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AMPLE WEIL DIVISORS ON K3 SURFACES
WITH DU VAL SINGULARITIES

VALERY ALEXEEV

0.1. The motivation of this paper comes from the study of Q-Fano varieties.
Q-Fanos are one of the classes of (singular) varieties that naturally appear in the
Minimal Model Program; see [KMM], [Ko], [Mr], or [W] for the introduction.

0.2. Nonsingular Fano varieties (i.e., varieties with the ample anticanonical class
— K) with Picard number p(X) = 1 were classified by G. Fano and V. A. Iskov-
skikh; see [I1], [12]. Among the first steps in this classification are the following.

(i) Find a smooth surface S in the anticanonical linear system | — K| (done in
[Sh]). By adjunction formula and Kodaira vanishing, it is a K3 surface.

(i) Restrict | — K| on S. It is an ample linear system. Now use the following to
obtain the description of | — K x|.

THEOREM 0.2.1 ([SD]). Let |D| be an ample complete system on a smooth K3
surface. Then |D| is either free or has the single base component C of multiplicity
one and |D| = C + |nE| where |E| is an elliptic pencil.

0.3. For the singular Q-Fanos one can try to use the same approach. The first
difference is that, if X has a non-Gorenstein singularity, then locally in a neighbor-
hood of such a point a general element of | — K| should have Du Val singularity.
The second observation is that — Ky, restricted on S, is not a Cartier divisor any
more but only a Weil divisor such that its multiple is an ample Cartier divisor.

Therefore, we see that in order to work with the singular case we have to consider
a K3 surface with Du Val singularities and an ample Weil divisor on it.

0.4. Some results in the direction of 0.2.(i) are contained in [A]. Among them is
the following theorem.

THEOREM 0.4.1. Let X be a Q-Fano of degree d = (—Ky)* > 4. Then one of the
Sollowing is true.

(i) A general element S € | — K| has (not worse than) Du Val singularities;
(i) X is birationally equivalent to another Q-Fano X, such that a general element
S € | —Ky,| has Du Val singularities;

0.5. This paper gives some answers for the second half of 0.2. Here we study the
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question when |D| can have multiple base curves. The main result is the following
theorem.

THEOREM 2.3. Let D be an ample Weil divisor on a K3 surface with Du Val
singularities and p(S) = 1. Assume that one of the following is true.

(i) D*>>1223;

(ii) K°(D) > 7.

Then the linear system |D| does not have multiple base curves.
Both inequalities in (i) and (ii) are sharp.

Remark 0.6. A general K3 surface in | — K4| on a nonsingular Fano variety X
with Picard number one also has Picard number one (by [Msh] and classificational
results [I1], [12]). So the condition p(S) = 1 does not seem to be unnatural.

In the case p(S) > 1 there are examples due to V. V. Nikulin [N] when D? and
h°(D) are arbitrarily large, but | D| has base curves of multiplicity up to 5.

Remark 0.7. Theorem 2.3 might also help for 0.2.(i). Combined with other re-
sults, it can lead to a stronger statement than 0.4.1, possibly with other conditions
on the degree of X.

Remark 0.8. Lemma 1.8. below and part (i) of Theorem 2.3 with the estimate
D? > 20 were proved independently by V. V. Nikulin in [N]. The method of [N]
is to consider the base components of a linear system on the minimal desingulariza-
tion S of S, i.. a usual smooth K3 surface; the method involves very hard computa-
tions with weighted graphs. See also [U].

1. Fixed curves on S

1.1. We restrict ourselves to the following situation.

(@) S is a K3 surface with Du Val singularities. In particular, Dg(Kg) ~ Og and
h'(0s) = 0.
(i) p(S) = 1. In particular, any nonzero effective divisor D on S is ample.

We use the following two basic results.

FormuLA 1.2. (Riemann-Roch formula for surfaces with Du Val singularities;
[R, 9.1]).

DD —Ks) < i(r—i)
2 -2 2

Q

x(0s(D)) = x(0s) +

Here the summation goes over singular points. For a cyclic Du Val point (i.e., a
point of type A4,), one has r = n + 1, and the number 0 < i < r — 1 describes the
type of the divisor D at Q.

Every noncyclic point (i.e., of type D, or E,) corresponds to the “basket” of cyclic
points. For example, D, splits into 4 points of type A,. It is essential that the



AMPLE WEIL DIVISORS ON K3 SURFACES 619
correspondence between divisors and coefficients i € Z, is a homomorphism of
groups.

THEOREM 1.3. (vanishing theorem of Kawamata and Viehweg; [KMM, 1-2-5]).
If a divisor D — Ky is ample, then H'(S, Ox(D)) = 0 for i > 0.

LEMMA 1.4. Let S be a K3 surface with Du Val singularities and C be an effective
curve on S. Suppose that one of the following conditions is true.

(i) C is connected and reduced, or
(ii) rk PicS = 1.

Then h°(05(C)) = py(C) + 1.

COROLLARY 1.5.  For a connected and reduced curve C h°(05(C)) = 1 if and only
if C is a tree of nonsingular rational curves.

Proof of Lemma 1.4. 1t is almost the same as for the nonsingular case. One has
the exact sequence

0""1“"05“’0(:‘-’0

where I is the ideal sheaf of the curve C. By the definition it is the ideal of functions
vanishing on C, i.e., Og(— C) and

x(0s(C)) = x5(0s(—C))
= x(0s) — 2(0¢)
=2—(1 = p,(C)) =1 + p,(C).

A little secret of these formulas that look almost like a tautology is that, for a
function f(i) = i(r — i)/2r, one has f(i) = f(r — i).

Now by duality h?(0g(C)) = h°(Os(— C)) = 0. If rk Pic(S) = 1, then h'(04(C)) = 0
by the vanishing theorem, Theorem 1.3. In case (i), one has h°(O.) = 1, and by the
same exact sequence

h'(05(C)) = h*(0s(— C)) = h°(Oc) — h°(05) = 0.
Therefore,
h°(05(C)) = x(05(C)) = po(C) + 1. o
From now on we suppose that p(S) = 1.
1.6. For purposes that will be explained below, let us introduce the functions

k(r — k)
2r

flk) =
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Tty =0

s and

hik) = f(k) - f(k),

where k is the residue of k modulo r. One can easily see that f(k) — f(k + r) = k.
Therefore, if 0 < k <r, then

h(k) =0,
hk +r) =k,
hk+2r)=k+ (k+71), etc.

1.7. Let C be a smooth rational curve on S. Suppose that C passes through
several singular points and (ry, i,)...(r,, i;) is the corresponding “basket” of cyclic
singularities as in Formula 1.2. Symbols (r, i) and (r, r — i) denote the same singu-
larities up to choosing another generator in the group Z,. Hence, we can always
assume that 2i <r.

By Corollary 1.5, h°(C) = 1. The Riemann-Roch formula, 1.2, and the vanishing
theorem, 1.3, give

C2
2+7—Zf(i)=1. 1))
7

Similarly, if h°(nC) = 1, n > 1, then

2+n2—C;—Zf(ni)=1. (n)
0

LemMma 1.8. (i) h°(2C) = 1 if and only if
@ s=3andi, =i, =iy =1,
(b) s=2andi,=1,i,=2,
(c) s=1landi, =3;
(ii) h°3C) = 1 if and only if
in case (a),r, =2,r, = 3,
in case (b),r; =2,r, = 6;
(iii) h°(4C) = 1 if and only if
incase(a),r, = 2,r, = 3,r; > 4;
(iv) h°(5C) = 1 if and only if h°(4C) = 1;
(v) h°(6C) > 1 for any case.
Proof. Eliminating C? from (1) and (n), we see that the formula (n) is equivalent
to

y 5 Di— 2 = 1)+ ¥ hni). (n*)
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With our assumptions (see 1.7), h(2i) = 0; so the condition h°(2C) = 1 is equiva-
lent to

Yi=3,

and we get (i). It is an easy exercise to get (ii)—(v) from (3*)-(6*). a

1.9. Note that, since p(S) = 1, C? > 0; so, from (1), one has

Zi(r—i)<2.

r

This is an additional condition on r,, r,, r;. For example, in case 1.8(i)(a),

1

Z;<1.

2. Base curves in linear systems

2.1. Let |D| be an arbitrary nonempty system on S. Suppose that |D| has a base
component C (which is a smooth rational curve) of multiplicity at least 2;
so h°(D) = h°(D — C) = h°(D — 2C). Let us denote by 0 < m; <r,...0 <my <,
invariants corresponding to the “basket” of cyclic singularities and the divisor
D — 2C, as in 1.2. Then by the Riemann-Roch formula, 1.2, and the vanishing
theorem, 1.3,

D? —
h°(D)=2+7—Zf(m+2i), (d)
hO(D —C)= (D C)2 — Zf(m + i), d1)
2
o —20=2+L2Y 5 fom. (@)

From equalities (d), (d1), and (1), one can find that
= —1+Y fim+ 2i) + f(i) — f(m + i). (do)
Similarly, from (d), (d2), and (2),

2DC = —1+ Y f(m + 2i) + f(2i) — f(m). (2dc)
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Eliminating DC in (dc) and (2dc), one gets
Y. fm + 2i) + f(m) + 2f() — 2f(m + i) — f(2i) = 1.

It is easy to verify that for the function f (not f) one has f(m + 2i) + f(m) + 2f(i) —
2f(m + i) — f(2i) = 0.

Therefore, with our assumptions on i and m we get the final equality

EQ; h(m + 2i) — 2h(m + i) = 1. (**)

THEOREM 2.2. Suppose that C is a base curve in | D| of multiplicity at least 2. Then
in the previous notations (see Lemma 1.8) one has

incase(@Q),m, =r,— 1, my<r,—2,my<ry—2;

in case (b), eitherm, =r—1,m, <r—4,
ormy <ry—2,my=r,—3,
ormy=r,—2,my=r,—1;

in case (c), eitherm, =r, — Sorm, =r, — 1.

Proof. By the definition of function h(k), one has

. 0 if m+2<r
h('”+2')‘{m+2i—r if m+2izr
and
, 0 if m+i<gr
h(m+l)—{m+i—r if m+i>r.
So

0 if m+2<r
him+2i)—2hm+i)= < m+2i—r if m+2izr and m+i<r
r—m if m+2izr and m+i>r.

Finally, (**) easily implies the statement. O

Now we are ready to prove the main theorem.

THEOREM 2.3. Let D be an ample Weil divisor on a K3 surface S with Du Val
singularities and p(S) = 1. Assume that one of the following is true.
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(i) D? > 1233;
(i) K°(D) > 7.
Then the linear system |D| does not have multiple base curves.

Proof. Suppose that we are in case (a) of 1.8 and 2.2. So, we have 3 cyclic
singularities and i; = i, = i;. From (1) one has
1
Cl=1-Y-.
z r
From this equality and (dc), one has the expression for D?
_ - 1 1\?
Yfm+2)—fm+1)+-1-Y -
D? = 2 r
1 .

1%

It is easy to see that f(m + 2) — f(m + 1) has the maximal value whenm = r — 1,
and the next value for m = 0. Therefore, in the conditions of Theorem 2.2 the
maximum of D? is achieved for m = r, — 1, m, = m; = 0 and is equal to

o Cl-5)5)

1
-3

It is fairly easy to see that this maximum is achieved forr; = 2,r, = 3,andr; =7,
and is equal to 23 = 1223, Cases (b) and (c) are checked by similar (but easier)
arithmetical calculations.

The maximum for the expression (d) for h°(D) is also achieved in the same case
and is equal to 7.

The following example shows that inequalities in Theorem 2.3 are sharp.

Example 2.4. 1t is not difficult to construct a nonsingular K3 surface §~with a
set of (—2)-curves that generate Pic(S) ® Q and form the following graph (E,).

*Oe—0—0—0—0—0—0—0—0

After the contraction of curves corresponding to the black vertices, we get a K3
surface S with Du Val singularities and p(S) = 1; the image of the white vertex is a
smooth rational curve C on S, passing through 3 cyclic singular points with in-
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variants (2, 1), (3, 1), (7, 1). Now the linear system | D| = |23C]| satisfies all conditions
of Theorem 2.2; therefore, h°(23C) = h°(22C) = h°(21C).
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