suppose that we are in case (a) of 1.8 and 2.2. So, we have 3 cyclic
singularities and il i2 i3. From (1) one has

1C2=

From this equality and (dc), one has the expression for D2

f(m + 2)-f(m+l)+

It is easy to see that f(m + 2) f(m + 1) has the maximal value when rn r 1,
and the next value for m 0. Therefore, in the conditions of Theorem 2.2 the
maximum of D2 is achieved for m rl 1, m2 m3 0 and is equal to

(2(1-) + 1)2

1

It is fairly easy to see that this maximum is achieved for rx 2, r2 3, and ra 7,
and is equal to ] 2512. Cases (b) and (c) are checked by similar (but easier)
arithmetical calculations.
The maximum for the expression (d) for h(D) is also achieved in the same case

and is equal to 7.

The following example shows that inequalities in Theorem 2.3 are sharp.

Example 2.4. It is not difficult to construct a nonsingular K3 surface S with a
set of (- 2)-curves that generate Pic(S) (R) Q and form the following graph (E9).

After the contraction of curves corresponding to the black vertices, we get a K3
surface S with Du Val singularities and p(S) 1; the image of the white vertex is a
smooth rational curve C on S, passing through 3 cyclic singular points with in-
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variants (2, 1), (3, 1), (7, 1). Now the linear system IDI 123CI satisfies all conditions
of Theorem 2.2; therefore, h(23C) h(22C) h(21C).

[A]
[I1]

[12]
[KMM]

[Ko]
[Msh]
[Mr]

[SD]
[Sh]

[u]
[w]

REFERENCES

V. ALEXEEV, General elephants for Mori fiber spaces, preprint, 1991.
V. A. ISKOVSKIH, Fano threefolds, I, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), 516-562; II,

42 (1978), 506-549.
Lectures on algebraic threefolds, Fano varieties, Moscow University, 1988.

Y. KAWAMATA, K. MATSUDA, AND K. MATSUKI, "Introduction to the minimal model prob-
lem" in Algebraic Geometry, Sendal, 1985, Adv. Stud. Pure Math. 10, Kinokuniya,
Tokyo, 1987, 283-360.

J. KOLLAR, Flips, flops, minimal models, etc., preprint, 1990.
B. G. MOISrlEZON, Algebraic classes of homolooies, Math. USSR-Izv. 1 (1967), 225-268.
S. MORI, "Classification of higher dimensional varieties" in Aloebraic Geometry, Bowdoin,

1985, Proc. Sympos. Pure Math. 46 (1987), 269-332.
V. V. NIKULIN, Linear systems on singular K3 surfaces, preprint, 1990.
M. REID, "Young person’s guide to canonical singularities" in Algebraic Geometry, Bowdoin,

1985, Proc. Sympos. Pure Math. 46 (1987), 345-416.
B. SAINT-DONAT, Projective models of K3 surfaces, Amer. J. Math. 96 (1974), 602-639.
V. V. SnOKUROV, Smoothness of a general anticanonical divisor on a Fano variety, Izv. Akad.

Nauk USSR 14 (1980), 395-405.
T. URAaE, Fixed components of linear systems on K3 surfaces, preprint, 1990.
P. M. H. WILSON, Toward a birational classification of alaebraic varieties, Bull. London Math.

Soc. 19 (1987), 1-48.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH 84112


