Real Analysis Preliminary Examination Spring, 1997

DO ANY 9 PROBLEMS.

Note: Throughout the exam, $L^1(R)$ and $L^2(R)$ refer, respectively, to the space of integrable and square integrable functions on the real line, with respect to Lebesgue measure.

- 1. (a) Prove that the uniform limit of a sequence of continuous real-valued functions on [0,1] is continuous.
 - (b) Give an example of a sequence f_n of continuous real-valued functions on [0,1] such that f_n converges pointwise to a discontinuous function f on [0,1].
 - (c) Give an example of a sequence f_n of continuous real-valued functions on [0,1] such that f_n converges pointwise, but not uniformly, to a continuous f on [0,1].

2. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$

- (a) Define "f is differentiable at $p_o = (x_o, y_o)$ "
- (b) Prove that if f is differentiable at p_o , then the partial derivative $\left(\frac{\partial f}{\partial x}\right)_{p_o}$ exists.
- (c) Give an example of $f: U \to \mathbb{R}^2$, where U is a non-empty open subset of \mathbb{R}^2 , such that f is continuously differentiable on U, with non-vanishing Jacobian, but f is not 1-1 on U.
- 3. Assume the functions f(t) and tf(t) are in $L^1(R)$. Let $g(x) = \int_{-\infty}^{\infty} f(t)e^{ixt} dt$. Show that g'(x) exists, and that $g'(x) = \int_{-\infty}^{\infty} f(t)ite^{ixt} dt$.
- For A, B ⊂ R, let A + B = {a + b | a ∈ A, b ∈ B}. Let I_n be the open interval (-1/n, 1/n). Denote Lebesgue measure on R by m. Prove that if C is a compact subset of R, with m(C) > 0, then
 - (a) for each $n, C + I_n$ is measurable
 - (b) for some n, $m(C + I_n) < 2m(C)$.

EAL

- 5. Let $f \in L^1(R)$, and for $y \in R$, let $f_y(x) = f(x y)$. Prove that $\lim_{y\to 0} \|f_y f\|_1 = 0$.
- 6. Let μ and ν be finite, positive measures on a measurable space (X, β) .
 - (a) Show that μ is absolutely continuous with respect to $\mu + \nu$.
 - (b) Explain how to find the Radon-Nikodym derivative of μ with respect to $\mu + \nu$.
- 7. Let $f,g \in L^1(R)$. Give a careful argument that the integral

$$\int_{R} f(t)g(x-t)\,dt$$

exists for almost all x, and defines an integrable function of x on R (with respect to Lebesgue measure).

- 8. Prove that a normed linear space X is a Banach space if and only if, for each sequence x_n in X with $\sum_{n=1}^{\infty} ||x_n|| < \infty$, there exists $x \in X$ such that $x = \lim_{n \to \infty} \sum_{i=1}^{n} x_i$.
- 9. Let C be the space of all sequences $\{a_n\}$ of real numbers for which $\lim_{n\to\infty} a_n$ exists, and let l^{∞} be the space of all bounded sequences, with the sup norm.
 - (a) Prove that there exists $\Phi \in (l^{\infty})'$ such that on C, $\Phi(\{a_n\}) = \lim_{n \to \infty} a_n$
 - (b) Prove that Φ is not of the form $\Phi(\{a_n\}) = \sum_{i=1}^{\infty} a_n b_n$ for any sequence $b_n \in l^1$.
- 10. Let $f_n \in L^2(R)$ such that for each $g \in L^2(R)$, $\int f_n(x)g(x) dx$ converges, as $n \to \infty$. Prove that there exists $f \in L^2(R)$ such that $\int f_n(x)g(x) dx \to \int f(x)g(x) dx$, as $n \to \infty$, for all $g \in L^2(R)$.