Work three problems from each Section. All functions are real-valued. Unless specified otherwise, integrals are to be taken with respect to Lebesgue measure, denoted m.

Section A

1. Suppose A and B and non-empty subsets of \mathbb{R} satisfying $x \leq y$ for all $x \in A$ and $y \in B$. Prove that $\sup A \leq \inf B$.

2. Suppose the sequence $\{f_n\}_{n \in \mathbb{N}}$ in $C[0,1]$ converges uniformly to a function g. Prove that the family $\{f_n : n \in \mathbb{N}\}$ is equicontinuous.

3. State and prove a version of the chain rule for functions mapping \mathbb{R}^n into itself.

4. Suppose $f : \mathbb{R} \to \mathbb{R}$ is bounded, but not necessarily measurable and define $g : \mathbb{R} \to \mathbb{R}$ by $g(x) = \limsup_{y \to x} f(y)$. Prove that g is Lebesgue measurable.

Section B

1. Suppose $f : \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable with $\int (1 + x^2) |f(x)| \, dm(x) < \infty$. Define $F : \mathbb{R} \to \mathbb{R}$ by $F(t) = \int f(x) \ln(1 + t^2 x^2) \, dm(x)$. Prove that F is well-defined and differentiable and find a formula for F'.

2. Prove that if $f, g \in L^2(m)$, then their convolution $f * g$ is uniformly continuous on \mathbb{R}.

3. Suppose μ and ν are finite measures on the same measurable space (X, B). Prove that the following are equivalent.

 (i) ν is absolutely continuous with respect to μ.

 (ii) For each $\epsilon > 0$ there is a $\delta > 0$ such that $\nu(E) < \epsilon$ whenever $\mu(E) < \delta$.

4. Equip $X = Y = [0,1]$ with the σ–algebra of Borel sets and the two measures $\mu = m$ = Lebesgue measure and ν = counting measure. Prove that $(\mu \times \nu)\Delta = \infty$ where $\Delta = \{(x,y) \in [0,1] \times [0,1] : x = y\}$. Then explain the relevance of this example to the Fubini and Tonelli Theorems.

Section C

1. Define a linear functional ϕ on $C[0,1]$ by $\phi(f) = 3f(1) - 2f(0) + \int_0^1 f \, dm$. Compute the norm of ϕ and justify your answer.

2. Show that if the dual X^* of a Banach space X is separable, then X is also separable.

3. Suppose M, N are closed subspaces of a Banach space X with $M + N = X$ and $M \cap N = \emptyset$. Prove that there is a constant C such that $\|x + y\| \geq C\|x\|$ for all $x \in M, y \in N$.

4. Suppose $\{f_n\} \subset C[0,1]$ with $\sup \int |f_n| = \infty$. Prove that there is a function $g \in L^\infty[0,1]$ satisfying $\sup \int f_n g \, dm = \infty$.

Tydefset by AaS-Tex