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Introduction: 
In the first chapter of these notes we discuss the concept of dimension of a vector 
space over a field k, in particular what a basis is, as well as the constructions of 
product spaces and quotient spaces.  After those fundamentals, the next concept is 
that of a linear transformation, or linear map, between two vector spaces, for 
example the operation of differentiation from the space of smooth real valued 
functions to itself.  Our principal goal is to understand the structure of an arbitrary 
linear transformation of a finite dimensional space to itself, the subject of chapters 
3 and 4.  The key to answering this question is the “minimal polynomial” satisfied 
by a linear operator T on a finite dimensional space, i.e. the unique monic 
polynomial f of least degree over k such that f(T) = the zero operator.  (The fact 
that on a finite dimensional space, the space of linear operators is also finite 
dimensional, implies there must be a linear relation among the infinitely many 
powers Tm of T, hence T satisfies some polynomial relation f.)

The model example of a linear operator in finite dimensions is the transformation 
T defined by multiplication by X, on the quotient space k[X]/(f) where f = a0+a1X
+...+an-1Xn-1 + Xn  is a monic polynomial of degree n. This space has natural 
basis 1, X, X2,..., Xn-1, and the map T permutes these basis vectors “cyclically”, 
i.e. 1 is sent to X, X is sent to X2, ..., until the last one Xn-1, is sent to Xn, which 
in the quotient space equals the following linear combination of the basis vectors: 
-a0 - a1X -a2 X2 -.... -an-1Xn-1.  The minimal polynomial of this operator is just f, 
since f is the polynomial of lowest degree such that f(T), i.e. multiplication by 
f(X), is identically zero.  Remarkably, this simple example is universal for all linear 
transformations in finite dimensions.  Indeed the structure theorem proved in 
chapter 2 implies that every linear transformation T on a finite dimensional space 
V is isomorphic to a product of these models, where the polynomials f are factors 
of the minimal polynomial of T on all of V.  Thus determining the minimal 
polynomial of a given transformation is a crucial step in understanding that 
operator.

The question of how to find the polynomials f associated to the decomposition of 
an operator T, in particular the minimal polynomial, is answered by the concept of 
a “characteristic matrix” for T.  Briefly, given a basis for the n dimensional space 
V, the operator T:V-->V is represented by an nxn matrix A with entries in the field 
k, and the characteristic matrix in this basis, is the matrix of polynomials [X.I-A].  



Diagonalizing this matrix yields the polynomials f associated to the model 
examples above describing T.  

If the diagonal entries are chosen to be monic and to successively divide each 
other, as may be done, then they are unique and the last one, the one of largest 
degree, is the minimal polynomial.  In particular this diagonalized matrix is 
independent of the basis chosen to form A.  I.e. although choosing a different basis 
for V will usually give a different matrix A for the operator T, and hence also a 
different characteristic matrix [X.I-A], after diagonalizing so that the diagonal 
entries are monic and successively divide each other, we always get the same 
diagonal matrix.  In particular, the product of the diagonal entries, which equals the 
determinant of the characteristic matrix [X.I-A], is independent of choice of basis, 
and is called ch,A(X) = the “characteristic polynomial” of T.  By the divisibility 
condition, ch,A(X) has the same irreducible factors as the minimal polynomial, but 
possibly with higher multiplicities; in particular the characteristic polynomial is a 
multiple of the minimal polynomial (“Cayley - Hamilton theorem”).

If we can factor ch,A(X) completely into irreducible factors, we can describe T in 
terms of models where each polynomial f is a power of an irreducible polynomial.  
This factorization, although always theoretically possible, may not be feasible in 
practice.  But at least in theory, over an algebraically closed field like the complex 
numbers, we can thus assume each polynomial f is (X-c)n , for c a constant.  Then 
the preferred basis for the model space k[X]/(f) is the set {1, (X-c),..., (X-c)n-1}, 
i.e. powers of (X-c) instead of powers of X. 

Since we have set f(T) = (T-c)^n = 0, in this basis the map T = X = c + (X-c), is the 
sum of the scalar multiplier c, plus the “nilpotent” operator multiplication by (X-c).  
T thus sends each basis vector, except the last, to c times itself plus the next basis 
vector, and sends the last vector just to c times itself.  In this basis the matrix is 
said to be in "Jordan form".  It is often of theoretical value to know that a Jordan 
form exists even if it cannot be explicitly computed.

The simplest Jordan matrix is a diagonal matrix.  This simplest case occurs when 
the minimal polynomial not only factors completely into linear factors like (X-c), 
but when every such factor occurs in the minimal polynomial with exponent n = 1.  
The map T is then a product of copies of multiplication by X on spaces of form 
k[X]/(X-c).  Thus the space V is a product of subspaces on each of which the map 
T is just multiplication by some constant c. These are called diagonalizable maps, 
and fortunately there exist useful criteria to recognize these maps in some special 
cases, without having to actually carry out the factorization of the minimal 



polynomial.  The simplest of these criteria, over the real number field, is when the 
matrix for the map is “symmetric” about the main diagonal.  This phenomenon 
occurs because such matrices not only have eigenvectors, but also preserve 
perpendicularity, hence are orthogonally diagonalizable.  Matrices that are not 
symmetric but are “length preserving”, the so called “rigid motions”, also preserve 
perpendicularity but may not have eigenvectors.  These may not be diagonalizable, 
but can be expressed as combinations of mutually orthogonal rotations and 
reflections.  These criteria, called "spectral theorems", are discussed in chapter 5.

To summarize, given a linear operator T on a finite dimensional k-vector space V, 
V has a decomposition into a product of subspaces on each of which T is 
isomorphic to the action of multiplication by X on a quotient space k[X]/(f).  These 
subspaces can be chosen so that the corresponding sequence of monic polynomials 
f1,...,fr successively divide each other, and when this is done the sequence of 
polynomials is uniquely determined by T.  This, the so called “invariant factor 
decomposition”, can be computed by hand from any matrix for T.  Two operators 
S,T on the same space are “similar”, i.e. T = (U^-1)SU for some invertible operator 
U, if and only if S,T have the same invariant factors.

A second standard decomposition exists where the polynomials f in the model 
spaces are all powers of irreducible polynomials.  For this decomposition, the 
sequence of polynomials is again uniquely determined by T, except for a chosen 
ordering of the irreducible polynomials.  This decomposition, called the 
“generalized Jordan decomposition”, always exists in theory, but can be computed 
in practice only for those examples where the irreducible factors of the minimal 
polynomial of T can actually be found, e.g. for a “triangular” matrix.

A special case of the Jordan decomposition occurs precisely when the minimal 
polynomial factors completely into distinct linear factors  Then the Jordan form, 
which may or may not be effectively computable, is a diagonal matrix.  This is 
always the case when the matrix consists of real entries which are symmetric about 
the main diagonal.

Finally, in the appendix we recall some properties of determinants.



Chapter One: Linear spaces and linear maps, theory of dimension
Linear algebra is about linear spaces or vector spaces, and linear maps, (also called 
linear operators, or linear transformations), between them.  The first topic is 
therefore linear spaces.  Vector spaces make sense over any “field” of scalars, i.e. 
any reasonable number system with commutative addition and multiplication, and 
where division is possible by all non zero elements.   For simplicity we discuss 
mostly vector spaces defined over the field R of real numbers.  In some proofs we 
will exploit the fact that if k is any field and f is an irreducible polynomial over k, 
then the quotient space k[X]/(f), defined below, is a field larger than k and to which 
a root of the polynomial f(X) has been adjoined.  E.g. the field R[X]/(X^2+1) is 
essentially the field of complex numbers, since in this quotient field X^2 +1 = 0, so 
that X plays the role of i, a square root of -1.

Defn: A (real) vector space V, is a set V of "vectors" closed under addition, and 
closed under “scalar” multiplication of vectors by real numbers, such that V is an 
“abelian group” under addition (the usual properties hold, like associativity, 
commutativity and existence of a zero and negatives), and has the usual properties 
under scalar multiplication (multiplication by 1 acts as the identity, multiplication 
distributes over addition, and a(bv) = (ab)v if a,b, are numbers and v is a vector). 

Eg: The basic example is Rn, ordered n - tuples (v1,...,vn) of real numbers vi, with 
component - wise addition and multiplication: (v1,...,vn) + (w1,...,wn) = (v1+w1, 
v2+w2,...,vn+wn), a(v1,...,vn) = (av1,...,avn).  
  
Other important examples are the space R[X] of polynomials in one variable with 
real coefficients, and the space Diff(R) of differentiable real valued functions 
defined on the real line.

Defn:  A “subspace” of V is a non empty subset W of V, which is closed under 
addition and scalar multiplication.  In particular W is also a vector space.

E.g. If V = Rn, the subspace W might be the subset of all (v1,...,vn) such that v1+...
+vn = 0, and if V = Diff(R), W might be those f with f(0) = f’(0) = 0.

The space Diff(R) is a subspace of the space C(R) of continuous functions on R.  
The set of solutions of the differential equation f’’+f = 0 is the subspace of the 



space Diff(R), consisting of functions of form a.sin(t) + b.cos(t).

Defn: Given a subspace W of V, we define a new vector space V/W, the “quotient” 
of V by W, by identifying two vectors u,v in V provided u-v lies in W.  Addition is 
defined by setting [u] + [v] = [u+v], and c[v] = [cv], where [v] denotes the 
equivalence class of the vector v.

E.g. if V = Rn, and W is those (v1,...,vn) with v1+...+vn = 0, then two vectors are 
equivalent iff their difference has coefficients which sum to zero.  Thus two vectors 
are equivalent if their coefficients have the same sum, so each equivalence class 
corresponds to a real number, the common sum of the coefficients of vectors in that 
class.  I.e. V/W is essentially R, where the equivalence class of (v1,...,vn) 
corresponds to the real number v1+...+vn .
  
Similarly, if V = Diff(R), and W is those f with f(0) = f’(0) = 0, then V/W is 
essentially R2, where the equivalence class [f] corresponds to the pair of real 
numbers (f(0), f’(0)).  

Rmk: The precise meaning of “essentially” above, is given by the notion of 
isomorphism below.

Defn: For any two vector spaces V,W we define a new space VxW, the “direct 
product” or simply “product” of V and W, consisting of all ordered pairs (v,w) with 
v in V and w in W.  Addition and multiplication are defined on components 
separately.  Similarly V1x...xVn is defined as the set of n tuples whose ith element 
is a vector in Vi.  

E.g.  RxR is precisely R2 = the product of two copies of the real numbers, and 
Rx...xR (n factors), is just Rn.

We define next a way to compare two vector spaces to see when they are 
essentially the same.  

Defn: A map T:V-->W from V to W, (vector spaces over the same field F), is 
linear if T(x+y) = T(x)+T(y) for all x,y, in V, and if also T(ax) = aT(x) for all x in 
V and all real numbers a.

Defn:  The composition of two linear maps T:V-->W, and S:W-->U, is the map 
(SoT):V-->U, such that (SoT)(x) = S(T(x)) for all x in V.



Ex. The composition of two linear maps is also linear.

Defn: An isomorphism is a linear map T:V-->W with a (2-sided) linear inverse 
S:W-->V.   I.e. S and T are both linear and S(T(x)) = x for all x in V, and T(S(y)) = 
y for all y in W.  S is then also an isomorphism with T as its inverse.

Thus if we define the identity map of a space as that map taking each vector it self, 
then a linear map T is an isomorphism if there exists some linear map S such that 
both compositions SoT and ToS are the corresponding identity maps.

Defn: A left inverse for a linear map T:V-->W is a linear map S:W-->V such that 
S(T(x)) = x for all x in V.  S is a right inverse for T if T(S(y)) = y for all y in W.

Ex.  Show that if a linear map T has a left inverse then T is injective, and if T has a 
right inverse then T is surjective.

We will consider two vector spaces as essentially the same, i.e. as having the same 
linear structure, when there exists an isomorphism between them.  To actually 
identify their elements, we will need to choose a specific isomorphism.

 Ex: 1) Given a space V and subspace W, addition and scalar multiplication are 
well defined on V/W independent of choice of representatives of equivalence 
classes, and the map V-->V/W sending x to [x], is a linear map sending just the 
vectors in W to zero, i.e. [x] = [0] iff x is in W.

2) If V = Rn, and W is those (v1,...,vn) with v1+...+vn = 0, then the map V/W-->R 
taking (v1,...,vn) to v1+...+vn, is a linear map, with inverse R-->V/W taking t to 
[(t,...,0)].

3) Every bijective linear map is an isomorphism, i.e. if a linear map has an inverse 
map, that inverse is also linear. 

4) The set Hom(V,W) of all linear maps V-->W is closed under addition and scalar 
multiplication, where (S+T)(v) = S(v)+T(v) and (cS)(v) = c(S(v)), hence Hom
(V,W) is also a vector space.  The special case Hom(V,R) = V* is called the "dual" 
vector space of V.

5) Hom(R,V) is isomorphic to V, where the linear map f corresponds to the vector 



f(1) in V.

The concept of linear combinations
Since non zero vector spaces contain infinitely many vectors, it is useful to be able 
to represent all vectors in a given space in terms of only a finite subset of them, or 
if that is not possible, in terms of some distinguished subset.  This is done by 
taking “linear combinations”.

Defn: A "linear combination" of the vectors {v1,...,vm,....} is a finite sum of scalar 
multiples of the given ones, i.e. an expression of form w = a1v1+...+amvm, where 
the a’s are real numbers.  If w = a1v1+...+amvm, i.e. if w equals such a linear 
combination, we also call w a linear combination of the {vi}.

Eg: In R3, (4,-5,1) is a linear combination of (2,2,3) and (8,-1,7), since (4,-5,1) = 
(8,-1,7) - 2(2,2,3).
  
Defn: A set S of vectors "spans" or "generates" a vector space V iff every non 
zero vector in V is a linear combination of vectors in S, or equivalently if the set S 
is not contained in any proper subspace of V.  In particular, the empty set spans the 
space {0}.

Rmk:  Although we were careful to avoid saying it, it actually makes good sense 
to assert that the zero vector is a linear combination of the vectors in the empty set, 
since this is compatible with the way summations behave. I.e. if we have an 
indexed collection of vectors and we partition the index set into two disjoint 
subsets, we would expect that summing over each subset separately and then 
adding the two results, would give the same result as summing over the whole 
index set.  For this to be true also for the partition into the empty subset and the 
whole subset, we therefore need the sum over the empty set to be zero.  For the 
same reason, any operation carried out over the empty index set should give the 
identity element for that operation.  E.g. the product of the empty set of real 
numbers should equal 1, and the union of an empty collection of subsets should 
equal the empty set, while the intersection of an empty collection of subsets of a 
space should equal the whole space.  This convention is very helpful, since by 
using it, whenever we partition an index set, we do not have to stop and check 
whether all the subsets are non empty.  With this understanding we could simplify 
the definition above and just say that S spans V if every vector in V is a linear 
combination of vectors in S.



Eg: The set {(1,0), (0,1)} spans R2 since every vector (a,b) can be written as the 
linear combination a(1,0) + b(0,1) = (a,b).  More generally Rn is spanned by the set 
of n standard vectors {e1 = (1,0,....,0), e2 = (0,1,0,...,0),......., en = (0,....,0,1)}.

Ex: For any subset S = {v1,...,vm,....} of a vector space V, the set of all finite linear 
combinations of vectors in S (which includes 0 even if S is empty), is a subspace L
(S) of V spanned by S.

Ex:  If V = Rn and W is the subspace spanned by en, then V/W is isomorphic to 
Rn-1.

Two natural problems arise involving linear combinations: given a set of vectors in 
V, we want to know what linear subspace of V they span; and dually, given a 
subspace W of V, we want to be able to find a nice set of vectors. e.g. as small a set 
as possible, that span W.  Spaces that can be spanned by a finite set of vectors are 
especially important.

Defn: A space V is finite dimensional iff V has a finite spanning set.  

For example Rn is finite dimensional since it can be spanned by the set of n 
standard vectors {(1,0,...,0), (0,1,0,...,0), ... ,(0,...,0,1)}.  The space of real 
polynomials of degree ≤ d in t, is finite dimensional since it can be spanned by the 
d+1 monomials {1, t, t^2,...,t^d}.  As we will learn later, the subspace W of Diff(R) 
consisting of solutions of f’’+f = 0, is spanned by sin(t) and 
cos(t), hence is finite dimensional.

Linear independence, bases and the concept of dimension
Next we will see how to assign a specific dimension to each finite dimensional 
vector space.  This is the most important concept in the whole subject. In fact the 
notion of dimension completely determines a vector space up to isomorphism.  
Since we will see that Rn has dimension n, this will mean that the spaces Rn give a 
complete list of equivalence classes of finite dimensional vector spaces.  Thus to 
see how to define dimension, we naturally look at Rn.
  
Recall that we draw the spaces R, R2, R3, as spanned by axis systems: one axis for 
R, two axes for R2, three axes for R3, and it is not too great a stretch to imagine n 
axes for Rn.  So the dimension might be thought of as the number of axes needed 



to represent the space, and we want to express this algebraically.  Since each axis 
consists of vectors whose coordinates have form (0,...,0, t, 0,...0), each axis is a line 
spanned by a standard vector of form (0,..,0,1, 0,..,0).  So the number of axes 
needed to span a space geometrically, should be equivalent to the number of 
vectors needed to span the space algebraically.  Notice R can be spanned by the 
single vector 1, but no fewer (why not?), and R2 can be spanned by (1,0) and (0,1), 
but no fewer, since the multiples of a single vector (a,b) would always have entries 
proportional to (a,b).  We use this idea to define dimension as follows:

Definition: The dimension of a finite dimensional vector space is the minimum 
cardinality of a spanning set.  I.e. a vector space V has finite dimension n, if V has 
a spanning set of n vectors but no spanning set with fewer than n vectors.

It is not so obvious that for every n, Rn has dimension n.  Of course the n standard 
vectors do span Rn, so the dimension is at most n, but it is harder to prove that Rn 
cannot be spanned by fewer than n vectors.  (If you can prove this from scratch on 
your own, or come pretty close, even for n = 3, you are a potential mathematician).

So the problem is how to detect when a spanning set has the minimum possible 
number of vectors.  Certainly a spanning set does not have the minimum number of 
elements if one or more of its vectors are superfluous, in the sense that after 
throwing some of them out the remaining set still spans, since that remaining 
spanning set would have fewer vectors.  So when does this happen?  If w can be 
eliminated from the spanning set {v1,...,vm, w} and the remaining vectors 
{v1,...,vm} still span, then w must be a linear combination of the remaining vectors 
{v1,...,vm}, since everything is.  We give this situation a name:

Provisional definition:  A set of vectors is called (linearly) dependent if some 
vector in it is in the span of the other vectors.

Rmks:  Since even the span of the empty set contains 0, any set containing a zero 
vector is dependent.  The empty set is independent, and a set containing only one 
vector is independent if and only if that vector is non zero.

In practice we want to consider indexed sets of vectors, in which some of the 
vectors with different indices may be the same vector.  Thus we want to consider 
an indexed set to be dependent if one of the vectors is in the span of the vectors 
with different indices.  Thus any indexed set with a repeated vector, i.e. a set in 
which the same vector occurs with two different indices, is dependent.



Refined definition: An indexed set of vectors {v1,...,vm,...} is dependent if there 
is some index j, such that vj is a finite linear combination of vectors vi with i ≠ j.

Finally, note that if a vector v in an indexed set, can be written as a linear 
combination of the others, then by subtracting v from both sides of this linear 
combination, we have expressed the zero vector as a linear combination of all the 
vectors, and at least one coefficient is not zero, since v now has coefficient -1.  
Conversely, if we can express zero as a finite linear combination of vectors in 
which some coefficient is non zero, then we can divide through by that coefficient 
so that it becomes one, and then by putting all the other vectors on the other side, 
we have expressed that one vector as a linear combination of the others.  This gives 
a more efficient, if less intuitive, way of considering linear dependence of a set 
without singling out any one vector.  In particular, we have proved the following.

Lemma:  An indexed set of vectors {v1,...,vm,...} is (linearly) dependent if there 
is a finite indexed set of real numbers {a1,...,am}, not all zero, such that a1v1+...
+amvm = 0.  
Equivalently, An indexed set of vectors {v1,...,vm,....} is independent iff the only 
scalars a1,...,am such that a1v1+...+amvm = 0, are a1=a2 =...= am = 0. 

Useful remark:  Note that a finite or infinite sequence of vectors {v1,...,vm,....} is 
dependent if and only if some vector is a linear combination of earlier vectors in 
the sequence.  To see this, given a finite dependency relation  a1v1+...+amvm = 0, 
in which not all coefficients are zero, then after deleting coefficients which are zero 
we may assume am ≠ 0, and then we can solve for vm as a linear combination of 
the previous vectors.  I.e. just solve for the last vector occurring with a non zero 
coefficient in the linear combination.

Eg.  In the space of all polynomials in t, the infinite set of all monomials {1,t, 
t2, ...,tn,....} is independent, since no monomial is a linear combination of 
monomials of lower degrees.

Eg. {(1,0), (0,1)} is independent since the only way we can have a(1,0) + b(0,1) = 
(a,b) = (0,0), is to have a = b = 0.  

Eg. The empty set is independent, since there are no vectors at all, hence none 
which depend on the others.  



Eg. Another argument that the set of monomials{1, x, x2,..., xn} is independent, is 
to view them as differentiable functions, since if  f = a01+...+an xn = 0 = the zero 
function, then 0 = f(0) = a1, and 0 = f’(0) = a1,..., 0 = f^(n)(0) = n!an = an, so all 
the coefficients are zero.

Defn: A subset S of V is called a basis of V, if S is independent and L(S) = V, i.e. a 
basis is just an independent spanning set.

Thm: Every finite dimensional space V has a basis.
Pf:  Choose a finite spanning set S = {v1,...,vn} of V.  Throw out all zero vectors.  
If v2 is a multiple of v1, throw out v2, if not keep it.  If v3 is a linear combination 
of {v1,v2}, throw out v3, if not keep it.  Continue throwing out vectors which are 
linear combinations of previous ones, which does not change the span.  The ones 
left are a basis, since no vector depends on previous ones. QED.

Rmk:  We have actually shown that every finite spanning set contains a basis.  The 
same argument shows that every independent set in a finite dimensional space can 
be enlarged to a basis.  Just start by augmenting the independent set by adding in a 
spanning set at the end. Then discarding vectors that depend on earlier ones as in 
the previous proof gives a basis containing the original independent set.

Eg: The set of unit vectors e1 = (1,0,...,0),...., en = (0,....,0,1), is a basis of Rn 

called the “standard basis”.  {(3,0), (2,5)} is another basis of R2.  The empty set is 
a basis of {0}.

We have remarked above that a finite spanning set with the minimum number of 
vectors must be independent, i.e. must be a basis.  We claim that conversely every 
basis, i.e. every independent spanning set, does have the minimum number of 
vectors.  For this it suffices to show all bases have the same number of vectors.  
Then we will be able to determine the dimension of a space just by finding one 
basis and counting the number of vectors.

We will give two proofs, the second one being the famous “exchange lemma”.  Our 
first proof is not the shortest possible, but will help us learn some important results 
about linear maps.  First you will show that if a space has a basis with n vectors 
then that space is isomorphic to Rn .  Then we will show that if Rn is isomorphic to 



Rm then n = m.  Thus if a space has two bases with n vectors and m vectors 
respectively, then it is isomorphic to both Rn and Rm which are thus isomorphic to 
each other, so n = m; i.e. any two finite bases of the same space have the same 
number of vectors.  Here is your part of the proof:
 
Ex: 1) If S = {v1,...,vn} is a finite sequence in V, i.e. a function from {1,...,n} to V, 
there is a unique linear map T:Rn-->V sending (a1,...,an) to a1v1+...+anvn.  
2) The map T in 1) above is injective if and only if S = {v1,...,vn} is independent, 
and 
3) T is surjective if and only if S = {v1,...,vn} spans V, and 
4) T is an isomorphism if and only if S = {v1,...,vn} is a basis for V.

Cor (of 1): There is a one to one correspondence between linear maps T:Rn-->V 
and ordered subsets {v1,...,vn} of n vectors in V.  In fact this correspondence is 
linear, so defines an isomorphism of vector spaces 
Hom(R^n,V) ≈ Hom(R,V)x…xHom(R,V) ≈ Vx…xV, n factors.

Remark:  In particular, Hom(R^n,R^m) ≈ R^m x...x R^m, n factors. So a linear 
map R^n-->R^m is defined by a sequence of n vectors in R^m.  If these vectors are 
arranged in order as a sequence of n column vectors each of length m, the resulting 
array is called an “m by n matrix”.  We will study in the next chapter how to use 
such matrices to compute invariants of the corresponding linear map.  In particular 
they allow us to compute linear maps as a sort of “matrix” multiplication.

Cor (of 4): There is a one to one correspondence between isomorphisms 
T:Rn-->V and ordered bases {v1,...,vn} of  V.  In particular, since a finite 
dimensional space V has a basis, it is also isomorphic to some Rn.  

Cor (of 1,4):  A basis B of V defines a one - one correspondence between linear 
maps from V to another space W, and set functions from B to W, i.e. every function 
B-->W extends uniquely to a linear map V-->W.
Pf : By 1),4) there is an isomorphism between Rn and V, taking the basis B for V to 
the standard basis for Rn.  Then property 1) for Rn translates into this statement for 
B and V.  QED.

Remark:  This last corollary is very important, since it tells us how easy it is to 
define linear maps on a space for which we have a basis, in particular there is 
always a map sending any given basis to any values we please.  Use this fact to do 



the next exercises, thus providing converses to some earlier ones.

Ex.  Show that an injective linear map T:V-->W between finite dimensional spaces 
always has a (linear) left inverse.  Then show a surjective linear map T:V-->W 
between finite dimensional spaces always has a (linear) right inverse.

Terminology: An isomorphism Rn-->V is often called a parametrization of V.

Rmk: Dually to the case of maps R^n-->V, a linear map V-->R^n corresponds to 
an ordered  sequence of n of linear maps V-->R, i.e., a sequence of n elements of 
V* called coordinate functions.  This correspondence is again linear so 
Hom(V,R^n) ≈ Hom(V,R)x…xHom(V,R) ≈ V*x…xV*.  This time the map 
V-->R^n is surjective iff the sequence of elements of V* is independent, and 
injective iff the sequence of coordinate functions spans V*.  Again an isomorphism 
V-->R^n corresponds to an ordered basis of V*.  

Terminology: An isomorphism V-->Rn is often called a coordinate system for V.

I.e. since an ordered basis for V gives an isomorphism R^n-->V, the inverse 
isomorphism V-->R^n gives a way to introduce linear coordinates into V, since 
each vector in V gets represented by a sequence of numbers, i.e. a coordinate 
vector in Rn.  More precisely, if {v1,...,vn} is a basis for V, the associated 
isomorphism T:Rn-->V sends (a1,...,an) to a1v1+...+anvn, while the inverse 
isomorphism V-->R^n sends each v to its coordinate vector (a1,..,an) for the 
expansion of v = a1v1+...+anvn in the given basis.   

Given a finite dimensional space V, a fundamental problem is to find as simple, or 
as “nice”, a basis as possible for V.  E.g. once we introduce length and angle 
measure, it is often useful to have a basis of mutually perpendicular unit length 
vectors.

Now we have enough skill with linear maps to show the number of vectors in any 
basis always equals the dimension.

Lemma:  A linear surjection T:Rn-->V which is not injective, restricts to an 
isomorphism from some linear subspace Rm of Rn to V(where m < n).  
Pf:  T takes the standard basis of Rn to a generating set for V.  Reduce this set to a 



basis B, and choose a subset S of standard basis vectors of Rn mapping bijectively 
to B, hence an isomorphism from the subspace L(S) of Rn, to V.   L(S) is easily 
identified with Rm where m is the number of vectors in the subset S. QED.

Thm:  If Rn and Rm are isomorphic, then n = m.
Pf: (induction on n) There is no linear surjection T:R1-->Rm if m >1, since all the 
image vectors of T have proportional entries.  Assume T is a linear surjection T: Rn 
--> Rm, with 2 ≤ n< m and n as small as possible.  Let {e1,...,en}, and {u1,...,um} 
be the standard bases of Rn and Rm.  Then the composition Rn-->Rm/span(um) is 
surjective but not injective, since if T(v) = um, then v ≠ 0 maps to [0] in Rm/span
(um).  Hence by the previous Lemma, Rn-->Rm/span(um) restricts to a surjection 
from some subspace Rk of Rn, with k < n, to Rm/span(um) = Rm-1.  Since k < 
m-1, and k < n, this contradicts the hypothesis that n is small as possible. QED.

Cor:  Any two bases of a finite dimensional space have the same number of 
elements.

Cor:  The dimension of a (finite dimensional) vector space is the number of 
elements of any basis.

Cor:  Two finite dimensional spaces are isomorphic iff they have the same 
dimension, (since then they are both isomorphic to the same Rn).

Note:  This last corollary says we have classified all finite dimensional vector 
spaces by dimension, namely, up to isomorphism, there is exactly one space of 
each dimension.

This is our first big theorem, so it is worth giving two proofs.  I made the previous 
proof up because I found the usual ones hard to remember.  But I think everyone 
should see the classic proof, using the method of “exchanging” vectors to show 
that any spanning set must have at least as many vectors as any independent set.  
This shows any basis must be at least as large as any other basis, so they are all the 
same size.

Exchange lemma:  If a vector space contains a spanning set {w1,...,wm} and an 
independent set {v1,...,vn}, then n ≤ m.  (As usual, we regard these as indexed 
sets.)



proof:  Suppose n ≥ 1.  Then add v1,  to the set of w’s placing it first: i.e. form the 
set {v1,w1,...,wm}.  Now since the w’s span the whole space, this set is dependent, 
and according to an earlier argument, some vector is a linear combination of earlier 
ones.  Since the set of v’s is independent, v1 ≠ 0 hence is not a linear combination 
of earlier ones.  So one of the w’s must depend on earlier vector occurring in the 
set.  In particular there are some w’s, and hence m ≥ 1 also.  
We will simply repeat this argument as long as any v’s remain.  I.e. we can throw 
out the w that depends on earlier vectors in the set, and the resulting set will still 
span.  Renumbering the w’s we can assume the one we threw out was w1.  Now if 
n ≥ 2, add v2 to the set placing it at the beginning, getting the set {v2, 
v1,w2,...,wm}.  Again, since the set spanned before adding in v2, it has now 
become dependent, and hence some vector depends linearly on earlier ones.  Since 
the v;’s are independent however, neither v2 nor v1 depend on earlier vectors, so 
there is at least one more w, and hence m ≥ 2 also.  After we have repeated this 
process n times, we have shown that m ≥ n.  QED.

Note: This proof is more elementary than ours since it does not use any of the 
relations between bases and isomorphisms with Rn, hence it could have been given 
right after the definition of a basis.  The argument is often attributed to Steinitz, 
and he may have been the first to give it in the context of abstract algebra.  But the 
exchange argument occurs decades earlier in Riemann’s works, well before 
Steinitz’s birth, to prove essentially that the number of loops in every homology 
basis for a compact surface is the same.

Again we get the corollaries noted above.
Cor:  Any two bases of a finite dimensional vector space have the same number of 
elements.
proof:  If {w1,...,wm} and{v1,...,vn} are both bases, they are both independent and 
both spanning, hence by the exchange lemma n ≤ m and m  ≤ n, so n = m.  QED.

Cor: The dimension of a finite dimensional space equals the number of elements 
in any basis.

Ex: 1) If v1,...,vn is a basis B of V, the elements f1,...,fn of V* such that fi(vj) = 0 
for i ≠ j and, fi(vi) = 1 for all i, is a basis  of V* called the basis dual to B.  Hence 
dim(V) = dim(V*).

2) If {v1,…,vn} is a basis for V defining the isomorphism R^n-->V, then the 



inverse isomorphism V-->R^n corresponds to the element of Hom(V, R^n) ≈ 
V*x…xV* defined by the dual basis.  

This exercise says, given a vector v, its sequence of coefficients w.r.t the basis {v1,
…,vn} is the sequence of values of the dual basis evaluated on v.  I.e. if {f1,…,fn} 
is the basis dual to {v1,…,vn} then v = f1(v).v1+…+fn(v).vn.

Eg: The set of polynomials of degree ≤ d, has as basis the set of d+1 monomials 
{1,X,...,Xd}.   The coordinates of the polynomial a0 + a1X +....+an Xn in this 
basis, are its polynomial coefficients (a0, a1,...., ad).  Another basis is the set of d
+1 polynomials {1, (1+X), (1+X+X2),..., (1+X+...+Xd)}.  In this basis, the 
coordinate vector of 1 is (1,0,...,0), the coordinate vector of (1+X) is (0,1,0,...,0),..., 
and the coordinate vector of (1+X+...+Xd) is (0,...,0,1).

Ex: If {v1,...,vn} is a basis of V, and {w1,...,wm} is a basis of W, then {(v1,0),...,
(vn,0),(0,w1),...,(0,wm)} is a basis of VxW.  Thus dim(VxW) = dim(V) + dim(W).

Ex.  Use the previous exercise to show that Hom(R^n,R^m) has dimension nm.

Fundamental invariants of linear maps: kernel and rank
Now that we know all finite dimensional vector spaces over the reals, up to 
isomorphism, namely there is exactly one for each dimension, the next step is to 
try to understand all linear maps between finite dimensional spaces. 

The most basic questions about a linear map are whether it is injective and/or 
surjective.  A first step is to examine which vectors in the source space are sent to 
zero, which measures the extent to which the map fails to be injective.  Another 
important goal is to determine which vectors in the target space occur as values, 
which measures the extent to which the map fails to be surjective.  These questions 
lead to the important concepts of kernel, image, and rank.

Defn: 1) If T:V-->W is a linear map, the kernel of T = ker(T) = {v in V: T(v) = 0}, 
and 

2) The image of T = Im(T) = {w in W: w = T(v) for some v in V}.  The dimension 
of Im(T) is called the rank of T.

Rmk: Knowing the kernel of a map tells us whether the map is injective.  I.e. if v ≠ 



w and T(v) = T(w), then T(v-w) = 0 so (v-w) ≠ 0 is in ker(T), hence T is injective if 
and only if ker(T) = {0}.

Knowing the rank tells us whether the map is surjective (in finite dimensions), 
since if dim(W) is finite, T is surjective if and only if rank(T) = dim(W).

Ex:  If T:V-->W is a linear map then
1) ker(T) is a subspace of V, and Im(T) is a subspace of W.

2) T is constant on each equivalence class in V/ker(T).

3) T defines a linear map [T]: V/ker(T)--->W sending [v] to T(v). 

4) The induced map [T] in 3) is always injective, and [T] is surjective if and only if 
T is, hence [T] is an isomorphism if and only if T is surjective.

5) A linear map [T] can be defined in the same way on V/U, for any subspace U 
contained in 
ker(T), but [T] will not be injective unless U = ker(T).

Lemma: If dim(V) < ∞, every independent set in V is contained in a basis.
Pf: If {v1,...,vn} is independent, and {w1,...,wm} is a spanning set, reduce the 
generating set {v1,...,vn,w1,...,wm} to a basis, as in the proof that a finite dim’l 
space has a basis. QED.

Thm:  If dim(V) < ∞, and W is a subspace of V, then dimW + dim(V/W) = dimV.
Pf/Ex:  Choose a basis w1,...,ws for W, and extend it to a basis 
{w1,...,ws, v1,...,vt} of V.  Then {[v1],...,[vt]} is a basis for (V/W). QED.

Remark:  Note this proof gives a procedure for finding a basis of a quotient space.

Thm: If dim(V) < ∞, and T:V-->W is a linear surjection, dim(ker(T))+dimW = 
dimV.
Pf: T induces an isomorphism from V/ker(T) to W.  QED.

Cor: If dim(V) < ∞, and T:V-->W is a linear map, then rank(T) = 
dim(V) - dim.ker(T).  

Thus knowing the kernel (and dim(V)) also determines the rank, hence just 



knowing the kernel, and the dimensions of the source and target, determines both 
injectivity and surjectivity of the map.  In particular a map between two spaces of 
the same finite dimension is an isomorphism if and only if the kernel is zero.

Cor:  dim(VxW) = dimV + dimW
Pf:  The projection taking (x,y) to y is a linear surjection from VxW to W with 
kernel V.  QED.

Ex: 1)  If dimV > dimW, no linear map V-->W is injective, and no linear map 
W-->V is surjective.

2) If S = {x1,....,xk} is a subset of V, and dim(V) = n, then any two of the following 
implies the third: a) S is independent,  b) S spans V,  c) k = n.

3) If dim(V) < ∞, the map V-->(V*)* = V**, taking v to “evaluation at v” is an 
isomorphism.  I.e. v in V goes to the element of (V*)* that takes a linear function f 
in V*, to the scalar f(v).

4) If V,W are finite dimensional, T:V-->W is linear and dim.ker(T) ≤ 
dim(V) - dim(W), then equality holds and T is surjective.

Orthogonal complements of subspaces
There are two mutually complementary, or dual, ways of representing a subspace U 
of a vector space V.  One we have emphasized is to give a spanning set, or better, a 
basis for the subspace U.  Once have such a spanning set, we can easily produce 
arbitrarily many elements of U just by taking linear combination of the elements 
we already have.  But there is another problem that arises, that of recognizing 
elements of U.  I.e. if we are presented with an arbitrary vector we can ask whether 
or not it is an element of our subspace U, and that is not immediately obvious just 
from having a basis.  So given a spanning set for a subspace of V we would also 
like to have linear equations that vanish precisely on members of that subspace.  
These linear equations are elements of the dual space V*.  It is traditional, for 
geometric reasons we will discuss later, if f is a function in V* that vanishes on a 
subspace U of V, to say that f is “orthogonal” to U.

Definition: If U is a subspace of V, define the orthogonal complement “Uperp” of 
U as the subspace of V* consisting of all functions that are identically zero on U.  

So f:V-->k is in Uperp if and only if f(x) = 0 for all x in U, if and only if U is a 



subspace of ker(f).  It follows from our earlier theory that an element f of Uperp 
also induces a linear function [f] on V/U, so there is a linear map Uperp-->(V/U)*, 
taking f to [f].  There is also a map back from (V/U)* to Uperp by composing a 
linear function V/U-->k with the natural projection map V-->V/U.  Moreover 
composing this projection with [f] gives us back f, since by definition the induced 
map [f] is the unique function on V/U whose composition with the projection 
equals f.  For the same reason, if f:V-->k is the composition of V-->V/U with a 
function g:(V/U)-->k, then [f] = g, since both compose with the projection to give 
f.  Thus the subspace Uperp of V* is naturally isomorphic to (V/U)*.  This is just a 
fancy way of saying that functions on V that vanish on U factor naturally through 
the quotient space V/U.  Thus if V is finite dimensional, then from the known fact 
that dim(V) = dim(U) + dim(V/U), it follows, for every subspace U of V, that 
dim(V) = dim(U) + dim(Uperp).  (When working in R^n, where we can measure 
angles, this is essentially the fact that R^n is the direct product of any subspace U 
with the subspace of vectors perpendicular to all vectors in U.)

Ex.  If U,W are subspaces of V, show the set U+W of all sums x+y of elements, 
with x in U and y in W, is the smallest subspace of V containing both U and W.

Ex. Show for two subspaces U,W of V,  that (Uperp meet Wperp) = (U+W)perp.

The transpose (or dual) of a map
One natural way to specify a subspace is as the image of a map.  In this case the 
space of equations for that subspace arises as the kernel of a related map.

Definition: If T:V-->W is a linear map, there is a natural map T*:W*-->V* defined 
by “preceding by T”.  I.e. if f:W-->k is a linear function on W, then (foT):V-->k is a 
linear function on V, and we define T*(f) = foT.  T* is called the “transpose” or 
“adjoint” or “dual” map of T.

Since T* is defined in terms of T, there are close relations between all subspaces 
naturally associated to the two maps.

Proposition: If T:V-->W is a linear map with transpose T*:W*-->V*, the kernel of 
T* is the space of equations for Im(T); i.e. (Im(T))perp = ker(T*).
proof:  If f vanishes on Im(T), i.e. if f is in (Im(T))perp, then (T*f)(x) = f(T(x)) = 0 
for all x in V, so f is in ker(T*).  Conversely, if f is in ker(T*), then (T*f)(x) = 
f(T(x)) = 0 for all x in V, so f vanishes on Im(T).  QED.



Double duals
In an earlier section we have given as an exercise to prove that the double dual 
(V*)* = V** of a finite dimensional space V is naturally isomorphic to the original 
space V.  This reflects the fact that when we write a function’s value as f(x), 
although we normally think of f as the function and x as the argument on which f is 
evaluated, we could just as well think of x as the function acting on the argument f.  
I.e. the pair f, and x, determine a number, and we can think of that number as either 
f(x) or x(f).  But this is potentially confusing and it helps to use different notation 
for x as a function, as opposed to x as a point.  E.g. if x belongs to V, we can 
denote by ev,x the function “evaluation at x”, which takes an element f in V* to its 
value on x, namely ev,x(f) = f(x).  This defines a linear map V-->V**, and since 
when V is finite dimensional, V and V** have the same dimension, it suffices to 
show this is injective to conclude it is an isomorphism.  But if x1 is any non zero 
element of V, we can extend it to a basis, hence defining an isomorphism from V to 
R^n which takes x1 to e1.  Consequently the linear function taking a vector to its 
first coordinate in this isomorphism equals 1 on x, hence evaluation at x is not zero 
on all elements of V*.  I.e. if x1,...,xn is a basis of V, and x1*,...,xn* is the dual 
basis of V*, then ev,x1 is not zero on x1*.  Hence V-->V** is injective.

Remark:  If V is infinite dimensional then in general V still injects into V**, but 
the natural injection need not be surjective.  In that setting we usually add some 
structure to V such as an absolute value or “norm”, and then restrict consideration 
to linear functions that are also continuous in that norm.  This makes the dual 
spaces considered smaller and in some cases does recover the isomorphism.

The double dual of a map
Since in finite dimensions we have V ≈ V**, the question naturally arises whether 
under this isomorphism, we have T** = T?  The answer is yes.  I.e. if V,W are 
finite dimensional, and T:V-->W is linear, then under the isomorphisms V ≈ V** 
and W ≈ W**, we do have T = T**, in the sense that the element ev,x of V**, is 
taken by T** to the element ev,T(x) of W**.  Thus, we claim the compositions 
V-->W-->W** and V-->V**-->W** are equal, i.e. for all x in V, T**(ev,x) = 
ev,T(x).  To check it choose x in V, and g in W*, and ask if (T**(ev,x))(g) = 
(ev,T(x))(g).  The left side is by definition ((ev,x)oT*)(g) = (ev,x)(goT) = (goT)(x).  
But this equals g(T(x)) = (ev,T(x))(g).  So much for that.

 
Structure of linear maps up to isomorphisms of source and target
Just as a vector space is determined up to isomorphism by its dimension, we claim 



a linear map T:V-->W between two finite dimensional spaces V,W, is determined, 
up to isomorphisms of the source V and the target W, by its rank.  I.e. a linear map 
V-->W can be changed into any other linear map of the same rank by composing 
with isomorphisms of V and W.  More precisely:

Proposition:  If dim(V), dim(W) are finite, and the linear maps f,g:V-->W have the 
same rank, then there exist isomorphisms h:V-->V, k:W-->W such that g = 
(kofoh):V-->V-->W-->W.
Proof:  Recall that a linear map is determined entirely by what it does to a basis, 
and that we may define it in any way we like on that basis.  Moreover, a linear map 
between spaces of the same dimension, e.g. from a space to itself, is an 
isomorphism if and only if it takes a basis to a basis.
  
So assume dim(V) = n, dim(W) = m, and that f and g both have rank r, so that ker
(f) and ker(g) both have dimension n-r.  Choose a basis {vr+1,...,vn} of ker(f), and 
extend it to a basis {v1,...,vr, vr+1,...,vn} of V.  Then do the same for g, i.e. choose 
a basis {ur+1,...,un} for ker(g) and extend to a basis {u1,...,ur, ur+1,...,un} of V.  
Then sending the u’s to the v’s defines an isomorphism h from V to V.  Since this 
sends the kernel of g to the kernel of f, this already guarantees that every element 
of ker(g) will go to zero both under g and (foh).

Claim:  The sets {f(v1),...,f(vr)} and {g(u1),...,g(ur)} are both independent in W.
Proof:  If we could express zero as a non trivial linear combination of {f(v1),...,f
(vr)}, the same linear combination of the v’s would map by f to zero.  But this 
would say some linear combination of {v1,...,vr} belongs to ker(f), hence to the 
span of the vectors {vr+1,...,vn}.  That would imply the basis {v1,...,vr, vr+1,...,vn} 
is actually dependent, a contradiction.  Thus {f(v1),...,f(vr)} is independent.  By a 
similar argument {g(u1),...,g(ur)} is independent.  

Now extend each of these independent sets to bases {f(v1),...,f(vr), xr+1,....,xm}, 
and{g(u1),...,g(ur), wr+1,...,wm} of W.  Next define the isomorphism k of W 
sending these bases to each other in the order given.  Then compare what the maps 
kofoh and g do to the basis {u1,...,ur, ur+1,...,un} of V.  Both maps send the second 
half of the basis, namely {ur+1,...,un} to zero, and both send the vectors {u1,...,ur} 
to the vectors {g(u1),...,g(ur)}.  Since both maps agree on a basis they agree 
everywhere.
QED.



This implies that up to isomorphisms of V and W, any linear map V-->W of rank r 
is equivalent to the simplest possible example.  Namely we can consider V and W 
to be Rn and Rm, and we can consider the rank r map to be defined on the standard 
basis {e1,...,er, er+1,...,en} by taking the vectors {er+1,...,en} all to zero, and 
taking the first r vectors {e1,...,er} to the first r standard vectors {u1,...,ur} of the 
standard basis {u1,...,um} for R^m.  I.e. up to isomorphisms, a linear map of rank r 
from Rn  to Rm, simply projects Rn  onto the span of its first r axes, and then 
includes these as the first r axes of Rm.  

Indeed this statement follows directly from the proof above.  Given a map 
T:V-->W, choose a basis {vr+1,...,vn} of ker(T), and extend it to a basis {v1,...,vr, 
vr+1,...,vn} of V.  Then {T(v1),...,T(vr)} is independent and hence extends to a 
basis {T(v1),...,T(vr), xr+1,....,xm} of W.  Now using these bases of V and W to 
provide isomorphisms of V and W with R^n and R^m, we obtain a map 
R^n-->V-->W-->R^m that sends the last n-r standard basis vectors of R^n to zero, 
i.e. projects R^n onto the span of the first r standard basis vectors, and then maps 
them to the first r standard basis vectors of R^m.

This is a concrete realization of the fact proved earlier in an exercise, that every 
linear map f:V-->W factors as a composition V-->V/ker(f)-->W, of the natural 
projection V-->V/ker(f) followed by the induced injection V/ker(f)-->W.

Definition: Two linear maps S:V-->W, and T:V-->W between finite dimensional 
spaces V, W, are called equivalent if there are isomorphisms P:V-->V and 
Q:W-->W of the source and target spaces such that QoSoP = T.  

We just proved S and T are equivalent if and only if S,T have the same rank.  

Definition:  We call S,T:V-->W left - equivalent if T = QoS for some isomorphism 
Q of W.  Similarly, S,T are right - equivalent if  T = SoP, for some isomorphism P 
of V.

These concepts will be examined from a computational point of view in the next 
chapter, but you will learn something useful by trying the following exercises now.

Ex. Prove S,T are left equivalent iff they have the same kernel, and they are right -   
equivalent iff they have the same image.

Ex. Prove S,T are left equivalent iff S*.T* have the same image, and right 



equivalent iff S*,T* have the same kernel.

Chapter Two: Computations using matrices
In this chapter we augment our theoretical considerations by showing how to 
actually carry out the procedures and compute the invariants discussed abstractly in 
the previous chapter.  E.g. we have repeatedly invoked the possibility of reducing a 
spanning set for a space to a basis, thus computing the dimension of the space, by 
eliminating vectors that depend on others, and also of extending an independent set 
to a basis by adding in new vectors.  To actually do this in concrete examples, we 
first represent our abstract vectors as coordinate vectors by means of a basis, and 
then give a computational procedure, in terms of “elementary row operations”, for 
reducing a finite collection of coordinate vectors to an independent spanning set.  
The technique also lets us extend an independent set to a basis.  

The same method computes the rank of a linear map V-->W between two vector 
spaces over a field k.  I.e. we will show that choosing bases in both V and W 
allows us to represent a linear map V-->W as a matrix with entries in k.  Then row 
operations performed on this matrix allow us to compute a basis for the image of 
the map and hence to compute its rank.  The same procedure also allows one to 
compute a basis for the kernel of the map.  At bottom, this is nothing but the 
middle school technique of “eliminating variables”.

As a limitation on the procedure, it is only useful over fields of scalars where one 
can actually calculate field operations effectively.  E.g. it is useful over the rational 
field, but less so over the real field, where even representing a given real number 
precisely may require an infinite decimal.  Of course if one is content with an 
approximation, one may in some cases use finite decimals, which are rational 
numbers.  The trouble with this is that once we introduce approximations, we may 
no longer obtain the correct answer to a computation of the dimension of a space.  
I.e. one is then obliged to assume that a given vector is in the span of other vectors 
if it is so within a “small” error.  We do not wish to entertain this sort of situation, 
nor discuss the problems it may pose, (mainly from ignorance).  

Quotient fields such as Q[X]/(X^3-X+1) can also offer significant difficulties even 
in the calculation of field operations like multiplicative inverses.  A few 
calculations may however be feasible here: e.g. can you show easily that the 
inverse of X in this field equals (1-X^2)?  Can you use this fact to quickly compute 
the inverse of (1-X)?  But the inverse of (1+X^2) seems much harder.  (The inverse 
of (1+X^2) in this field is a polynomial g(X) such that g(X).(1+X^2) - 1 is 



divisible by (X^3-X+1).)  Another case where calculations seem feasible is for 
finite fields, which we do not discuss.

Remark:  You could actually skip much of this chapter if you don’t want to know 
how to calculate anything and just want to read more theory, but I don’t 
recommend this.  I myself was educated like that, completely theoretically, in the 
1960’s, and only learned to my amazement that these concepts can actually be 
computed after starting to teach.  In this regard I have read a quote attributed to 
Kaplansky, to the effect that “we [he and Halmos] think and write invariantly, but 
when the chips are down, we close the door and compute furiously with matrices”.

Finding linear relations
The basic problem is to determine when a finite set of coordinate vectors is 
dependent, by finding an explicit linear relation they satisfy.  

Worked example: To show that the vectors (4, -2, 5), (1, 0, -3), (-2, 2, -11) are 
dependent means finding scalars  x,y,z such that 
x.(4, -2, 5) + y.(1,0,-3) + z.(-2, 2, -11) = (0, 0, 0).  Multiplying through the vectors 
by the unknown scalars and adding gives 
(4x+y-2z, -2x +2z, 5x -3y -11z) = (0, 0, 0).  Since equality of vectors means 
equality of every entry, This is exactly the same as solving the three simultaneous 
linear equations:  4x + y - 2z = 0;  -2x +0y +2z = 0; 5x - 3y -11z = 0.  If we write 
these in a vertical array they look like this:

 4x + y - 2z = 0;  
-2x +0y +2z = 0; 
 5x - 3y -11z = 0.

Now we may recall from school that the technique for solving such equations is to 
“eliminate variables” by adding and subtracting multiples of some equations from 
others.  The basic rationale is that a simultaneous solution of two equations will 
also solve the sum of those two equations, and a solution of one equation will also 
solve a multiple of that equation.  If we avoid multiplying by zero, these statements 
are almost true in reverse; i.e. a solution of a non zero multiple of an equation will 
also solve the original equation, and a simultaneous solution of an equation E1, and 
the sum of equations E1 + E2, will also solve both the original equations E1 and 
E2.  In particular, if a ≠ 0, then the equations E1 and E2 have the same solutions as 
do the equations a.E1 and (b.E1+E2).  We also allow interchanging the ordering of 
any of the equations.  Using these operations, we attempt to transform the original 



equations into ones that have fewer variables, hence are easier to solve, but that 
still have the same solutions.  We call systems of equations that have the same 
solutions “equivalent” systems.

In the example above, we can divide through the second equation by 2, and then 
add 4 times the new second equation to the first equation, and then add 5 times the 
new second equation to the third equation, getting the new but equivalent system 
of equations:

0x + y + 2z = 0;  
 x +0y -z = 0; 
 0x - 3y -6z = 0.

We may omit the variables with coefficient zero, leaving (after reordering):

 x          -z  = 0
       y  +2z = 0
    -3y  - 6z = 0

Now adding 3 times the second equation to the third equation leaves:

x        -z  = 0
     y  +2z = 0
         0.z = 0.

which we may write as:

x        -z  = 0
     y  +2z = 0

The third equation is now true for every z, or missing entirely, and the first two 
equations can be solved for y and x, no matter what z is, so we may take z to be 
anything, such as z = 1.  Then we have x = z = 1, y = -2z = -2, and we can check 
these work.  Any multiple of these also works, so we have as solutions any x,y,z of 
form (x,y,z) = (z, -2z, z) for any choice of z.

Notice it would have been ok for the first equation also to have involved y, since 
after finding y from the second equation we could have plugged in the known 
values of both z and y into the first equation to find x.  The essential thing is that 
the second equation not involve x, and the third equation not involve either x or y, 



but the our final form is preferable, where only one equation involves x and only 
one involves y.  We could still have solved the system if the third equation 
involved z as well, but then the only solution would have been x = y = z = 0.  Since 
we were looking for a non trivial linear relation, that result would have meant that 
no such relation existed, and hence that our three column vectors were actually 
independent.  I.e. recall that vectors are independent, by definition, if the only 
linear relation they satisfy is the trivial one.  

So our method determines whether or not the column vectors are independent, and 
when they are dependent, it finds all possible non trivial linear relations among 
them.  I.e., it always finds all possible linear relations among the columns, and the 
columns are independent if and only if the only such relation is the trivial one.

Taking z  = 1, hence (x,y,z) = (1,-2,1), our solution thus yields the linear relation:
(4, -2, 5) -2.(1, 0, -3) + (-2, 2, -11) = (0, 0, 0).  Consequently any of these three 
vectors can be expressed as a linear combination of the other two.  Since no one of 
them is a scalar multiple of any other one, the subspace the three vectors span in 
R^3 is 2- dimensional, i.e. a “2-plane” or just a “plane”.  Any two of them are 
independent and form a basis for that plane.  E.g. (4, -2, 5) and (1, 0, -3) form a 
basis for that plane, and (-2, 2, -11) = 2.(1, 0, -3) - (4, -2, 5) lies in that plane.

It is more efficient in such calculations to display the coefficients in a rectangular 
array or “matrix”, i.e. without the variables.  Since the numbers on the right side of 
the equations are all zeroes, we do not need to write them.  The original coordinate 
vectors appear as the “columns” of the matrix, so we call them “column vectors”.

| 4      1    - 2 |  
| -2     0      2 |
| 5    - 3    -11|.

Then the previous transformations give the following sequence of equivalent 
matrices:

| 4      1    - 2 |  
| -1     0      1 |
| 5    - 3    -11| ≈

| 0      1      2 |  
| -1     0      1 |
| 5    - 3    -11| ≈



| 0      1      2 |  
| -1     0      1 |
| 0    - 3     -6 | ≈

| 0      1      2 |  
| -1     0      1 |
| 0    - 3     -6 | ≈

| -1     0      1 |
| 0      1      2 |  
| 0    - 3     -6 | ≈

| 1     0     -1 |
| 0      1      2 |  
| 0    - 3     -6 | ≈

| 1      0     -1 |
| 0      1      2 |  
| 0      0      0 |.

Now we put back the variables, and the zeroes, and solve the equivalent system
x          - z = 0
     y   +2z = 0,

with solutions (x, y, z) = (z, -2z, z) for every choice of z.  

Note: Since the solutions thus consist of all scalar multiples z.(1,-2,1) of the vector 
(1,-2,1), the solutions form a one dimensional subspace of R^3, with basis (1,-2,1).

Another worked example.  
Given this set of four vectors in R^3: (3, -1, 4), (6, 8, -2), (3, 9, -6), (0, -10, 10), try 
to decide whether they are independent, and if not, find a non trivial linear relation.  
Matrices associated to this system are:
| 3   6    3    0|
|-1   8   9  -10|
| 4  -2   -6  10|  ≈ (subtract row 1 from row 3)

| 3   6    3    0|
|-1   8   9  -10|



| 1  -8   -9  10|  ≈ (add row 2 to row 3)

| 3   6    3    0|
|-1   8   9  -10|
| 0   0   0     0|  ≈  (divide row 1 by 3)

| 1   2    1    0|
|-1   8   9  -10|
| 0   0   0     0|  ≈  (add row 1 to row 2)

| 1     2    1    0|
| 0   10  10  -10|
| 0     0   0     0|  ≈ (divide row 2 by 10)

| 1    2    1   0|
| 0    1    1  -1|
| 0    0    0    0|  ≈ (subtract 2 times row 2 from row 1)

| 1    0    -1  2|
| 0    1    1  -1|
| 0    0    0    0|.   Thus if the variables are x,y,z,w, we get:

that z, w can be anything, and x = z -2w, y = w-z.  

Note:  Since the solutions thus have form (z-2w, w-z, z, w) where z,w can be any 
real numbers, again the set of solutions forms a subspace since it consists of all 
linear combinations  z.(1, -1, 1,0) + w.(-2, 1, 0, 1) of the vectors (1,-1,1,0), and (-2, 
1, 0, 1).   I.e. the solutions form a two dimensional subspace of R^4 with basis 
(1,-1,1,0), (-2,1,0,1).

The key point of course is that the solutions of the reduced system are also 
solutions of the original system.  Thus taking z = 1, w = 0, shows the third original 
column vector depends on the first two since then x = 1, y = -1 gives the relation
(3, -1, 4) -  (6, 8, -2) + (3, 9, -6) = (0, 0, 0) so (3, 9, -6) = (6, 8, -2) - (3, -1, 4).

Taking z = 0, w  = 1 shows similarly that the 4th original column vector also 
depends linearly on the first two.  To be sure let’s check that.  I.e. then x = -2, y = 
1, so we should get  -2.(3, -1, 4) + (6, 8, -2) + (0, -10, 10) = (0, 0, 0), which does 
check, so solving gives (0, -10, 10) = 2.(3, -1, 4) - (6, 8, -2), thus expressing the 
fourth vector linearly in terms of the first two.



So the subspace spanned by all four original column vectors is 2 dimensional, with 
the first two vectors (3, -1, 4) and  (6, 8, -2) as basis.  Of course there are other 
choices of basis for this subspace, (in fact probably any choice of two of these four 
vectors should work, as long as neither is a multiple of the other), but this gives a 
way of choosing one.  I.e. this method essentially throws out column vectors that 
depend on earlier ones, hence chooses the “earliest two” independent vectors 
among the four, in their original ordering.

Note:  Since the rows of the reduced form of a matrix are linear combinations of 
the original rows, and vice versa, the rows of the reduced matrix, which are 
obviously independent, form a basis of the space spanned by the original rows.

Thus given any matrix, the computation we have illustrated gives a way to find a 
basis for the space spanned by its columns, (its “column space”), the space of its 
solutions, (its “null space”), and the space spanned by its rows, (its “row space”).  
Notice also that although a matrix and its reduced form have the same row space 
and null space, they usually do not have the same column space.  Indeed the 
column space of the original n by m matrix, can be any subspace of R^n, but if the 
reduced form has r non zero rows, then its column space is just the coordinate 
subspace of R^n spanned by the first r standard basis vectors.

Remark:  Don’t feel bad if you did these exercises and got them wrong.  So did I, 
repeatedly, even though they are about as simple as they come.  These pesky real 
life computations are notoriously prone to error, especially if you yield to the 
temptation to take shortcuts and do steps in your head.  They look so easy, but it is 
really easy also to divide 6 by 3 mentally and write down 3 instead of 2, as I 
originally did in reducing the first row of the second example above.  The best 
advice I can give is to force yourself to write out every step, no matter how boring 
it seems, or risk having to do it all over again.  Even if you are careful, you may 
need to repeat it several times.  In my case I knew I had rigged the examples above 
to have 2 dimensional spans, but I kept getting 3 dimensional answers over and 
over, until I just plodded through every little step one at a time.  Of course once 
you get an answer you can check it, and see if it does give you a valid relation 
among your original vectors, and you should always do this.  The way I knew I 
was wrong even sooner, was that the number of dimensions should equal the 
number of non zero rows that are left when you are done, but I kept getting 
something like this, which has three non zero rows:

| 1    0    0   1|



| 0    1    0   0|
| 0    0    1  -1|

The wonderful fact that we now have computers to do our calculations means that 
once you understand how to do these procedures, you can program a computer to 
carry them out accurately.  Of course it doesn’t hurt to practice your own accuracy.  
I once did a complicated partial fractions integral by hand that my $800 copy of 
Mathematica had failed to do for some reason.  Computers sometimes also get the 
wrong answer because we typed in an extra space or left out a comma, or did 
something else quite invisible, so we need to have some intuition as to when the 
answer they give us is absurdly wrong.  So please do some of these computations 
yourself until you get them right. It will make you feel good and also give you a 
better grasp on the abstract ideas.  So the fact these computations are hard to get 
right by hand does not invalidate their usefulness.

It also helps to give a precise description of the computational process we have 
illustrated, learn the standard language for discussing it, and restate the basic facts.

Elementary row operations:
Given a matrix, here are the allowed “row operations”:
1) interchange any two rows.
2) multiply through any row by a non zero scalar.
3) add a multiple of any row to any other row.

Reduced echelon form
Here is the type of matrix you want to end up with:
1) all zero rows are together at the bottom of your matrix.
2) in all non zero rows the first (leftmost) non zero entry is a ‘1’
3) that first ‘1’ in a non zero row is the only non zero entry in its column.
4) the initial ‘1’ in a non zero row occurs further to the right than the initial ‘1’ in 

the previous row.

A matrix in this form is said to be in “reduced echelon form”.  We will see that this 
form depends uniquely on the original matrix.  I.e. no matter what sequence of 
steps you use to reduce a matrix, the final result of this type will always be the 
same.  In particular if you rework the two examples above you should get the same 
final result, no matter what different intermediate stages you go through.

Terminology: In each non zero row of a reduced echelon matrix, the column 
where the first non zero entry appears is called a “pivot” column.  If the matrix is n 



by m, and the associated system of equations has variables x1,...,xm, the variable 
assigned to a pivot column is called a “pivot variable”.

Note:  In the worked examples, we saw that the set of solutions of the associated 
homogeneous linear system of equations, was equal to the number of non - pivot 
variables.

It is useful to specify some subspaces associated to a matrix as follows.
Row space:
Definition: Given an n by m matrix A, the subspace of R^m spanned by the rows 
is called the “row space of A”, denoted R(A).  

Since there are n rows, the row space has dimension at most n.  In fact we claim 
the rows of the reduced echelon form are a basis of the row space, so the row space 
of a matrix has dimension equal to the number of non - zero rows in its reduced 
echelon form.  We can see this as follows.
Looking at a reduced echelon matrix, it should be obvious that the non zero rows 
are independent, so it suffices to prove that the row space of a matrix is the same as 
the row space of its reduced echelon form.  For this it suffices to see that the row 
space of a matrix is unchanged by performing an elementary row operation.  By 
definition of the elementary row operations, each row in the transformed matrix is 
a linear combination of rows in the previous matrix.  But since each row operation 
can be reversed by another opposite row operation, also every row in the previous 
matrix is a linear combination of those in the transformed matrix.  E.g. we can 
reverse the action of multiplying by a non zero scalar by dividing by that non zero 
scalar, i.e. by multiplying by its inverse.  And if we replace a row Ej by the linear 
combination Ej+c.Ek where j≠k, then we can recover the original row Ej by adding 
to Ej+c.Ek, the multiple -c.Ek.  We have proved the following:

Proposition:  The row space of a matrix has as basis the set of non zero rows in its 
reduced echelon form.  We denote the row space of A as R(A).

Terminology: The “row rank” of a matrix is the dimension of its row space.

As was probably clear from the examples, any matrix has a reduced echelon form, 
and we want to state that explicitly, as well as the fact that it is unique.

Theorem:  Any matrix can be put into reduced echelon form, by a finite sequence 
of elementary row operations.  The final reduced echelon form is uniquely 
determined by the original matrix and does not depend on the particular choice of 



the sequence of operations used.
proof sketch:
Existence:  One need only convince oneself the procedure does work.  E.g. starting 
from the left, locate the first column having a non zero entry and exchange rows 
until that entry is in the top row.  Multiply by the inverse of that entry to get a ‘1’ 
as the upper left most entry.  Now subtract suitable multiples of that row from all 
other rows until there are only zeroes elsewhere in that column.  This the first pivot 
column.  If the only non zero entries remaining in the matrix now are all in the first 
row, you are finished, and the row rank is one.  Notice also that projection of the 
first row into the coordinate axis associated to the first pivot variable sends the first 
row to the standard basis vector spanning that coordinate axis.  Hence if the row 
rank is one, the row space projects isomorphically to that coordinate axis and the 
first row vector corresponds under that isomorphism to the standard basis of that 
coordinate axis.  Note also that the first row does not project isomorphically to any 
earlier coordinate axis, since all earlier entries in the first row are zero.

If there are some non zero entries below the first row, then looking only at entries 
below the first row, find the first column in which such a non zero entry occurs.  
This is the second pivot column and must lie to the right of the first one.  
Interchange rows so that new non zero entry is in the second row.  Now divide 
through by the inverse to make that entry a ‘1’ and then subtract multiples of that 
second row from all other rows until every other entry in that second pivot column 
is equal to zero.  If there are no non zero entries remaining below the second row, 
you are finished, and the row rank is two.  Notice that if the row rank is two, then 
projection onto the coordinate plane corresponding to the two pivot variables is an 
isomorphism and the first two rows project under that isomorphism to the two 
standard basis vectors for that coordinate plane.  Note also that the row space does 
not project isomorphically to any earlier coordinate plane since all earlier entries in 
the second row are zero.
If there are some  non zero entries below the second row, continue......

Uniqueness:
The reduced echelon form reduces the original sequence of rows to a sequence 
which is independent, hence forms a basis for the row space.  So finding the 
reduced echelon form amounts to choosing an especially nice or simple basis for 
the row space.  From this perspective the process is very simple.  If the rank is r, 
then there must exist some coordinate subspace of rank r onto which the row space 
projects isomorphically.  If we find one, we can pull back the standard basis for 
this coordinate subspace to a basis of the row space via this isomorphism.  This 
provides at most “m choose r” distinguished bases for the row space of an n by m 



matrix of rank r.  The only one in echelon form is the one whose choice of r 
coordinates among the m possible coordinates, is “lexicographically minimal”.  
This provides a unique choice of ordered basis for the row space, hence the 
reduced echelon form of a given matrix is unique.  I.e. its pivots correspond to the 
unique lexicographically minimal choice of coordinate subspace onto which the 
row space projects isomorphically.  That is, for each j ≤ r, the row space projects 
surjectively onto the coordinate j-plane spanned by the first j pivot columns, but 
does not surject onto any earlier coordinate j - plane.  Then the actual rows of the 
reduced matrix are the unique vectors in the row space corresponding under this 
isomorphism to the standard basis of the coordinate r - plane spanned by all the 
pivot columns.
QED.

Corollary:  Two matrices are row equivalent, i.e. differ by a sequence of 
elementary row operations, if and only if they have the same row space.
Proof:  We have seen that two row equivalent matrices do have the same row 
space.  Moreover the uniqueness proof above showed that the reduced echelon 
form of a matrix is entirely determined by its row space.  Thus two matrices with 
the same row space have the same reduced echelon form, and hence differ by a 
sequence of elementary row operations.  QED.

Remark:  The step by step algorithm in this existence proof sketch will always 
work, but in practice you will usually see shortcuts that make the work go faster.  
Remember however to be very methodical or, if you are like me, you will make 
numerous arithmetical errors.  In fact, because I am usually considered to be much 
more accurate at mental arithmetic than average, even among mathematicians, I 
was quite surprised that I make so many errors in these matrix operations. 

Exercise: Reduce this one:
|4   6   2  -2|
|2  -1   5   3|
|-2  0  -4  -2|
|5   3   7   2|  and see if you agree with me that the reduced form is this:

|1  0   2   1|
|0  1  -1  -1|
|0  0   0   0|
|0  0   0   0|.  You should check it by seeing whether you do get valid linear 
relations among your original column vectors.



To make up your own examples, start with any two independent column vectors 
and then choose the third column vector to be some simple linear combination of 
the first two.  Then you should end up with a reduced matrix that has exactly two 
non zero rows.  To check your accuracy do it again by different steps and see if you 
get the same result.  Or take a matrix with two or three rows, reduce it, then begin 
again, but interchange the rows before reducing it again.  The result should be the 
same reduced matrix.

Excursion: the Grassmann variety G(1,3) of projective lines in P^3
Consider “projective” 3 space P^3 defined as all one dimensional subspaces of 4 
dimensional coordinate vector space R^4.  So a point of P^3 is represented by a 
non zero vector in R^4, and proportional vectors represent the same point.  Thus 
projective “lines” in P^3 are represented by 2-dimensional subspaces of R^4, and 
projective planes correspond to 3 - dimensional subspaces of R^4.  We want to 
describe the set G(1,3) of all projective lines in P^3, i.e. of all 2 dimensional 
subspaces of R^4, by means of reduced 2 by 4 echelon matrices of rank 2.  I.e. by 
our uniqueness theorem, two such matrices have the same row space if and only if 
they have the same reduced echelon form, so assigning to each reduced 2 by 4 
echelon matrix of rank 2, its row space, sets up a 1-1 correspondence between such 
reduced matrices and all 2 dimensional subspaces of R^4.  

We claim the space G(1,3) has a natural geometric “stratification”, i.e. is a disjoint 
union of copies of affine spaces of various dimensions.  In fact, G(1,3) has a 
natural disjoint decomposition into 6 subsets isomorphic to R^4, R^3, R^2, R^2, 
R^1, and R^0 (a point).  Moreover, viewing the space G(1,3) = all 2 dimensional 
subspaces of R^4, as the space of all possible reduced 2 by 4 echelon matrices of 
rank 2,  we claim the six disjoint subsets correspond to subdividing reduced 
echelon matrices according to the 6 possible ways of choosing the location of the 
two pivot columns, from among the 4 possible columns.  We explain that next.

Since points of P^3 are one dimensional subspaces of R^4, it follows that for two 
subsets of P^3 to meet in at least one point, the corresponding sets of vectors in 
R^4 must share at least one non zero vector.  In particular, since every 3 
dimensional subspace of R^4 must meet every 2 dimensional subspace non 
trivially, it follows that in P^3 every line in P^3 meets every plane.  Since in 
general, two 2 dimensional subspaces of R^4 will meet only in {0}, it follows that 
two general lines in P^3 will not meet.  Hence to require a line to meet a given line 
or a given point, or to lie in a given plane in P^3, does impose a restriction.  But 
any two lines that lie in the same plane in P^3 must meet, since a plane in P^3 is a 
3 dimensional subspace of R^4, and any two 2 dimensional subspaces of the same 



3 dimensional subspace must have a common non zero vector.  So this reveals the 
special feature of projective geometry, any two lines in a plane always meet, and 
any line in 3 space meets every plane.  I.e. the fact that in R^4 all subspaces 
contain {0} is reflected in the absence of “parallelism” in P^3.

Now take as coordinates (X,Y,Z,W) in R^4, called “homogeneous” coordinates for 
P^3,  (since the coordinate vectors (a,b,c,d) and (ta,tb,tc,td) represent the same 
point of P^3).  Then choose a nested family of sets: 
the (projective) “plane” ∏: X = 0, 
the “line” L: X = Y = 0, and 
the “point” P: X=Y=Z=0.

Note that P lies on L, which lies in ∏.  (The homogeneous coordinates of P may be 
taken as (X,Y, Z, W) = (0,0,0,1), since any other vector of form (0,0,0,d) with d≠0 
defines the same point).
    
This gives us several natural subsets of projective lines defined by “incidence” 
relations, i.e. by how they meet the given point P, the given line L, and the given 
plane ∏.  So consider the special subsets of:
 
1)  lines in P^3 that meet the line L, 
2)  lines in P^3 that meet the point P, and 
3) lines in P^3 that lie in the plane ∏.  

These sets are not disjoint, since all lines of types 2 or 3 are also of type 1, but they 
allow us to define six disjoint subsets as complements of them as follows: 
i)  lines that do not meet L, 
ii) lines that meet L but not P, and do not lie in ∏, 
iii) lines that meet P, but do not lie in ∏, 
iv) lines that lie in ∏ but do not meet P, 
v) lines that lie in ∏ and meet P but do not equal L, and finally 
vi) the one line L.

We claim this stratification of G(1,3) corresponds to the stratification of rank 2 
reduced echelon 2 by 4 matrices by the 6 ways to choose the two pivot columns.  

Recall that the pivot variables are those in the earliest coordinate plane onto which 
the row space projects isomorphically.  Since projection from the row space onto a 
given coordinate plane is isomorphic if and only if the “center” of projection, i.e. 



the kernel of the linear projection map, does not meet the row space non trivially, 
this lets us interpret the location of pivot columns in terms of incidence relations.
  
E.g. the kernel of projection onto the first two coordinates X,Y is the space 
X=Y=0.  Thus projection onto the first 2 coordinates is isomorphic if and only if 
the row space does not meet the subspace X=Y=0 non trivially, if and only if 
neither row of the reduced echelon form has zeroes in the first two columns, iff the 
first two columns are pivots.  

Thus the sets of lines in P^3 which do not meet the line L:X=Y=0, corresponds 
exactly to the reduced echelon matrices of form:
|1  0  a  b|
|0  1  c  d|.

Thus the set i) is 4 dimensional, parametrized by (a,b,c,d), i.e. by R^4.

Now what about lines that do meet L, but do not meet P and do not lie in ∏?  Since 
the row space does meet X=Y=0 non trivially, X and Y are not both pivots.  But 
since the line does not lie in the plane ∏: X=0, the first column, namely X, must be 
a pivot.  So the other pivot is either the third or the 4th column.  But the row space 
does not meet the point P:X=Y=Z=0, so the second row cannot have form (0,0,0,1) 
so the 4th column, i.e. W, is not a pivot.  Thus the two pivots are X and Z.
The set of such lines hence corresponds to reduced echelon matrices of form:
|1  a  0  b|
|0  0  1  c|

Thus the set ii) therefore has dimension 3, parametrized by (a,b,c), i.e. by R^3.

Lines that do not lie in ∏:X=0 again correspond to matrices with X as a pivot 
variable, and if they do meet P:X=Y=Z=0 non trivially, then W must be a pivot, so 
the pivots and X and W.  These matrices then have form:
|1  a  b  0|
|0  0  0  1|

and this set iii) is hence two dimensional, parametrized by (a.b), i.e. by R^2.

Lines that do lie in ∏, but do not meet P, similarly must not have X or W as pivots, 
hence must have Y,Z as pivots.  These matrices have form:
|0  1  0  a|
|0  0  1  b|



and the set iv) thus also has dimension two, parametrized by (a,b), i.e. by R^2.

Lines that lie in ∏ do not have X as pivot, and if they do meet P they must have W 
as pivot.  But if they are not equal to the line L:X=Y=0, they must have some non 
zero entry in the first two columns, so the pivots are Y,W.  These have form:
|0  1  a  0|
|0  0  0  1|

and hence set v) is one dimensional, parametrized by a in R^1.

Finally the one line vi), L:X=Y=0 is the unique matrix
|0  0  1  0|
|0  0  0  1|

so vi) is of course zero dimensional, the single line L.

In fact G(1,3) can be described more symmetrically using reduced but not echelon 
matrices, i.e. matrices with the same row space but in which the choice of pivot 
columns is any pair of coordinate variables onto which the row space projects 
isomorphically, not necessarily the earliest pair.  Then each matrix has more than 
one reduced form, and each choice of pivot variables will form a 4 dimensional set, 
like case i) above.  E.g. those with pivots in columns 1 and 3, now look like:
|1  a  0  b|
|0  c  1  d|

This just means that in carrying out row reduction, after finding the first pivot, we 
chose as the next pivot, any non zero column entry occurring below the first row, 
not necessarily the first such column entry.

This shows that G(1,3) can be covered by a collection of 6 copies of R^4, in 
particular G(1,3) is a 4 dimensional “manifold”.  In general, the space G(r-1,n-1) of 
r dimensional subspaces of R^n is a manifold of dimension r.(n-r), as you can 
check by using the same ideas as in this excursion, i.e. rank r, reduced r by n 
echelon matrices.  (Hint: what does a reduced r by n echelon matrix look like 
whose pivots are the first r columns?)  Such spaces are quite interesting in 
geometry and topology.  (Be careful in reading further, since in books where the 
perspective of projective geometry is not used, this space is denoted G(r,n).)  
End of excursion.



Matrices and linear maps
The most common use for matrices is to represent linear maps.  Just as every linear 
map T:R-->R is multiplication by some number, namely x-->T(x) = ax, where a = 
T(1), so every linear map T:R^n-->R^m can be represented as multiplication by a 
matrix A of numbers, where the columns of A are the values of T on the standard 
basis vectors of R^n.  I.e. the jth column of A is the vector T(ej) in R^m.  

First we show how to multiply vectors, and then we use this to define matrix 
multiplication, one row vector at a time.

Multiplying a vector by a vector
Definition: The “inner product”  or “dot product” v.w of two vectors v = (a1,...,an) 
and w = (b1,...,bn) in Rn is defined as: v.w = (a1,...,an).(b1,...,bn) = a1b1+....+anbn.  
It is a real number.

Ex. Dot product is commutative and behaves like a multiplication: i.e. it distributes 
over vector addition, and commutes with scalar multiplication in each variable.  
More precisely, for all vectors u,v,w, and scalars t, we have 
v.w = w.v, 
(u+v).w = u.w + v.w, and 
(tu).v = t(u.v) = u.(tv).

Cor:  If v = (a1,...,an) is any vector in Rn, v defines a linear map f:Rn -->R by f(w) 
= v.w.  

Ex. In fact, the map Rn -->(Rn)* taking v to v.(  ) is a linear isomorphism.  In fact 
it takes the standard basis of R^n to the dual basis for (R^n)*; i.e. if e1,...,en is the 
standard basis of R^n, then ej.( ) is the linear function with value 1 on ej and value 
zero on the other ei.

Since we know that Rn and (Rn)* have the same dimension, it suffices to check 
that the map in the previous exercise is a linear injection, but one can also give an 
inverse map as described next.  The point is to show that every linear function on 
R^n is defined by dotting with some vector.

Ex. A linear map f:Rn -->R, is equal to dotting with v =  (f (e1),...,f (en)).  i.e. if w 
= (b1,...,bn) = b1e1+...+bnen, then f(w) = b1f(e1)...+bnf(en). 



Since we already know from chapter one that Hom(R^n,R^m) ≈ (Rn)*x...x (Rn)*, 
m factors, it follows that every linear map R^n-->R^m is a given by a sequence of 
m dot products.  This gives the representation of a map by “matrix multiplication”.

Multiplying a matrix by a vector
An “m by n” matrix A is an array of m row vectors v1,...,vm, each row vector 
belonging to R^n.  We will define a multiplication by A taking column vectors of 
length n to column vectors of length m.  Thus given a column vector w of length n, 
we may define A.w to be the column vector of length m whose jth entry is vj.w.  
I.e. start with a vector w in R^n, and dot w with every row of A, obtaining m 
numbers, which are the entries of the vector A.w.  Since each dot product by a row 
is a linear map R^n-->R, we thus obtain a linear map R^n-->R^m, taking w to A.w.  
If Mat(m,n) = the space of all m by n matrices, this defines a map 
Mat(m,n)-->Hom(R^n,R^m), which we will see is a linear isomorphism.

Ex. Mat(m,n) is a vector space of dimension m.n, with basis all matrices having a 
‘1’ in a single entry and all other entries zero.

Ex. Mat(m,n) ≈ Hom(R^n,R^m).
 If A,B belong to Mat(m,n) and wj belongs to R^n, then not only is A.(w1+w2) = 
A.w1 + A.w2, and A.(cw) = c.(A.w), but also (A+B).w = A.w + B.w, and (cA).w = 
c.(A.w).  Thus the map Mat(m,n)-->Hom(R^n,R^m) is linear.  Prove it is also 
injective, hence isomorphic, since both spaces have dimension mn.

It is useful to spell out the inverse of the map Mat(m,n)-->Hom(R^n,R^m), thus 
giving another proof that Mat(m,n) ≈ Hom(R^n,R^m).  We do this next.

How to represent any linear map Rn --> Rm by matrix multiplication
Given a linear map T:Rn -->Rm, arrange the image vectors T(e1),...,T(en) as 
columns in a rectangular matrix A.  Then there are m rows and n columns.  If v = 
(a1,...,an) is any vector in Rn, then T(v) = a1T(e1)+...+anT(en), is the linear 
combination of the columns of A having the coordinates of v as coefficients.  Thus 
the ith entry of T(v) is obtained by dotting v with the  ith row of A.
  
Thus T(v) can be computed by multiplying A by v as follows: write v as a length n 
column vector to the right of A.  The product Av is a length m column vector, 
where the ith entry of Av is the dot product of the ith row of A with v.  Thus each 
linear map from Rn to Rm is represented by multiplying by a (unique) m by n 
matrix.  



Eg: The matrix of the map R2-->R2 defined by T(v) = 6v, has rows (and columns): 
(6,0) and (0,6).  The matrix of the rotation map of R2 counter clockwise through π/
2 radians has columns (0,1) and (-1,0).

Ex: Find the matrix of the reflection map of R2 in the line spanned by (1,0), and 
the matrix for counter clockwise rotation about (0,0) through t radians.

Ex: 1) The space of all m by n matrices forms a vector space Mat(m,n) where A+B 
is the matrix whose (i,j) entry, i.e. the entry in the  ith row and  jth column, is the 
sum of the (i,j) entries of A and B, and where cA is the matrix whose (i,j) entry is c 
times the (i,j) entry of A.

2) The space Hom(Rn, Rm) is isomorphic to the space Mat(m,n), (note the indices 
n,m occur correctly in the reverse order here).

3) The dimension of Mat(m,n), hence that of Hom(Rn,Rm), is mn.

More fundamental subspaces associated to a matrix
Definition: Given an m by n matrix A, the “nullspace” of A, written N(A), is the 
kernel of the associated map A:R^n-->R^m.  It is thus a subspace of R^n.

These are exactly the solution vectors of the system of homogeneous equations 
associated to the matrix A.  I.e. w in R^n belongs to the null space of A if and only 
if vj.w = 0 for every row vector vj of A, if and only if v.w = 0 for every vector v in 
the row space of A.  This gives an important viewpoint relating the nullspace and 
row space of a matrix.

Definition: Two vectors v,w in R^n are called “orthogonal” if and only if v.w = 0.  
Given any subset S of R^n, the “orthogonal complement” of S, called Sperp, is the 
set of all vectors w in R^n which are orthogonal to all vectors in S.

Note:  Under the isomorphism R^n-->(R^n)* noted above, taking a vector v to 
“dotting with v” or v.( ), this subspace Sperp of R^n maps isomorphically to the 
subspace Sperp of (R^n)* of linear functions vanishing on all elements of S, as 
discussed earlier at least for subspaces S.

Ex.  For any subset S of R^n, Sperp is a subspace of R^n.  For any subset S of R^n, 



dimension(Sperp) + dimension(span(S)) = n.

Ex.  For any matrix A, the nullspace and row space of A are orthogonal 
complements of each other, i.e. N(A) = R(A)perp, and R(A) = N(A)perp.

Remarks: The statement of the previous exercise reflects the basic fact that there 
are always two complementary ways to represent any subspace, namely implicitly 
and parametrically.  I.e. one either gives a finite set that spans the space, so that 
elements of the space are obtained as linear combinations of the given spanning 
vectors, or else one gives equations for the space, so that elements of the subspace 
are those vectors that satisfy the equations.   Thus the rows themselves give a 
spanning set for the row space, while any basis for the null space gives a finite set 
of equations for the row space.

These two ways of representing a subspace have complementary virtues.  If you 
want to produce elements of a subspace, you take any linear combination of a 
spanning set.  On the other hand if you want to recognize an element of your 
subspace, in the sense that someone presents you with a vector and asks whether it 
belongs to your subspace, then you want equations which are satisfied if and only 
if the answer is yes.  Thus the actual rows give a spanning set for the row space, 
while the basis for the null space gives a set of equations for recognizing, or 
characterizing, elements of the row space.

Remark:  Since when a matrix acts by multiplication on a column vector, the 
individual row vectors act as linear functions on that column vector, it is natural to 
think of the row vectors as elements of (R^n)*.  I.e. a 1 by n matrix, a single row 
vector, defines a linear map R^n-->R.  Similarly, since the column vectors of A are 
the values of the map R^n-->R^m represented by A on the standard basis vectors, it 
is natural to think of column vectors of A as elements of R^m.  I.e. column vectors 
are “vectors”, while row vectors are “dual vectors” or linear functions.

Proposition:  A matrix and its row reduced echelon form have the same null space.
Proof:  We already know that performing a row operation leaves the row space 
unchanged, hence it also leaves the orthogonal complement, the null space, 
unchanged.  QED.

Corollary:  The homogeneous system of equations associated to a matrix or to its 
reduced echelon form, always have the same solutions.



Note:  This was of course the reason for carrying out row reduction in the first 
place, i.e. the fact that it simplifies the equations without changing the solutions.

The null space as “relations” among the columns
If w is a vector in the null space of the m by n matrix A, then w.vj = 0 for every 
row vj of A.  But the jth row consists of the jth entries of every column of A.  So all 
the entries of the columns satisfy the same relation.  I.e. if w = (a1,...,an), and 
u1,...,un are the columns of A, then a1.u1+...+an.un = 0, i.e. the scalars ai are the 
coefficients of a relation among the columns {ui}.  Now since the null space stays 
the same under row operations, this means the columns of all row equivalent 
matrices satisfy the same relations.  In particular a subset of the columns of A are 
independent, i.e. satisfy no non trivial relations, if and only if the corresponding 
columns of the reduced echelon form are independent.  Thus since the pivot 
columns are the earliest subset of columns that form a basis of the column space of 
the reduced matrix, the columns of A that are in the same positions as the pivots of 
the reduced form are also independent.  In fact, since the jth column depends on 
earlier columns if and only if there is a relation among the columns whose last non 
zero entry occurs in the jth position, we can characterize the pivot columns of A as 
those that do not depend on earlier columns.  

Consequently, the process of reducing a sequence of vectors to an independent 
sequence, by eliminating those vectors that depend on earlier ones, can be carried 
out in R^m as follows.  Just place the given sequence of vectors as the columns of 
a matrix, and row reduced that matrix.  After finishing, identify the pivot columns.  
Then go back and take as the independent subset with the sane span, precisely 
those columns in the same positions as the pivot columns of the reduced matrix.  
These, the pivot columns of A, form a basis for the column space of A obtained by 
eliminating those columns that depend on previous ones.

Similarly one can extend an independent set of r vectors in R^m to a basis by 
forming a matrix with the given vectors as the first r columns and completing the 
matrix by the standard basis as the next m columns.  Then row reduce the matrix.  
The first r columns will be found to be among the pivots, and taking precisely all 
pivot columns of the original matrix will give a basis containing the original 
independent set.  In this way the theoretical operations of reducing a spanning set 
to a basis or extending an independent set to a basis, can be carried out in practice 
in R^m.

Remark:
These “relations” also give another proof of the uniqueness of the reduced echelon 



form of A.  Namely the location of the pivot columns is determined by the fact that 
they are exactly those columns of A that do not depend on previous columns, a 
property that is preserved under row operations.  The pivot columns of A thus form 
a basis for the space spanned by all the columns of A.  Each non pivot column is 
thus a unique linear combination of the pivot columns.  After each row operation 
the space spanned by the columns may change, but the relations among the 
columns, which are exactly the elements of the null space, do not change.  Hence 
with each row operation, the columns in the pivot positions are again a basis for 
the new column space, and each column in a non pivot position is still the same 
linear combination of the new pivot columns.  Since the pivot columns of the 
reduced form are the first r standard basis vectors, where r = the row rank of A, at 
that point the non pivot columns contain exactly the coefficients by which these 
columns depend on the pivot columns.  Thus the unique relations by which the 
original non pivot columns depend on the original pivot columns, determine the 
reduced row echelon form.

This uniqueness argument using the null space also has a geometric version.
 
Conceptual proof of uniqueness of reduced echelon form:
It is fundamental that a matrix and its reduced echelon form have the same null 
space.  Indeed that is the reason reduced echelon forms are useful for finding the 
null space of the original matrix.  I claim that null space determines entirely the 
reduced echelon form.  For simplicity take the case where the “pivot” columns all 
appear first, followed by the non pivot columns.  (Note that a column is a pivot 
column if and only if it does not depend linearly on earlier columns.  I.e. this is 
obvious for a reduced echelon matrix and hence also true for the original matrix, 
since the columns of both matrices satisfy exactly the same relations.)

If the matrix A is n by m with rank r, then the reduced echelon form has its last n-r 
rows equal to zero and its upper left r by r block equal to an identity matrix.  Thus 
it suffices to  show that the null space characterizes the remaining upper right (r) 
by (m-r) block.  Such a block of course determines, and is determined by, a unique 
linear transformation from m-r space to r space.  Further, that linear transformation 
is determined by its graph, an m-r dimensional linear subspace of m space.  

That subspace, i.e. that graph, except for a minus sign, is precisely the null space.  
I.e. from looking at the reduced echelon form one can see that the negative of the 
upper right r by (m-r) block is exactly the matrix of the linear map whose graph is 
the null space.  I.e. the reason the reduced echelon form is useful for producing 
elements of the null space is its form lets you take any values at all for the non 



pivot variables and solve for the unique corresponding values of the pivot variables 
that give an element of the null space.  Thus the null space defines a linear function 
from the space of the non pivot variables to the space of the pivot variables.  And 
in fact the non pivot part of the reduced echelon form of the matrix is just the 
negative of the matrix of that function.
Looked at another way, if A is the given matrix, the equation AX= 0 determines 
implicitly a linear function from m-r to r space whose matrix is the negative of the 
upper right r by (m-r) block of the reduced echelon form of A.

I.e., the null space determines a linear map from the coordinate subspace spanned 
by the non pivot variables to that spanned by the pivot variables, whose matrix 
columns are (when augmented at the bottom by zeroes) exactly minus the sequence 
of non pivot columns of the reduced echelon form of A.  Since both the location 
and the content of the pivot columns are known, the reduced form is determined by 
the null space.

Summary: Given a matrix A, the equation AX=0 determines implicitly a linear 
function from the space of non pivot variables to the space of pivot variables.  (A 
pivot column is one that is not a linear combination of earlier ones, so A 
determines its pivot variables.) That function has two incarnations, its matrix and 
its graph.  The (interesting part of the) reduced echelon form is (minus) that matrix, 
and the null space of A is the graph.  Since A uniquely determines its null space, it 
also uniquely determines its reduced echelon form.

One can also give a geometric version of the uniqueness argument via the row 
space.  I.e. since the row space projects isomorphically onto the coordinate 
subspace spanned by the pivot variables, it must be the graph of a linear map 
whose source space is the subspace of pivot variables and whose target is the 
subspace of non pivot variables.

Ex. Show that the non pivot part of the reduced row echelon form of a matrix A is 
the transpose of the matrix of the linear map from the subspace spanned by the 
pivot variables to the subspace spanned by the non pivot variables, and whose 
graph is the row space R(A).

The span of the column vectors also has an intrinsic meaning in terms of the map 
defined by the matrix.
Definition:  The “column space” C(A) of an m by n matrix A, is the subspace of 
R^m spanned by the columns of A.



Proposition:
The column space of a matrix is the image of the map defined by the matrix.
Proof:  By definition, the columns of A are the images of the standard basis under 
the map defined by A.  Since the standard basis spans the domain space, their 
images span the image of the domain space, i.e. the image of the map.  QED.

Definition:  The column rank of a matrix is the dimension of the span of its 
columns.

Proposition:  The column rank and row rank of a matrix are equal.
Proof:  One proof is to note that the row rank equals the number of non zero rows 
in the reduced echelon form, which equals the number of  pivot columns.  Since 
the non zero rows are a basis for the row space and the pivot columns are a basis 
for the column space this does it.
Another proof is to observe that the column space is the image space of the 
associated map, which is isomorphic to the quotient of the domain space by the 
null space.  Since the rows are dual vectors that map the null space to zero, they 
span the dual space to the quotient of the domain by the null space, so the row 
space is dual to the column space, hence they have the same dimension. QED.

Remark:  Since rankR(A) = rankC(A), we call it simply the rank of A.  In 
particular this equals the dimension of the image of the map defined by A, which 
thus agrees with the terminology of rank of a map.

Remark:  A fourth subspace N(A*) is sometimes introduced, the null space of the 
“transpose” of A, the n by m matrix A* obtained by interchanging the rows and 
columns of the m by n matrix A.  This is the space of equations defining the image 
subspace C(A).  Hence N(A*) = C(A)perp, and vice versa.  In particular, as a 
corollary of the previous result, A and A* have the same rank.  When we see below 
how to represent any linear map by a matrix, using a basis, we will see that A* 
represents the transpose of the map represented by A.

Two ways to represent a subspace, “parametrically” and “implicitly”
There are two complementary ways to represent a subspace, first by giving a basis 
or a spanning set for it, and second by giving equations for it.  The first method 
parametrizes the subspace as the image of a map from some R^n, and the second 
defines it implicitly as the solution space of some equations.  A fundamental 
problem is to start from one representation and find the other.  Thus a system of 
linear equations gives an implicit representation of the solution space, the null 



space of that system.  Solving the equations means finding a spanning set or basis 
for that null space.  Thus given any matrix, the rows give a finite system of linear 
equations for the null space, and conversely a basis for the null space gives a finite 
system of linear equations for the row space.  I.e. the rows parametrize the row 
space, while the null space represents the row space implicitly.  Similarly, a basis 
for the null space of the transpose A* gives linear equations for the column space 
C(A), the subspace spanned by the columns of A.

Remarks on non linear geometry:
The study of the geometry of subsets of R^n defined by higher degree equations, 
i.e. non linear ones, is much more complicated in this regard.  E.g. a plane curve 
defined implicitly by a general equation of degree  ≥ 3, cannot be parametrized by 
any polynomial map from R^1 to the curve, in fact all such maps are constant!  It is 
feasible to find equations for the image of a polynomial map however and there 
even exist computer programs to do this.  The point is that parametrizable subsets 
form a small subfamily of all implicitly definable “algebraic sets”.  Indeed it turns 
out that if we consider also complex points of our sets, that every curve becomes a 
surface, and the parametrizable surfaces are all “spherical”.  I.e. general algebraic 
curves correspond to surfaces that have the topology of a surface possibly with 
handles or holes, like a doughnut or multi - holed doughnut.  Then considerations 
of topology show that one cannot parametrize a surface with holes by any surface 
with fewer holes.  Parametrizing a real curve by R corresponds to parametrizing 
the complex form of the curve by C, and (after adding a point at infinity), C 
corresponds to the sphere, i.e. the surface with no holes.  One can map any surface 
onto one with fewer holes however and it is usual to study plane curves this way, 
e.g. by projecting them onto the X- axis and studying the fibers of the projection.

Summary:  Any matrix can be reduced by elementary row operations to a unique 
matrix in reduced echelon form.  Two matrices of the same size have the same 
reduced echelon form if and only if they have the same row space.  After reduction, 
the rows of the reduced form will be a basis of the original row space.  

The columns of the original matrix which are in the same positions as the “pivot 
columns” of the reduced form are a basis for the column space of the original 
matrix.  In both the original matrix and the reduced form, a column is a pivot 
column if and only if it does not depend linearly on previous columns.  

The null space of a matrix as well as the row space, are the same as the null space 
and row space of the reduced form.  Row reduction however transforms the 
column space of a matrix into one of the standard coordinate subspaces, i.e. the 



column space of the reduced form of a matrix usually shares only its dimension 
with the original column space.

An m by n matrix represents a linear map from R^n to R^m.  The column space of 
a matrix is exactly the image space of its associated linear map.  The null space of 
a matrix is exactly the kernel of the map it represents.

Given a matrix A, the subspaces N(A) and R(A) are dual in the sense that a basis 
for one gives linear equations for the other.  Likewise, N(A*) and C(A) are 
similarly dual subspaces.

Worked example:
Start from a system of 3 equations in 3 variables:

2X   -Y + 2Z = 0
3X + 3Y +Z = 0
 X   -5Y +3Z = 0, and form the associated matrix A of coefficients

|2  -1  2|
|3   3  1|
|1  -5  3|.  Now row reduce it, (this took me a few failures).

|1   0   (7/9)|
|0   1  (-4/9)|
|0   0      0   |.
Now we have two spanning sets for R(A), the original spanning set of rows:
{(2, -1, 2), (3, 3, 1), (1, -5, 3)}; and the rows of the reduced matrix 
{(1, 0, 7/9), (0, 1, -4/9)}, which form a basis.

We also know N(A) has dimension one, since there is only one non pivot variable, 
namely Z.  We get a basis for N(A) by starting from the standard basis of the non 
pivot space, and solving for X and Y using the reduced equations:
X + (7/9)Z = 0, so X = (-7/9)Z; and Y - (4/9) Z = 0, so Y = (4/9)Z.  Since the non 
pivot space is just the Z axis, the standard basis is Z=1, and we get X = -7/9, Y = 
4/9.  Thus the basis vector for N(A) is (-7/9, 4/9, 1).  If we want integers, multiply 
by 9 and get (-7, 4, 9).

This basis vector for N(A) gives an equation for R(A) when viewed as an equation, 
namely -7X + 4Y + 9Z = 0.  You can check that all rows do satisfy this equation.



Of course the rows also give equations for N(A), either the original equations, or 
more efficiently the (almost) reduced equations 9X+7Z = 0 = 9Y-4Z.

Knowing where the pivot columns are also gives us a basis of the 2 dimensional 
column space, namely the two columns in the same positions as the pivot columns 
in the reduced matrix.  Thus the first two columns (written horizontally here) 
(2,3,1) , (-1,3,-5), form a basis of C(A).  If we want an equation for C(A) we have 
to row reduce the transpose matrix, although now that we know the first two 
columns already span C(A), we could just use them.  I.e. we might as well just row 
reduce this matrix, the transpose of the pivot columns:
| 2   3   1|
|-1  3  -5|.  I claim the reduced form is this:

|1  0  2|
|0  1 -1|.  So a basis of N(A*) is {(-2,1,1)}, hence an equation for C(A) is given by

-2U + V + W = 0, where we have chosen to use different variables U,V,W for the 
column space.

Another example:
|-1   1    2   0|  = B
| 2   2   -1  -1|
|-1   5   5   -1|.  This matrix B reduces to the following matrix:

|1   0   (-5/4)  (-1/4)|
|0   1   (3/4)   (-1/4)|
|0   0     0           0   |.  

If the variables are X,Y,Z,W, this time there are 2 non pivot variables, Z,W so to 
get a basis of N(B), we take the 2 standard basis vectors of that space namely 
(Z,W) = (1,0), and (Z,W) = (0,1), and for each of these we solve the reduced 
equations for X and Y.  This gives the following two basis vectors for N(B): 
{((5/4), (-3/4), 1, 0), ((1/4), (1/4), 0, 1)}.  If we prefer integers, we get {(5, -3, 4, 0), 
(1, 1, 0, 4)}.   As before these give equations for R(B).

From the rows of the reduced matrix we find the basis {(4, 0, -5, -1), (0, 4, 3, -1)} 
of R(B).  And since the first two columns are the pivots, we get the basis 
{(-1, 2 -1), (1, 2, 5)} for C(B).  Thus to find equations for C(B) we can reduce



|-1   2   -1|
| 1   2    5 |, to find a basis for N(B*), since this matrix has the same row space and 
hence the same null space as the full B*.

Ex.  Find a basis for N(B*), hence find equations for C(B) = R(B*).

The matrix associated to a linear map T:V-->W by bases of V,W.
Since any finite dimensional vector space is isomorphic to some R^n by choosing a 
basis, any linear map between finite dimensional spaces can be represented by a 
matrix by choosing bases.  I.e. if T is any linear map from one finite dimensional 
vector space V to another W, then by choosing bases for V and W we obtain 
isomorphisms between these abstract spaces and some coordinate spaces Rn and 
Rm.  Hence, if dim(V) = n and dim(W) = m, we obtain a resulting linear map from 
Rn to Rm which has a matrix A.  This A is called the matrix of T associated to the 
given bases for V and W.  

So given T:V-->W and bases v1,...,vn, and w1,...,wm of V,W, then A is the matrix 
of the composition Rn -->V-->W-->Rm , where the first (left) map Rn -->V sends 
each ei to vi, the second map is T:V-->W, and the 3rd map W-->Rm sends w to the 
coefficient vector of its representation in the basis {wj}.  

Thus if N: Rn -->V,  and M: Rm -->W, are the parametrizations determined by the 
given bases, then A is the matrix of the composition  M-1 o T o N.  Thus the jth 
column of the matrix A for T, is the coefficient vector (c1,...,cm) of the image of 
the standard basis vector ej under the triple composition.  Since M(ej) = vj, this is 
the coefficient vector of T(vj) = c1w1+...+cmwm, in the given basis for W.

A map from V to itself has a matrix associated to any basis of V.  I.e. if v1,...,vn, is 
a basis for V, and N: Rn -->V is the associated parametrization, the matrix for a 
map T:V-->V in this basis is the matrix of the composition N-1 o T o N: Rn -->Rn.

Thus if T:Rn -->Rn is already given by a matrix B in the standard basis, and we 
want to express it in a new basis v1,..., vn, then N is the matrix with the v’s as 
columns, and the new matrix A for T in terms of this new basis is A = N-1.B.N.

Eg: If D:V-->V takes a polynomial of degree ≤ 2 to its derivative, the matrix of D 



in the basis {1, X, X2} has columns (0,0,0), (1,0,0), (0,2,0), since D(1) = 0 = 0
(1,0,0) + 0(0,1,0) + 0(0,0,1), and D(X) = 1 =  1(1,0,0) +0(0,1,0) +0(0,0,1), and 
D(X2) = 2X = 0(1,0,0) + 2(0,1,0) + 0(0,0,1).

Map composition corresponds to matrix multiplication 
We can even compute compositions of maps by multiplying matrices.  Namely, if 
B,A are matrices where the number of columns of B equals the number of rows of 
A, so that the rows of B have the same length as the columns of A, we define the 
product BA to be the matrix whose (i,j) entry is the dot product of the ith row of B 
with the jth column of A.  The product BA then has the same number of rows as B 
and the same number of columns as A.

Ex: If T:V-->W and S:W-->U are linear maps, and we choose bases for all three 
spaces, the matrix of the composition SoT has as entry in its ith row and jth 
column, the dot product of the ith row of the matrix for S with the jth column of T.  
(Sketch: Assigning to each vector in a space its ith coefficient in a given basis, is a 
linear function.  Thus if the coefficient of ui in the expansion of S(w1) is a1, ..., and 
the coefficient of ui in the expansion of S(wn) is an, and if 
T(vj) = b1 w1 +...+ bn wn, then the coefficient of ui in the expansion of S(T(vj)) = 
b1 S(w1) +...+ bn S(wn), is b1 a1 +...+ bn an.  Since the ith row of S consists of the 
coefficients (a1, ..., an) of ui in the expansions of the images S(w1),..., S(wn) of the 
basis vectors w1,..., wn, and the jth column of T consists of the coefficients (b1, ..., 
bn) of the vector T(vj) in the basis w1,..., wn, the result follows.)

Thus if A is the matrix of T, and B is the matrix for S, the matrix product BA = the 
matrix for SoT, (in the same bases). 

E.g. If B = | 2   3 |   A = | 5   7 |,  then  BA = |34   20|
                  | 1  -4 |,        | 8   2 |                      |-27  -1|

Rmk: Since map composition is associative, the previous exercise implies that 
matrix multiplication is also associative.  Of course since if a matrix A has n rows, 
and B has m columns, and AB is defined, the nm entries in the product AB just 
consist of nm operations of taking dot products of rows of A by columns of B, so 
the easy fact that dot product of vectors is associative also implies the result for 
matrices.



Ex. Find examples of two 2x2 matrices A,B such that A.B ≠ B.A, hence matrix 
multiplication is (usually) not commutative.  Find some (non zero) 2x2 matrices 
A,B that do commute, i.e. such that A.B = B.A.

Identities, isomorphisms, and matrix inverses
An n by n matrix with all diagonal entries equal to 1, and all other entries equal to 
0, represents the identity map R^n-->R^n and thus is called an identity matrix.

If the matrix A represents an isomorphism, then since isomorphic spaces have the 
same dimension, A is square, hence n by n for some n, and the inverse 
isomorphism of A is represented by some n by n matrix B with AB = BA = I, 
where I is the n by n identity matrix.  We call B the (matrix) inverse of A.  Note 
that if A is a square matrix, then a matrix B is a left inverse for A if and only if it is 
a right inverse, since this holds for linear maps.

We know that an n by n matrix A represents an isomorphism R^n-->R^n if and 
only if the map it represents takes the standard basis vectors to a basis of R^n, i.e. 
if and only if the columns of A are a basis of R^n.  Then since the column rank 
equals the row rank, this is equivalent to the fact that the rows of A form a basis of 
R^n.  Thus an n by n matrix A is invertible if and only if the rows form a basis of 
R^n if and only if the columns form a basis of R^n, if and only if A has rank n.  Of 
course conceptually, since the rows represent the coordinate functions of the map 
represented by A, i.e. linear functions from R^n to R, we might more properly view 
the rows as a basis for (R^n)*, and the columns as a basis for R^n.

The matrix of the transpose is the transpose of the matrix
We know an m by n matrix A defines a linear map A:R^n-->R^m and that there is 
an associated transpose map A*:(R^m)*-->(R^n)* defined by “preceding by A”.  
We also know this transpose map has a matrix representation as an n by m matrix, 
using the bases of (R^m)* and (R^n)* dual to the standard bases of R^m and R^n.  
We have already defined the transpose of the matrix A to be the matrix A* obtained 
by interchanging the rows and columns of A.  Fortunately this transpose matrix 
does represent the matrix of the transpose map.  Sometimes I denote the matrix of 
a map T by [T].  In that notation, then we claim [T*] = [T]*.

I still find this stuff confusing but here is my attempt to argue this.  
Let T:R^n-->R^m be the map defined by the m by n matrix A.  Thus the 1st 
column of A are the coefficients of the image vector T(e1) in terms of the basis 
vectors e1,...,en.  Similarly the first row of A consists of just the first coefficient of 



each of the image vectors T(e1), ..., T(en), i.e. the first row of A is the sequence of 
numbers e1*(T(e1)),..., e1*(T(en)).  

Likewise, the matrix of T*:(R^m)*-->(R^n)*, in the dual basis, has as 1st column, 
the coefficients of the function T*(e1*) in terms of the dual basis e1*,...,en*.  And 
just as the ej coefficient of a vector v in R^n equals the value of ej* on v, dually the 
ej* coefficient of the function T*(e1*) in (R^m)*, is the value of this function on 
ej.  Thus the entries of the first column of the matrix for T* is the sequence of 
numbers T*(e1*)(e1),...,T*(e1*)(en).  By definition of T* as “preceding by T”, this 
equals the sequence e1*(T(e1)),..., e1*(T(en)).  Thus the first row of the matrix for 
T, in the standard bases for R^n, R^m, equals precisely the first column of the 
matrix for T*, in the dual bases for (R^n)*, (R^m)*.  I.e. the matrix in the natural 
bases, for the transpose map T*:(R^m)*-->(R^n)*, is just the transpose of the 
matrix for the map T:R^n-->R^m, obtained by interchanging rows and columns.

To argue it just in terms of matrices, note that the isomorphism R^n-->(R^n)* 
taking a vector v to “dotting with v”, or v.( ), just takes a column vector to its 
transpose, since a row vector acts on a column vector by dotting with it.  Then 
given a matrix A defining a map T:R^n-->R^m, by definition the matrix of the map 
T* is that of the composition R^m-->(R^m)*-->(R^n)*-->R^n, where the first map 
takes a column vector to a row vector, the last map does the opposite, and the 
middle map is T* = preceding by T.  Since T is represented by A, T* can be 
represented by preceding by A.  Thus this composition sends the column vector e1 
to the row vector e1*, whose matrix is the row vector [ 1, 0 ...0], so preceding by 
A gives the product [1 0 ...0].A = the first row of A.  The last map then sends this to 
a column vector, the first column vector of the matrix for T*.

As a corollary, for maps S,T, we have (SoT)*(g) = go(SoT) = (goS)oT = T*(goS) = 
T*(S*(g)) = (T*oS*)(g), hence (SoT)* = T*oS*.  Thus the same is true for 
transposes of matrices, i.e. as long as the product A.B is defined, then (AB)* = 
B*A*.  If we had checked this directly, as is not too hard, we could have obtained 
the result just argued for transposes.  I.e., using what we just claimed about 
transposing matrices, since [e1*] = [e1]*, we have: transpose of first row of A = 
([e1*].A)* = ([e1]*.A)* = A*.[e1] = first column of A*.

If you are still puzzled by this, just take two column vectors v,w of the same 
length, and denote the corresponding row vectors by v*,w*, and check that v*.w = 
w*.v, as matrix products.  That’s all that’s going on here.  I.e. you just do this one 
row and column at a time to get the same result for matrices.
I.e. if v =



| 2 |
| 4 |
| 1 |, so v* = [ 2  4  1]

and if w =
| 5 |
| 2 |
| 7 |,  so w* = [ 5  2  7], then,

v*.w = 2.5 + 4.2 + 1.7 = 5.2 + 2.4 + 7.1 = w*.v = 25.

Well, this is even more enlightening, since it shows that the result just depends on 
commutativity of multiplication in the field of scalars.  I.e. this whole thing is just 
a reflection of the fact that v.w = w.v for dot products of vectors.  That was not as 
obvious, at least to me, in those more abstract arguments.

We also get a nice corollary about dot products, since for two n dimensional 
column vectors v,w their dot product, which we could write as <v,w>,  equals the 
matrix product v*.w.  Now if A is an n by n matrix then the dot product of Av with 
w equals (Av)*.w.  Thus <Av,w> = (Av)*.w = v*.A*.w = <v, A*w>.  Thus you can 
move a matrix from one factor in a dot product to the other, if you change the 
matrix into its transpose.

Elementary row operations as multiplication by “elementary  matrices”
Now that we know more about multiplying matrices, we can reinterpret the process 
of row reduction more conceptually in terms of linear isomorphisms.   Recall that 
in an n by m matrix A representing a linear map R^n-->R^m, the columns are the 
coefficients of the values A(ej) of the map at the standard basis vectors.  If we 
interchange the first two rows, we have changed the coefficients expressing these 
values, and thus we have changed the values of the map on the standard basis 
vectors.  In this case we have changed the map A into the composition of the 
original map A, with the map on the target space that interchanges the first two 
basis vectors there.  Since this operation is composing with a linear map on the 
target space R^m, it must be achieved by left - multiplying A by some square m by 
m matrix that represents interchanging the first two standard basis vectors of R^m.  
The matrix that does this is just the result of performing the same row operation on 
the identity m by m matrix.  The same holds for all elementary row operations as is 
easy to check in examples.



Definition:  An elementary matrix is a square matrix obtained from the identity 
matrix by performing one of the elementary row operations.

Then each elementary row operation on an m by n matrix A, can be performed by 
left multiplying A by the corresponding elementary m by m matrix E.
For example, here are some elementary matrices:

|0  1  0|
|1  0  0|
|0  0  1|,   

|c  0  0|
|0  1  0|
|0  0  1|,

|1  0  c|
|0  1  0|
|0  0  1|.  

Do some experiments and see what these do to a 3- rowed matrix A, when used to 
multiply A from the left.

Of course we will not stop using our old row operations in favor of this new 
process, since that is less efficient, but just noticing this new interpretation pf row 
operations gives us some new insight into them.  E.g. since row operations are 
reversible by other row operations, it follows that every elementary matrix is 
invertible, hence so is every product of them  But more is true.

Proposition:  Every invertible matrix is a product of elementary matrices.
Proof:  It suffices to show that every invertible matrix can be obtained by applying 
elementary row operations to the identity matrix.  Then since row operations re 
invertible, it also suffices to show that every invertible matrix can be transformed 
into the identity matrix by row operations.  This is true however, since every 
matrix can be reduced by row operations to reduced echelon form, and the reduced 
echelon form of an n by n matrix of rank n, has all n columns as pivots, hence is 
the identity matrix.  Thus every invertible matrix A has reduced echelon form equal 
to the identity matrix, hence there is a sequence of elementary row operations, 
hence a product of elementary matrices, that multiplies A into the identity matrix.



Cor:  Row operations can be used to calculate the inverse of a matrix.
Proof:  Take the n by n matrix A and add to it a copy of the n by n identity matrix, 
to form an n by 2n matrix.  Then do row operations that reduce A to the identity 
matrix, while simultaneously carrying out the same operations on the identity 
matrix.  At the end, A will be transformed into the identity by left multiplying by 
some product B of elementary matrices such that BA = I, so that B = A^-1.  Thus 
the identity matrix will have been transformed into the product BI = B = A^-1. 
QED.

Example:  To find the inverse of A =
| 1  0  0|
| 1  1  0|
| 1  1  1|.  We row reduce the augmented matrix [A  I] as follows:

| 1  0  0| 1  0  0|
| 1  1  0| 0  1  0| ≈ 
| 1  1  1| 0  0  1|

| 1  0  0|  1  0  0|
| 0  1  0| -1  1  0|
| 0  1  1| -1  0  1| ≈

| 1  0  0| 1   0  0|
| 0  1  0| -1  1  0|  =  [I  A^-1]
| 0  0  1| 0  -1  1|.

I.e. now the right half of this matrix is the inverse of A.  You can check this by 
multiplying it by A:

| 1  0  0|  | 1   0  0|     |1  0  0|
| 1  1  0|  |-1  1  0|  = | 0  1  0|  = I.  So it checks.
| 1  1  1|  |0  -1  1|     | 0  0  1|

Note: You do not need to know in advance that A is invertible, since that will be 
revealed by the fact that the reduced echelon form of A is I.  In fact the same 
procedure finds a left - inverse of an m by n matrix A whose n columns are 
independent.  In this case one takes only the first n rows of the resulting B to give 
the left inverse.

Classification of linear maps up to equivalences:  



There are several natural equivalence relations on linear maps V-->W defined in 
terms of isomorphisms.  Everything we have done so far can be reinterpreted in 
terms of these equivalence relations.  Two linear maps S:V-->W, and T:V-->W 
between finite dimensional spaces V,W, are called equivalent if there are 
isomorphisms P:V-->V and Q:W-->W of the source and target spaces such that 
QoSoP = T.  We saw at the end of chapter one that this is possible if and only if 
S,T have the same rank.  We call S and T left - equivalent if P can be taken as the 
identity, i.e. if T = QoS for some isomorphism Q.  Similarly, S and T are right - 
equivalent if Q can be taken as the identity and T = SoP.  The row operations 
studied in this chapter provide canonical representatives for these equivalence 
relations as follows.

Since a matrix M is left equivalent to exactly those products of form EM where E 
is invertible, it follows that M is left equivalent to precisely those matrices into 
which it can be transformed by elementary row operations.  In particular M is left 
equivalent exactly to those matrices (of the same size) with the same row space, 
hence also with the same null space.  Intrinsically then, two maps V-->W are left 
equivalent if and only if they have the same kernel.  This of course implies they 
have the same rank, but is a much stronger restriction, since their kernels must not 
only have the same dimension, but must be actually the same subspace.

If we define elementary column operations in the same way as elementary row 
operations, (or just as row operations applied to the transpose of the matrix), it 
follows that two matrices (of the same size) are right equivalent if and only if they 
can be transformed into one another by elementary column operations, if and only 
if they have the same column space.  Since the columns span the image of the 
corresponding map, two abstract maps S,T:V-->W are right equivalent if and only 
if they have the same image, if and only if their transposes S*,T*:W*-->V* have 
the same kernels.

Thus elementary operations allow us to compute equivalence classes of maps, 
since then two maps S,T:V-->W are left - equivalent iff their matrices (in the same 
bases) are equivalent by row operations; they are right - equivalent iff their 
matrices are equivalent under column operations, and they are just equivalent iff 
their matrices are equivalent using both row and column operations.  In particular, 
given bases for V,W, we can compute whether or not two maps S-->W have the 
same kernel and/or image using matrices, and in either case we can find bases for 
those subspaces, which are “canonical” in terms of the given bases for V,W.

What comes next?



In the next chapter we take up the more subtle question of how simple can we 
make the matrix of a map T:V-->V from a space to itself, where naturally we now 
require using the same basis in source and target since they are the same space.  As 
it turns out, this “similarity” problem has a nice theoretical answer, the rational 
canonical form, which can again be computed using row and column operations, 
this time applied to matrices with polynomial entries.  There is also a more refined 
theoretical answer, the general Jordan form which, except in some special cases, is 
less computable due to the practical difficulty of factoring polynomials.

Chapter Three: Decomposing V into “T-cyclic” subspaces
We want to classify linear maps T:V-->V of a finite dimensional space V up to 
similarity; e.g. how simple can we make the matrix of T by a good choice of basis 
of V?  The essential observation here is the fact that since the source and target 
space are the same, we can now compose T with itself, hence we can form powers 
of T, and thus also polynomials in T.  Note that if S is similar to T, i.e. if S = 
UoToU^-1, then also S^n is similar to T^n, since then S^n = (UoToU^-1)....
(UoToU^-1) = Uo(T^n)oU^-1, due to canceling adjacent pairs of U^-1.U in the 
middle.  Consequently, if S is similar to T, then every polynomial P in S is similar 
to the same polynomial in T: i.e. if S = UoToU^-1, then P(S) = UoP(T)oU^-1.

Ex.  Check the claim we just made for similarity of polynomials in S,T.

Similar polynomials satisfy the same polynomials
The observation that forming polynomials preserves similarity leads in some cases 
to a complete understanding of the similarity class of an operator.  In particular, 
since only the zero operator is similar to itself, if we find a polynomial P such that 
P(T) = 0, then every operator S similar to T must also satisfy P(S) = 0.  For some 
operators this is also sufficient as we shall see.  First we discuss the general idea of 
polynomials satisfied by an operator.

Terminology: A polynomial is called “monic” if the lead coefficient equals one.  

Lemma: Every linear operator T:V-->V on a finite dimensional k - vector space V, 
satisfies some monic (hence non zero) polynomial over k.
Proof: If dim(V) = n, then dim(Hom(V,V)) = n2, but k[X] is infinite dimensional, 
with basis all monomials {1, X, X2, X3,....}.  Thus the map k[X]-->Hom(V,V) has 
a non zero kernel, i.e. for some f ≠ 0, f(T) = 0.  Dividing through by the leading 
non-zero coefficient makes the polynomial monic and T still satisfies it.  QED.



 
Lemma:  If There is a unique monic polynomial of least degree satisfied by T.  
Indeed this minimal polynomial divides all other polynomials satisfied by T.
Proof:  If f,g are two (non zero) polynomials of least degree satisfied by f, and we 
divide g by f, we get an equation if form g = qf + r, where deg(r) < deg(f).  Since r 
= g - qf, and T satisfies both f and g, it also satisfies r.  Since r has degree less than 
f, but f has least degree among non zero polynomials satisfied by T, so r = 0, i.e. f 
divides g.  Since similarly g divides f, they must be scalar multiples of one another.  
In particular, if both are monic they are equal.  QED.

We give a name to the unique monic polynomial of minimal degree satisfied by T.

Defn: If T:V-->V is a linear map, and dim(V) is finite, the monic polynomial f of 
least degree with f(T) = 0, i.e. such that (f(T))(v) = 0 for all v in V, is called the 
minimal polynomial of T.

Note it follows from the proof of existence of the minimal polynomial that it 
always has degree ≤ n^2 where n = dim(V).  In fact the minimal polynomial has 
degree ≤ n = dim(V), a fact whose proof will be crucial in studying similarity.  

Definition:  If T:V-->V is a linear map, dim(V) is finite, and v is a vector in V, the 
unique monic polynomial f of least degree with f(T)(v) = 0, is called the minimal 
polynomial of T at v.

Remark:  There is some such polynomial since the minimal polynomial for T on 
all of V works.  The uniqueness proof for the one of least degree is also the same.

The next result is key to the ideas of this chapter.
Lemma:  If T:V-->V is a linear map, dim(V) is finite, and v,w are vectors whose 
minimal T-polynomials are f,g, then there is a vector u in V whose minimal T-
polynomial if the least common multiple of f,g.
Proof:  First we prove it in case f,g are relatively prime, in which case their lcm is 
the product f.g.  Then we claim that u = v+w works.  Since (f.g)(T) = f(T)og(T) = g
(T)of(T) does annihilate both v and w it also annihilates their sum.  Now let h be 
any polynomial such that h(T) annihilates v+w.  We claim f.g divides h, for which 
it suffices to show that each of f and g do so.  Since f annihilates v and h 
annihilates v+w, thus f.h annihilates both v and v+w, hence also w.  Hence the 
minimal T-polynomial for w divides f.h, so g divides f.h.  Since f and g are 
relatively prime, then g divides h.  A similar argument shows f also divides h.  So 
indeed f.g is the minimal T-polynomial at u = v+w.



Now let the T-minimal polynomials of v,w, namely f,g, be arbitrary.  Consider all 
irreducible factors of f and of g, and let A be the product of those irreducible 
factors that occur more often in f than in g, and let B be the product of those 
irreducible factors that occur at least as often in g as in f.   Then A and are 
relatively prime, and their product A.B = the lcm of f and g.  Moreover f = A.p, and 
g = B.q, for some polynomials p,q.  Then since f, g are the T-minimal polynomials 
of v,w, it follows that A,B are the T-minimal polynomials of p(v) and q(w).  Hence 
A.B = lcm(f,g) is the T-minimal polynomial of u = p(v)+q(w). QED.

Corollary:  If m is the minimal polynomial of T on the space V, then there is a 
vector w in V such that the minimal polynomial of T at w is also m.
Proof: Since m(T) annihilates every vector in V, it follows that for each vector w, 
the minimal polynomial of T at w has degree at most that of m.  Choose w to be a 
vector whose minimal polynomial has maximal degree among all vectors in V.  
Then for any other vector v, we claim the minimal polynomial of T at v divides that 
at w.  It will follow that the minimal polynomial of T at w also annihilates every 
other v, and hence is the minimal polynomial of T for the whole space.

If the divisibility does not hold, some irreducible factor of the T-minimal 
polynomial at v occurs to a higher power than in the T-minimal polynomial of w.  
Then the lcm of the two minimal T-polynomials at v and w has degree greater than 
either of them.  Thus by the lemma there is a vector whose T-minimal polynomial 
has that greater degree, contradicting the choice of w.  QED.

Cor:  The minimal polynomial of an operator T on V has degree ≤ dimV.  
Proof:  Let v be a vector whose minimal T-polynomial equals that for T on all of V, 
and consider the evaluation map at v, namely the map k[X]-->V taking f(X) to 
(f(T))(v).  If n = dim(V), then the n+1 monomials {1,X,X^2,...,X^n}, must have 
dependent images in V, i.e. the vectors {v,T(v),T^2(v),...,T^n(v)} are linearly 
dependent in V.  Thus some polynomial of degree ≤ n in T vanishes at v, but by 
choice of v, this polynomial vanishes also on all of V.  QED.

Revisiting a key example, the derivative operator on polynomials
Now we can completely understand the example of the derivative operator on 
spaces of polynomials of bounded degree; i.e. recall the derivative D acting on the 
space V of real polynomials of degree < n.  The key point is that the nth derivative 
of any such polynomial is zero, but the (n-1)st derivative of X^(n-1)equals (n-1)!, 
which is not zero.  Hence the minimal polynomial of D on V divides t^n, but does 
not divide t^(n-1).  Hence t^n is the minimal polynomial, and X^(n-1) is an 



element of V which has the same minimal D-polynomial as the whole space.  It 
follows that this polynomial and its 1st n-1 derivatives are independent, hence they 
form a basis of the space, and one in which the matrix for D is especially simple.  

To make it even simpler we choose instead the scalar multiple X^(n-1)/(n-1)! as 
our first basis vector.  This gives us the basis {X^r/r!} with 0 ≤ r ≤ n-1, and this has 
the nice property that D just shifts each of the first n-1 basis vectors to the next 
basis vector.  We call such a basis “cyclic”.  Moreover in this special case D 
annihilates the last basis vector, namely the constant 1 = 
D^(n-1)(X^(n-1)/(n-1)!, so the matrix in this basis becomes:

|0  0  .........0|
|1  0  0  .....0|
|0  1  0  .....0|
...........
|0  0  0....1 0|,  i.e. 1’s just below the main diagonal, and zeros elsewhere.

We claim that D is similar precisely to those linear operators on V that also have 
the same minimal polynomial, namely t^n.  It suffices to show that any such 
operator has this same matrix in some basis, since then both operators are similar 
to the operator defined by this matrix on R^n.  But if T:V-->V has minimal 
polynomial t^n, where n = dim(V), then by our key lemma, there is some vector v 
in V whose minimal T-polynomial is also t^n.  Then for this v, the vectors {v, Tv, 
T^2v,...,T^n-1(v)} must be independent, while T^n(v) = 0.  Thus in this basis the 
matrix for T is also the one above:

|0  0  .........0|
|1  0  0  .....0|
|0  1  0  .....0|
...........
|0  0  0....1 0|.

Perhaps the simplest model for this operator is the quotient space of all 
polynomials in X, modulo the subspace of those divisible by X^n, i.e. V = 
k[X]/(X^n), with operator T = multiplication by X.  I.e. then the basis 
{1,X,X^2,...,X^(n-1)} is shifted to the right by T, until finally T(X^(n-1)) = 0, and 
we get the matrix above.

The fundamental cyclic example: 



If we generalize the derivative example only slightly, we are led to the fundamental 
model for all operators on finite dimensional spaces.  Certainly, one of the most 
fundamental and ubiquitous vector spaces over a field k is the space k[X] of 
polynomials in a variable X, with coefficients in k.  To get a finite dimensional 
such example, we mod out by a large subspace, like the subspace (f) all multiples 
of some polynomial f.  Then look at V = k[X]/(f), the space whose elements are 
represented by polynomials, but where two polynomials are considered equal if 
they differ by a multiple of f.  Equivalently the polynomial f is set equal to zero.  
By the division algorithm, we can write any polynomial g as g = f.h + r, for some 
polynomials h and r, where deg(r) < deg(f), and then g is equivalent to r.  Since two 
polynomials of degree < deg(f) cannot differ by a multiple of f unless they are 
equal, V is represented precisely by those polynomials of degree less than deg(f).  
Thus V has dimension = deg(f) = n, with basis (the equivalence classes of) the 
monomials {1, X, X^2,....,X^(n-1)}.

Now one of the simplest linear maps on this space is just multiplication by X.  This  
obviously takes the basis above to the sequence { X, X^2, X^3,...,X^n}.  But since 
f has degree n, and f = 0 in this space, we can reduce X^n to some polynomial of 
degree ≤ n-1.  Thus each of the first n-1 basis vectors are taken to the next basis 
vector.  Then if f  = a0 + a1X +...+an-1 X^(n-1) + X^n, and since f = 0 in this 
space, the last basis vector is taken to X^n = - a0 - a1X - ...- an-1 X^(n-1).  Thus 
the matrix of this map, in this basis is the following:

|0   0.............0   -a0  |
|1   0 ............0   -a1  |
|0   1 ............0   -a2  | 
 
|..............................  |
|0   0...........  1  -an-1|.

We call this matrix Cf = the “companion matrix” of the polynomial f.   If you 
remember that all similar operators have the same minimal polynomial, it follows 
that this is about the simplest matrix possible for our map.   I.e. applying a 
polynomial g to the map “multiplication by X”, just gives us the map which is 
multiplication by g(X).  Hence the minimal polynomial is the monic polynomial of 
least degree such that multiplication by it sends every element of V to zero.  This 
of course is just f.  I.e. if T is multiplication by X on the space k[X]/(f), then f is the 
minimal polynomial of T.  In particular f is the also the minimal polynomial of this 
companion matrix.  Then since all similar operators have the same minimal 



polynomial, it follows that every matrix for an operator must contain at least the 
information of that minimal polynomial.  Since, except for some 0’s and 1’s, this 
companion matrix consists of nothing except the coefficients of the minimal 
polynomial, it cannot be made much simpler.  We shall see later, in the section on 
Jordan forms, that another option would be to have the matrix display the 
coefficients of the irreducible factors of the minimal polynomial, or its roots if 
those lie in the field k.  For now we explore the use of the companion matrix.

The key fact about the example we just gave, is that the minimal polynomial of the 
operator T has maximal degree, i.e. equal to the dimension of the vector space on 
which T acts.  In this case, we have the analogous result to the one proved above 
about the derivative operator, i.e. such a T is completely determined up to 
similarity by its minimal polynomial.

Theorem:  If T:V-->V is a linear operator on a finite dimensional space V over k, 
and if the minimal polynomial f of T has degree = n = dim(V), then T is similar to 
the operator in the fundamental example just discussed, multiplication by X on the 
quotient space k[X]/(f).  I.e. T has in some basis the companion matrix Cf of f.

Remark:  We are allowing ourselves to call two maps T:V-->V and S:W-->W 
similar if there exists an isomorphism U:V-->W such that S = UoToU^(-1).

Definition:  A vector v is called a “cyclic vector” for an operator T:V-->V on a 
finite dimensional space V if the minimal polynomial of T on V equals the minimal 
T-polynomial at v.  (These may or may not exist.)

Summary:  What we have just proved shows that an operator T:V-->V on a finite 
dimensional space V is similar to the standard model, i.e. the fundamental 
example, if and only if it has a cyclic vector, if and only if the minimal polynomial 
of T has degree = dim(V), if and only if in some basis the matrix of T is the 
companion matrix of the minimal polynomial.

How to construct an operator with no cyclic vector
To see a non cyclic example, we only have to take appropriate products, i.e. we 
want to look at pairs of operators S:V-->V and T:W-->W, and consider 
(SxT):VxW-->VxW, where (SxT)(v,w) = (S(v), T(w)).  But we cannot use 
operators with relatively prime minimal polynomials, since our previous arguments 
imply that in that case the sum of a cyclic vector for S and a cyclic vector for T 
would be cyclic for (SxT).



So to get a non cyclic example, let f and g be two polynomials of positive degree 
such that f divides g, and take the product of the two standard models k[X]/(f) and 
k[X]/(g).  Then on the product space V = k[X]/(f) x k[X]/(g), the map T defined as 
multiplication by X, has minimal polynomial g.  Since the minimal polynomial has 
degree less than dim(V), there can be no cyclic vector, and the matrix cannot be a 
single companion matrix.  Of course since the space is a product of two subspaces 
on each of which there is a cyclic vector, we can have a matrix which consists of 
two blocks, each a companion matrix, one for f and one for g.  And this is the best 
we can do, since no cyclic subspace can have dimension greater than the degree of 
g.  I.e. the subspace k[X]/(g) is a maximal T-cyclic subspace.  So the general result 
is that this is typical.  I.e. we will prove the following: if T:V-->V is a finite 
dimensional operator with minimal polynomial g, there will be a maximal cyclic 
subspace, of dimension equal to the degree of g, on which T acts with minimal 
polynomial g.  Then we can decompose V not a product of this subspace and 
another subspace to which we can apply the same reasoning.  I.e. the minimal 
polynomial of T on this complementary subspace will be some factor of g, and we 
can again find a maximal cyclic subspace where the minimal polynomial equals 
that factor, etc....  Then the matrix of T on V will consists of blocks each a 
companion matrix for one of these subspaces.

Thus in general, the similarity class of T will be determined not just by the minimal 
polynomial, but by the minimal polynomial and a sequence of factors of that 
polynomial, each one dividing the next.  These polynomials are called “invariant 
factors” of T and together they determine the similarity class of T.  Here is the 
statement we will prove.

Thm. (Invariant factor theorem): If V is a vector space of finite dimension n over 
the field of scalars k, and T:V-->V is a k-linear operator, then there is a unique 
finite sequence of non constant monic polynomials, g1, g2,...,gt in k[X], such that 
deg(g1)+...+deg(gt) =  n, with the following properties:
i) each gj divides the next one, i.e. g1|g2, g2|g3,...,gt-1|gt;
ii) gt is the minimal polynomial of T;
iii) in some basis for V, the matrix for T consists of t blocks along the diagonal, in 
which the blocks are the companion matrices for the polynomials g1,...,gt.

Definition: The product of the polynomials gj in the theorem is an invariant of the 
operator T, a monic polynomial of degree equal to dim(V), the “characteristic 
polynomial” of T.  We will see later it can be computed as a determinant.

T-cyclic decomposition by “invariant factors”



If there is no cyclic vector, we want to decompose our space V into a product of 
cyclic subspaces.  For any decomposition, the subspaces must be preserved by the 
action of T, i.e. they must be T-invariant, i.e. T must map the subspace into itself.  
Now if W is a subspace such that T(W) is contained in W, then also T^2(W) = T(T
(W)) is contained in T(W) hence in W also.  Thus W must be closed under the 
action of every power T^k of T, and since W is a subspace, it must contain every 
linear combination of every power of T as well.  So for every vector w in W, and 
every polynomial P, W must contain P(T)(w).  Thus if we define a multiplication of 
k[X] on W by P(X)(w) = P(T)(w), W must be closed under multiplication by k[X].

It follows that if W is T invariant and contains a vector w, then W also contains 
P(T)(w), for every polynomial P(X).  Conversely, if w is any vector and W is the 
set of all vectors of form P(T)(w), we claim W is a T invariant subspace.  To see 
this note that if P(X) is any polynomial, then X.P(X) is also a polynomial, so for 
any polynomial P, T(P(T(w))) is also a polynomial in T applied to w.  Thus if w is 
any vector in V, and if k[X] is the ring of polynomials in X with coefficients in the 
scalar field k, then k[X].w ( i.e. the set of all vectors of form P(T)(w) with P(X) a 
polynomial in X), is the smallest T-invariant subspace of V containing w.

So the simplest T invariant subspaces have form k[X].w for some vector w.  There 
is a natural basis for such a subspace.  Namely, consider the sequence {w, Tw, 
T^2w, T^3w, ......}.  This is a spanning set since all elements of k[X].w are linear 
combinations of powers of T applied to w.  Moreover since we are assuming finite 
dimensions, some smallest one of these powers, say T^n(w), (and hence also all 
larger powers), is dependent on earlier ones.  Thus some finite sequence {w, Tw, 
T^2w,...,T^n-1w} is a basis.  From the appearance of this basis, we call such a 
subspace “T-cyclic”.  Since T^n(w) is dependent on the previous powers of T(w), 
we have T^n(w) = a0w + a1T(w) + a2T^2(w) + ....+ an-1T^(n-1)(w), for some 
scalars a0,...an-1.  By definition then, the matrix of T in this basis is the following:

|0  0  0  ....     -a0|
|1  0  ....         -a1|
|0  1  0  ..............|
|0  0  1 ....           |
|      ....................|
|  ........................|
| .........................|
|0  ...........1 -an-1| 



We have called this matrix the “companion matrix” for the polynomial :
a0 + a1X + a2X^2 + ....+ an-1X^n-1.

A proof of the invariant factor theorem by the “splitting” technique
Let T:V-->V be a linear operator on a finite dimensional vector space over the 
scalar field k, with minimal polynomial m, and define a multiplication of the 
polynomial ring k[X] on V by setting f(X).v = f(T)(v).  Thus a subspace of V is T 
invariant if and only if it is closed under multiplication by the ring k[X].

We want to decompose V as a product of T invariant subspaces, each spanned by a 
single vector under multiplication by k[X], i.e. under multiplication by k[T], hence 
into a product of T-cyclic subspaces.  This is analogous to decomposing V by 
means of a k basis, since if v1,...,vn is a k basis then V is isomorphic to the product 
of the subspaces k.v1 x k.v2 x ...x k.vn.  In that earlier case however it was easier 
to do this, since the fact that k is a field makes two different notions of 
“dependent” become equivalent.

I.e. if v1,...,vm is any k spanning set for V, we can throw out any vector that does 
not depend k- linearly on earlier ones, and we will get a k spanning set, say 
v1,...,vn such that no non zero scalar multiple of any vj is a k linear combination of 
the others.  I.e. if we had a1v1+...+anvn = 0, with some term, say anvn ≠ 0, then 
anvn = -a1v1 -... - an-1vn-1, and we can divide by an to express vn as a linear 
combination of the earlier vj, hence vn would have already been thrown out.

But if we use polynomial coefficients we can have f1v1+...+fnvn = 0, and even if 
say fnvn ≠ 0, so that fnvn = -f1v1-...- fn-1vn-1, we still cannot necessarily divide 
by fn to express vn as a k[X] linear expression in the other vectors.  We could do so 
if and only if fn actually divides the other coefficients fj with j ≥ 2.

In order to express V as a product of subspaces of form k[X].v, we need a set of 
k[X] - generators v1,...vr for V such that whenever f1v1+...+frvr = 0, then in fact 
all terms fjvj = 0.  The problem is that although when dealing with scalar 
multipliers from a field, two subspaces like k.v and k.w are either the same or meet 
only in the vector zero.  Since some polynomials have non trivial common factors, 
subspace like f.v and g.w can overlap non trivially without being equal.  So we will 
have to deal with divisibility issues.  Fortunately this can be done, since in k[X] 
any set of polynomials have a greatest common divisor.  Still it takes a little work.

We will proceed by induction of the k dimension of V.  Since there is no need to 
decompose a one dimensional space, we will assume V has larger dimension and 



that the decomposability into T cyclic subspaces is true for all spaces of smaller 
dimension.  So we want to see how to split off a T-cyclic subspace of V, with the 
complementary factor still T-invariant.

So, if T:V-->V is a linear operator on a finite dimensional vector space V over the 
scalar field k, with minimal polynomial m, we have a multiplication of the 
polynomial ring k[X] on V by setting f(X).v = f(T)(v).  Then a subspace of V is T 
invariant if and only if it is closed under multiplication by the ring k[X].

Now let v be a vector such that the minimal polynomial of T at v equals the 
minimal polynomial m of T on all of V.  Then it follows that the minimal 
polynomial of T on every other vector in V is a factor of m.  This is the divisibility 
property we need to make our argument work.  We will show that V is isomorphic 
to a product of the T-cyclic subspace k[X].v and another T-invariant subspace.  
Then we can use the inductive hypothesis to decompose that other T invariant 
subspace into T-cyclic subspaces.

Splitting Lemma:  If the minimal polynomial of T at v equals the minimal 
polynomial m of T on all of V, then there is a T - invariant subspace W of V, such 
that V is isomorphic to k[X].v x W
Proof:
First we mod out V by the T invariant subspace generated by v, i.e. by k[X].v, 
getting a space V/(k[X].v) on which T induces a k - linear operator S, hence also a 
multiplication by the polynomial ring k[X].  Since the map S on the quotient is 
induced by T, the quotient map V-->V/(k[X].v) is not only k linear but also k[X] 
linear, i.e. it commutes with multiplication by polynomials as well as scalars.  Note 
that the kernel of this map is the T-cyclic subspace k[X].v.

Now we know that abstractly V is isomorphic as k - vector space to the product of 
the quotient and the kernel, i.e. that V ≈ (k[X].v) x V/(k[X].v) as k - vector spaces, 
but we want to show this also holds as k[X] - subspaces of V.  I.e. we want the 
isomorphism of V/(k[X].v  with a k-subspace of V to also respect the action of the 
operator T.  So we need to find a T-invariant subspace W of V which meets k[X].v 
only in {0}, i.e. a k[X]- subspace subspace W that is complementary to k[X].v.

To do this it suffices to find a k[X] - linear map which is right inverse to the 
quotient map V-->V/(k[X].v).  I.e. we want a map V/(k[X].v) --> V such the 
composition V/(k[X].v) --> V -->V/(k[X].v) is the identity, and in order for the 
image of the map V/(k[X].v) --> V to be T-invariant, we want the map to be k[X]-
linear.  Then its image in V will be W, the complementary subspace to k[X].v.  



(Note that the fact the map V/(k[X].v) --> V -->V/(k[X].v) is the identity, hence 
injective, implies k[X].v) --> V is injective and meets the kernel of the quotient 
map, namely k[X].v, only in {0}.)

We know if T acts on a space U with minimal polynomial f at a vector u, then the 
T-cyclic subspace k[X].u = k[T].u is isomorphic to k[X]/(f), where the action of T 
on the subspace k[T].u corresponds to multiplication by X on the quotient space 
k[X]/(f).

By induction we can decompose the quotient space V/(k[X].v) into a product of T-
cyclic subspaces, hence the map V -->V/(k[X].v) becomes a k[X] linear map 
V-->k[X]/(f1) x ... x k[X]/(fs), with kernel k[X].v.  Moreover, the minimal 
polynomial of T on V and the minimal polynomial of T at v, are both equal m, 
while each minimal polynomial fj of X acting on k[X]/(fj) is a factor of m.

For each j, let uj represent the equivalence class in k[X]/(fj) of the cyclic vector 1, 
so that each k[X]/(fj) ≈ k[X].uj.  Then to define a k[X] - linear, right - inverse of 
the map Q:V-->k[X].u1 x ... x k[X].us, it suffices to define it on each factor 
separately.  So for each j, we first seek a vector wj such that Q(wj) = uj.  If also 
fj.wj = 0, where fj is the minimal polynomial of S acting on uj, then we can define 
the right inverse map k[X].uj --> V by sending uj to wj, and g(X).uj to g(T)(wj).  
I.e. that will define a map k[X]-->V that sends f to zero, hence induces a k[X] - 
linear map from the quotient k[X]/(f) to V.

Since Q is surjective, it is always possible to find some vector zj that maps to uj, 
i.e. with Q(zj) = uj, and the challenge is to find a preimage that is annihilated by fj.  
This is where the divisibility property mentioned above will come to our rescue, 
i.e. the fact that the minimal polynomial m of T at v, is a multiple of the minimal 
polynomial fj of S at uj.

If zj is any vector in V with Q(zj) = uj, then fj.zj will map by Q to fj.uj = 0, so at 
least fj.zj lies in the kernel k[X].v of Q.  But we want it to be zero.  Now if we 
change zj by anything in the kernel of Q, it will still map to uj.  So we want to find 
something, say yj in the kernel of Q, such that fj.(zj-yj) = 0.  This of course would 
require that fj.zj = fj.yj, with yj in the kernel of Q.  Next we see how to do this.

Since fj.zj lies in the kernel k[X].v of Q, thus fj.zj = g.v for some polynomial g.  
And fj divides m, so m = fj.A for some polynomial A.  Since m annihilates all of V, 
thus A.fj.zj = m.zj = 0, and since fjzj = g.v, hence also A.g.v = 0.  Now the minimal 



polynomial of v is m, so m must divide A.g, i.e. m = A.fj must divide A.g.  But this 
implies that fj must divide g, since if A.fj.B = A.g, then canceling A gives fj.B = g.

Now if g = B.fj, then g.v = B.fj.v, so we can choose yj = Bv, and then setting wj = 
zj-yj, gives us a vector wj such that Q(wj) = Q(zj) = uj, and also fj.wj = fj.zj - fj.yj 
= fj.zj -fj.B.wj = g.v-g.v =  0.

Then mapping each uj back to the corresponding wj, and mapping g.uj to g.wj, 
defines a k[X] - linear map R, right inverse to Q:V-->k[X].u1 x ... x k[X].us, such 
that the image W of R in V, is a T invariant subspace complementary to k[X].v, as 
desired.  QED.

Cor: (invariant factor theorem):  
We have split V ≈ W x k[X].v ≈ W x k[X]/(f1), as a product of T-invariant 
subspaces where k[X].v ≈ k[X]/(f1) is T-cyclic.  By induction on dimension, W is 
also a product of T-cyclic subspaces W ≈ k[X]/(f2) x ... x k[X]/(fs).  This splits V 
as a product of T-cyclic subspaces V ≈ k[X]/(f1) x ... x k[X]/(fs).
Applying the appropriate number of powers of T to the cyclic vectors v = v1,...,vs 
gives us a k-basis of V in which the matrix of T has the desired form.  In particular, 
note that by induction the minimal polynomials fj successively divide each other, 
as well as dividing m.  QED.

Next we want to give a matrix algorithm to compute not only the minimal 
polynomial of a given matrix, but the full sequence of invariant factors that 
determine its similarity class.

Computing the invariant factor decomposition from a “k[X] - presentation”

The lesson from the decomposition theorem we have proved is that, as a k[X] 
space, the vector space V with operator T, is isomorphic to a product of cyclic k[X] 
spaces, of form k[X]/(f) where f is some polynomial.  Thus, as a k[X] space, 
V  ≈ k[X]/(f1) x ... x k[X]/(fs), is a quotient of k[X] spaces, namely
V ≈ (k[X] x ...x k[X])/((f1) x ... x (fs)).  Equivalently there is a surjective map
of k[X] spaces k[X] x...x k[X]---> V whose kernel is (f1) x...x (fs).  Our goal is to 
find such a representation starting just from a matrix for T, i.e. we want a surjection 
and then we want to calculate the kernel.

First we want a k[X] - spanning set for V, and the simplest choice is a k-basis, 
{v1,...,vn}, in which the map T is represented by an n by n matrix A over k.  Now 



this k-basis is necessarily a k[X] spanning set, since k[X] contains k.  This then 
defines a surjective k[X] linear map (k[X])^n-->V, taking the standard basis vector 
ej = (0,...,0,1,0,...,0), where the 1 is in the jth position, to the basis vector vj.  Since 
the map is extended to be k[X] linear, the vector (0,...,0,X,0,...,0) = X.ej, must go to 
X.vj = T(vj).  Now if A is the matrix for T in the given basis v1,...,vn, then the jth 
column of A also describes a vector that equals T(vj), i.e. the entries (b1,...,bn) in 
that column are the coefficients of the expansion of T(ej) in the basis: T(ej) = 
b1v1+...+bnvn.  Hence under the surjective map k[X]^n-->V, both vectors X.ej and 
(b1,...,bn) map to T(vj), and thus their difference Xej-b1e1-...-bnen maps to zero.

Hence the columns of the matrix X.I-A belong to the kernel of the surjective map 
k[X]^n-->V.  We will show below that those columns span that kernel.  
Consequently the matrix X.I-A defines a k[X] -linear map k[X]^n-->k[X]^n whose 
image, the span of its columns, equals the kernel of the surjection k[X]^n-->V.  
Exactly as in the case of k linear maps, the induced map k[X]^n/Im(X.I-A) --> V, 
is k[X] linear and bijective, hence defines an isomorphism as k[X] spaces.  Thus 
the T - cyclic structure, or k[X] structure of V, is displayed by the matrix X.I-A.

This computation is analogous to expressing the k vector space structure of V as a 
product of copies of k.  This is contained at least implicitly in the matrix 
computations from chapter 2.  I.e. choosing a k-spanning set for V defines a 
surjective k linear map k^m-->V with a kernel U, so that V is isomorphic to the 
quotient space k^m/U.  The problem is to compute this quotient space.  In order to 
take advantage if matrix operations we proceed as follows.  Choose a k-spanning 
set also for U, which gives another surjective map k^s-->U.  Then by composition 
with U-->k^m, we get a map A:k^s-->k^m which is defined by a matrix A.  Then 
V is isomorphic to the quotient space k^m/Im(A), the “cokernel” of the map A.

Definition:  A sequence of linear maps k^n-->k^m-->V where k^m-->V is a 
surjection whose kernel is the image of the map A:k^n-->k^m, is called a 
“presentation” of V.  Such a presentation induces an isomorphism of V with the 
quotient space k^m/Im(A) = the “cokernel” of the matrix A.

Representing a space as the cokernel of a matrix A has the advantage that such 
cokernels can be computed by diagonalizing the matrix A using elementary matrix 
operations.  This was accomplished for k linear maps in chapter one when we 
computed the equivalence class of a matrix.  I.e. using both row and column 
operations on the m by n matrix A:k^n-->k^m, we get a diagonal matrix B where 
say the first r columns are standard basis vectors, and all other entries are zeroes.  
Thus the image of this map in k^m is just the span of the first r coordinate axes, so 



the quotient space k^m/Im(A) is isomorphic to the quotient space k^m/Im(B) = 
(k x......x k)/(k x...x k x{0}x...x{0}), where there are m copies of k in the top, and r 
copies of k in the bottom.  Hence the quotient is visibly isomorphic to 
(k/k) x...x (k/k) x (k/{0}) x...x (k/{0}) ≈ {0}x...x{0} x k x...x k ≈ k^(m-r).

Next we want to imitate this procedure to compute the k[X] structure of a space V 
and a map T:V-->V.

Definition:  We call [X.I-A], the “characteristic matrix” of A.  
Its determinant, det(X.I-A) = ch(A)(X) is the “characteristic polynomial” of A.

Remark: If A is a matrix for an operator T, defined by a basis, then the 
characteristic polynomial is an invariant of T as well as of A since the characteristic 
polynomials of any two matrices for a given operator T are the same.  I.e. if A,B 
are two matrices for T, then they are similar, so there is some invertible matrix U 
such that B = U^-1AU.  In particular, det(B) = det(U^-1AU) = det(U^-1).det
(A).det(U) = det(U^-1).det(U).det(A) = det(U^-1.U).det(A) = det(I).det(A) = 
1.det(A) = det(A).  But if A and B are similar, then their characteristic matrices are 
also similar, since then U^-1(X.I-A)U = U^-1(X.I)U - U^-1AU = X.I.U^-1.U - 
U^-1A.U = X.I - U^-1A.U = X.I-B.  Thus if A, B are two matrices for T, then ch
(A)(X) = ch(B)(X).  Thus we may call this common polynomial the characteristic 
polynomial of the operator T.

The characteristic presentation:
Proposition: In the case of the k[X] structure defined on V by the n by n matrix A, 
we have the presentation k[X]^n-->k[X]^n-->V, where the map 
(X.I-A):k[X]^n-->k[X]^n is given by the “characteristic matrix” X.I-A.  Thus as 
k[X] spaces, V ≈ k[X]^n/Im(X.I-A).
Proof:  To prove this it remains to show that the columns of [X.I-A] do span the 
kernel of the natural surjection k[X]^n-->V defined by a basis of V.  Since we 
know those columns do belong to the kernel of the surjection, it follows that the 
induced map k[X]^n/Im(X.I-A)-->V is surjective.  Consequently to deduce that it 
is an isomorphism, it would suffice to show the k-dimension of the quotient
k[X]^n/Im(X.I-A) is the same as the k-dimension of V, namely n.  One way to 
show this is by the theory of determinants.  The fact that the entries on the main 
diagonal are all of degree one in X, and all other entries are constants, implies the 
degree of the determinant of X.I-A is n.  Then we claim the k-dimension of the 
cokernel of X.I-A equals the degree of this determinant.  This will follow from the 
fact proved below that this matrix can be diagonalized.  I.e. the determinant does 
not change during diagonalization, and after diagonalization the determinant equals 



the product of the diagonal entries.  Since the degree of that product also equals the 
dimension of the cokernel, this proves our result.  QED.
 
Remark: There is also a nice direct argument for the previous proposition, in 
Jacobson’s beautiful book Basic Algebra I, p.190. 

Note there is no k[X] linear combination of the columns of X.I - A that equals zero, 
since that would imply the determinant is zero, whereas it is a monic (hence non 
zero) polynomial of degree n.  Hence the characteristic matrix defines an injective 
map, and so the kernel subspace K is isomorphic to k[X]^n itself.  Of course 
although isomorphic, these two spaces are not equal, since their quotient space k
[X]^n/K ≈ V is not zero.

Diagonalizing the characteristic matrix
The admissible row and column operations consist of, 
1) interchanging two rows or two columns;
2) multiplying through a row or a column by an invertible polynomial, i.e. a non 

zero scalar; 
3) adding to any row (or to any column), a polynomial multiple of any other row 

(or of any other column).  

These are the exact analogs of the elementary operations involving scalar matrices, 
but now applied to polynomial matrices.  In particular, in order for the operations 
to be invertible, i.e. reversible, we must use only invertible multipliers in step 2.  
The fact that some non zero polynomials are not invertible means we will not be 
able to reduce the diagonal elements to constants.

Proposition:  The characteristic matrix X.I-A associated to an n by n scalar matrix 
A, can be diagonalized by row and column operations.  This can be done so that 
the diagonal entries successively divide each other.  When completed, the diagonal 
entries will be a sequence of monic polynomials, which divide each other 
successively, and whose product equals the characteristic polynomial.  

Remark: The sequence of diagonal entries will usually begin with a certain 
number of copies of the constant monic polynomial = 1.

Proof: The elementary operations allow us to form linear combinations of 
elements belonging to the same row or column, and hence, by the Euclidean 
algorithm in k[X], to replace any element by the gcd of all elements in its same 
row or same column.  Hence we can make the entry in position (1,1) equal to the 



gcd of all entries in the first row, using only column operations.  (Note that since 
the determinant of [X.I-A] is not zero, the rows, and columns, are not k[X] 
dependent, and in particular there is a non zero entry in every row and every 
column.)  
Now that we have the (1,1) entry dividing every other entry in the first row, we can 
use entry (1,1) to replace every other entry in the first row by zero, again by 
column operations.  Now we can use the same procedure on the elements of the 
first column, using row operations, until the only non zero entry in the first row 
and first column is the (1,1) entry.  Now ignoring the first row and column we can 
proceed to the second row, and by induction we can diagonalize the rest of the 
matrix, thus obtaining a matrix that is completely diagonal.  Since the determinant 
is non zero, all diagonal entries will be non zero.

Now that the matrix is diagonal, its determinant equals the product of the 
polynomials along the diagonal, so the sum of the degrees of these polynomials 
must equal n = dim(V).  (If we make all the polynomials monic, the determinant 
actually equals the original determinant, not only in degree.)  Also since the matrix 
is diagonal, the quotient space of k[X}^n by the k[X] - span of the columns is 
k[X]- isomorphic to the product of the quotients k[X]/(f1) x ...x k[X]/(fn), where 
f1,...,fn is the sequence of polynomials along the diagonal.  Consequently the k-
dimension of this space is also equal to the sum of the degrees of the polynomials 
fj, namely it equals n = dim(V).  Thus the quotient space not only maps onto V, but 
isomorphically to it since the two spaces have the same k-dimension.  We thus 
have a decomposition of V as a product of T - cyclic subspaces corresponding 
under the isomorphism to the factors k[X]/(fj).

We can improve this decomposition so that the polynomials fj successively divide 
each other.  Namely after the matrix is diagonal, we can add every later column to 
the first column so that all diagonal entries are in the first column.  Now repeating 
the earlier procedure using the Euclidean algorithm, we can replace the entry (1,1) 
by the gcd of all the entries in the first column, which element is then the gcd of 
every entry in the matrix.  Then we repeat our earlier work to make all other entries 
zero in the first row and column, leaving in position (1,1) an element that still 
divides every entry in the matrix.  Now ignoring the first row and column, proceed 
to the rest of the matrix, and by induction we can obtain a diagonal matrix in which 
each diagonal entry divides the next one.  It may be true now that some of the 
earlier diagonal entries equal 1.  For instance if the minimal polynomial of T has 
degree n = dim(V), then all diagonal entries will be 1 except the last entry, which 
will be the minimal polynomial.



After the refinement just described, it follows in general that the last diagonal entry 
is a multiple of all the others, hence equals the minimal polynomial of A, hence of 
T.  After diagonalizing X.I-A, we have remarked the product of all the (monic) 
diagonal entries equals the original determinant of X.I-A, the characteristic 
polynomial.

Corollary (Cayley - Hamilton theorem): The minimal polynomial divides the 
characteristic polynomial.  All irreducible factors of the characteristic polynomial 
occur in the minimal polynomial.
Proof:  This follows from the refined diagonalization discussed above. QED.

Corollary:  If the characteristic polynomial is a product of distinct irreducible 
factors, then the minimal and characteristic polynomial are equal.

Remark:  One can describe the diagonalization procedure above theoretically as 
follows: begin by making the (1,1) entry as small as possible, using the Euclidean 
algorithm, i.e. row and column operations.  It then divides every element in the 
matrix.  Use it to make all other entries in 1st row and 1st column equal to zero.  
Now proceed to the rest of the matrix, and by induction, one obtains the final 
diagonal form described above.  
In practice this suggests that one should begin by transferring the smallest visible 
non zero element in the matrix to the (1,1) entry, by interchanging rows and 
columns, before starting the Euclidean algorithm.  This minimal (1,1) entry will in 
general be a unit, hence in particular will already be the gcd of the whole matrix.
The advantage of this procedure is that it can be carried out in practice using 
nothing more than the Euclidean algorithm in k[X], which is reasonably efficient.  
Hence at least in theory it should be applicable to actual examples, not only 
“cooked” ones, but as we know, real life is messy.  

Terminology: This normal form may be called the “rational canonical form”, or 
decomposition by “invariant factors”.

Remark:  In case the minimal polynomial is irreducible, then all invariant factors 
are equal to it, since they are non constant factors of the minimal polynomial.   
Hence the rational canonical matrix is in block form with r copies of the 
companion matrix of the minimal polynomial along the diagonal, where dim(V) 
equals r times the degree of the minimal polynomial.



Examples of diagonalization:
I have a really hard time not making mistakes in these calculations so let’s keep 
these examples simple.  Take this matrix over the rational field, A =

|1   0    1|
|1   1    0|
|0   1    1|,  hence the characteristic matrix is [X.I-A] =

|X-1   0    -1|
|-1    X-1   0|
| 0    -1  X-1| , now interchange 1st and 3rd columns to get a unit at (1,1):

|-1    0    X-1|
| 0   X-1   -1|
|X-1   -1   0 |,  now add (X-1) times the first row to the 3rd row:

|-1      0      X-1|
| 0     X-1     -1 |
| 0   -1  (X-1)^2|, multiply 1st row by -1, and add (X-1) times 1st column to 3rd:

| 1      0         0 ||
| 0     X-1     -1 |
| 0   -1  (X-1)^2|, focus on lower right 2 by 2 submatrix, interchange rows:

| 1       0             0 |
| 0      -1   (X-1)^2|
| 0    (X-1)        -1 |,  now add (X-1) times second row to third row:

| 1       0                     0 |
| 0      -1           (X-1)^2|
| 0       0      (X-1)^3 -1 |,  multiply 2nd row by -1, then can kill off the (X-1)^2:

| 1       0                     0 |
| 0       1                     0 |
| 0       0      (X-1)^3 -1 |,  ok, we got it! “simplify”:

| 1       0                                0 |
| 0       1                                0 |
| 0       0      X^3 -3X^2+3X-2 |, and I can even factor this over Q:



| 1       0                              0 |
| 0       1                              0 |
| 0       0      (X-2)(X^2-X+1) |.  

Well that’s it.  And this seems to be what should usually happen randomly, i.e. 
there is only one diagonal entry that is not a ‘1’, so the minimal polynomial equals 
the characteristic polynomial, and the whole space has a cyclic vector.  But of 
course the cooked examples you find in books will not usually do this.  Anyway 
we have from the unfactored form, the coefficients of the minimal polynomial that 
give us the companion matrix representing A in some appropriate basis, as follows:

| 0   0    2|
| 1   0   -3|
| 0   1    3|.  

If you want to know what basis gives this matrix, you need a cyclic vector for A.  
There is an algorithm for computing it by tracking all the steps of the 
diagonalization, given in the very nice book by Dummit and Foote. In this case 
however it seems most vectors should be cyclic, and if we just try e1, it works.  I.e. 
{e1, A(e1), A^2(e1)} is a basis, and a cyclic basis, which thus gives this matrix.  In 
particular it seems there are lots of cyclic bases and any one gives this matrix.

I also used this to check myself, by computing {e1, A(e1), A^2(e1), A^3(e1)}, and 
finding a relation between them, i.e. thus computing again the minimal polynomial.  
Remember, since {e1, A(e1), A^2(e1)} is a basis, e1 is a cyclic vector, and thus its 
minimal polynomial is minimal for the whole space.

Example:
Here is another easy one;  let A be this matrix:

| 1   1   -1|
| 1   -1   1|
|-1   1    1|, then X.I-A is the following:

|(X-1)  -1       1|
| -1    (X+1)  -1|
|  1    -1   (X-1)|;  interchange 1st and 3rd columns:

| 1        -1    (X-1)|



| -1     (X+1)    -1|
|(X-1)   -1        1 |;  add (X-1) times 2nd row to 3rd row:

| 1        -1        (X-1)|
| -1     (X+1)         -1|
| 0    (X^2-2)  ( 2-X)|;  add 1st row to 2nd row:

| 1        -1        (X-1)|
| 0         X       (X-2) |
| 0    (X^2-2)   (2-X)|; use 1st column to zero out 1st row:

| 1          0         0    |
| 0         X      (X-2) |
| 0    (X^2-2)  (2-X)|;  negate 3rd column, then add to 2nd column:

| 1          0            0    |
| 0          2        (2-X) |
| 0  (X^2+X-4)  (X-2)|;  multiply 3rd row by -2, then add (X^2+X-4) times 2nd row 
to 3rd row:

| 1        0                        0    |
| 0        2                    (2-X) |
| 0        0    (2-X)(X^2+X-2)|; divide 2nd column by 2, then add (X-2) times 2nd 
column to 3rd column:

| 1        0                            0    |
| 0        1                            0    |
| 0        0  (X^3 - X^2 - 4X+4)|;  which gives the following companion matrix 
similar to A:

| 0   0  -4|
| 1   0   4 |
| 0   1   1 | ≈ A.

In particular, again the characteristic and minimal polynomials are equal, both to 
(X^3 - X^2 - 4X+4).  To check this then we could use determinants to compute the 
characteristic polynomial of A, as follows: i.e. det(X.I-A) = 

det |(X-1)  -1       1|



      | -1    (X+1)  -1|
      |  1    -1   (X-1)|, expanding by LaGrange formula in 1st row:

= (X-1)(X^2-2) + (2-X) - X =  X^3 -X^2 - 4X +4.  check!

Refinements:  In both these examples, the characteristic polynomial is easy to 
factor into irreducible factors over Q.  In the 1st example above we have two 
distinct irreducible factors (X-2)(X^2-X+1).  In the next chapter we will learn how 
to refine the companion matrix to display these irreducible factors, i.e. the general 
“Jordan form”, giving us a block matrix over Q, consisting of one companion 
matrix for each factor, i.e. this matrix:

| 2   0    0|
| 0   0   -1|
| 0   1    1|.  

We will also learn how to further refine this matrix over the complex field, by 
factoring the polynomial fully, yielding a diagonal matrix with the roots of this 
polynomial, namely {2, (1+isqrt(3))/2, (1-isqrt(3))/2}, on the diagonal.

In the second example just above, the polynomial (X^3 -X^2 - 4X +4) factors 
completely over Q as (X-1)(X-2)(X+2).  This will allow us to display the matrix in 
Jordan form as fully diagonal over Q, with the roots 1,2,-2 on the diagonal.

Here is another example I did, that you can do on your own.  Let A =

| 1    0   -1|
| 0   -1    1|
| -1   1    0|.  

My answer was X(X^2-3) = both the characteristic and minimal polynomial.  This 
means we get a single companion matrix as rational canonical form as in this 
chapter, and in the next chapter, a Jordan matrix with two blocks of companion 
matrices over Q, one for each factor.  By passing to the reals, we will get a 
diagonal Jordan matrix with some irrational numbers on the diagonal.  

Remark:  A key point is that the theory in this chapter yields a “rational canonical” 
matrix with the minimum number of companion matrices, one for each “invariant 
factor” of the characteristic polynomial, i.e. one for each non constant diagonal 
entry in the diagonalized characteristic matrix.  In the next chapter we will refine 



this to a “Jordan form” which displays a companion matrix for each irreducible 
factor of the characteristic polynomial.  The thing to remember is that the cruder 
rational canonical form is effectively computable by the techniques in this chapter.  
The more refined Jordan form discussed in the next chapter does reveal more 
information, but only in case the characteristic polynomial can be factored 
completely into irreducible factors over the desired field.   Unfortunately, there is 
no practical computational technique for obtaining such a factorization even over 
Q, except for low degrees, such as 3 by 3 matrices or smaller.  Thus although we 
will prove the existence of a Jordan form, we will not be able to give 
computational methods for actually finding it in full generality, unless the 
irreducible factors of the characteristic polynomial are known.

Chapter Four: General and classical Jordan form
In the previous chapter, given a linear map T:V-->V with dim(V) finite, we proved 
the existence of a decomposition of V into a product of subspaces, each of which 
has a T-cyclic vector, and hence on each of which the corresponding matrix of the 
restricted map is a companion matrix of an “invariant factor” of the characteristic 
polynomial.  The decomposition we found was as crude as possible, in the sense 
that the cyclic factor spaces were as large as possible. In particular if the entire 
space V has a T-cyclic vector, then the invariant factor decomposition has only one 
piece and the matrix of T on the full space V is the companion matrix of the 
characteristic polynomial of T.

In general this is the best we can do, because it is so difficult in practice to factor 
polynomials, but in cases where we can factor the characteristic polynomial into 
irreducible factors, e.g. for small matrices, or any triangular matrix, then we can 
further decompose the space V into cyclic factors which are as small as possible.  

Indecomposable T - invariant subspaces
A space with an operator T, is “decomposable” (with respect to the action of T),  if 
it splits into a product of two non zero T - invariant subspaces, and is 
“indecomposable” otherwise.  We claim that any space with operator whose 
minimal polynomial has more than one irreducible factor is decomposable, and 
that a space with operator is indecomposable if and only if it is both cyclic, and has 
minimal polynomial equal to a power of a single irreducible polynomial.  We will 
use the following relatively prime decomposition lemma.

Decomposition Lemma:  If T:V-->V satisfies the polynomial P = 



(f1(X))r1(f2(X))r2....(ft(X))rt with the fi distinct, irreducible polynomials, then V is 
isomorphic to the product of the subspaces Vi = ker(firi(T)).
Proof: As always, to show two spaces are isomorphic we look for a natural map 
from one to the other.  Since the subspaces Vi each map by inclusion to V, there is 
an induced linear map from the product of the Vi to V.  We claim this map, taking 
(w1,...,wt) to w1+...+wt, is injective and surjective.  The trick is to use the fact that 
products involving distinct factors are relatively prime, and then apply the 
Euclidean algorithm.  First define polynomials P1,....,Pt, where each Pi is the 
product of all factors of the minimal polynomial except the ith one.  Thus 
P1 = (f2(X))r2....(ft(X))rt, 
P2 = (f1(X))r1(f3(X))r2....(ft(X))rt, 
...., Pt = (f1(X))r1(f2(X))r2....(ft-1(X))rt-1.  

Since there is no irreducible factor common to all of these polynomials, the 
Euclidean algorithm gives polynomials Q1,...,Qt such that P1Q1+...+PtQt = 1.  (I.e. 
recall the Euclidean algorithm says that the greatest common divisor of a set of 
polynomials over a field can be written as a finite linear combination, with 
polynomial coefficients, of the elements of that set, and the gcd of a set with no 
common irreducible factor is one. ) 

Hence for any vector w in V, we have w = 1.w = 
P1(T)oQ1(T)(w) +....+Pt(T)oQt(T)(w) is a sum of images of the polynomials Pi(T).  
Since (by definition of the Pi(T)) composing (fi(T))ri with Pi(T) is zero, Im(Pi(T)) 
is in ker(fi(T))ri =Vi, so we have proved every vector in V is a sum of vectors in 
the Vi.  This proves surjectivity of the map V1x...xVt-->V.
  
For injectivity, assume (w1,...,wt)--> (w1+...+wt) = 0.  Then wi =
 -w1-...- wi-1 - wi+1...-wt is a linear combination of the other wj, hence each wi 
lies in the kernel of Pi, since all the other wj do.  But, for the same reason, each wi 
also lies in the kernel of every Pj with j ≠ i, hence each wi is in the kernel of 
P1(T)oQ1(T) +....+Pt(T)oQt(T) = Id, so every wi = 0.  This proves injectivity.  
QED.

Remark:  The decomposition lemma is true for any polynomial satisfied by the 
operator T, but if the polynomial is not minimal, some of the subspaces Vi may = 
{0}.  In any case, we claim the operator T maps each subspace Vi into itself, i.e. 



the subspaces Vi are “invariant” under T.  This is true because T commutes with 
any polynomial in T.  Thus if w lies in Vi, i.e. if Pi(T)(w) = 0, then also 
T((Pi(T))(w)) = 0 = (ToPi(T))(w) = Pi(T)(T(w)), so T(w) is also in Vi.  

Thus the restriction of T to each Vi is an operator on Vi, and hence has itself a 
minimal polynomial, which must be a factor of the minimal polynomial of T.  Not 
surprisingly, if P = (f1(X))r1(f2(X))r2....(ft(X))rt is the minimal polynomial of T on 
V, then we claim firi(X) is the minimal polynomial of the restriction of T to ker(firi
(T)).   I.e. if the restriction of T to Vi satisfies some polynomial, then as argued 
above the product of these polynomials annihilates T on V.  (Just apply the product 
to a basis composed of bases of the subspaces Vi.)  Hence if any one restriction 
satisfied a polynomial of lower degree than ri, substituting this polynomial for the 
factor firi(X) of P, gives a polynomial of lower degree than P satisfied by T, a 
contradiction since P is the minimal polynomial for T.

Corollary:  Given T:V-->V, a T - invariant subspace U of V is indecomposable if 
and only if U is T-cyclic and has restricted minimal polynomial equal to a power of 
an irreducible polynomial.
Proof:  The previous lemma shows that every T-invariant subspace on which the 
minimal polynomial has more than one irreducible factor is decomposable.  Hence 
an indecomposable subspace has minimal polynomial a power of an irreducible 
polynomial.  The splitting lemma in the previous chapter implies that any non 
cyclic T-invariant subspace is also decomposable.  QED.

Corollary:  Given an operator T:V-->V with dim(V) finite, there is a product 
decomposition of V into indecomposable T-invariant subspaces on each of which 
T is cyclic with minimal polynomial a power of an irreducible polynomial.
Proof:  Just keep decomposing the space until it is no longer decomposable; then 
the factors are of the form stated in the previous corollary.

More explicitly, first decompose the space into T-cyclic factors as in the previous 
chapter.  Then use the previous relatively prime decomposition lemma to further 
decompose each cyclic factor according to the factorization of each restricted 
minimal polynomial into powers of irreducible factors.  Then we claim each such 
factor is still T-cyclic.  To see this, we argue as follows:

Given a T - cyclic factor of form k[X].v in the invariant factor decomposition, let 
the restricted minimal polynomial equal f.g where f and g are relatively prime.  



Then the vector f.v = f(T)(v) has minimal polynomial g and the vector g.v = 
g(T)(v) has minimal polynomial f, so we can split the T - cyclic subspace k[X].v 
further into the product of the T - cyclic subspaces k[X].(g.v) and k[X].(f.v).  In 
this way we can split off one T- cyclic factor for each power of an irreducible 
polynomial occurring in the minimal polynomial of k[X].v, until we have split 
k[X].v into a product of T - cyclic subspaces each of whose minimal polynomials 
is a power of a different irreducible factor of the minimal polynomial of k[X].v.  
Thus we eventually have a T - cyclic, indecomposable, prime power decomposition 
of V.  QED.

Corollary:  We can always find a matrix for T composed of blocks along the 
diagonal, with each block a companion matrix for a power of an irreducible 
polynomial.  The product of all the corresponding polynomials is the characteristic 
polynomial of T.   For each irreducible factor of the characteristic polynomial, we 
may consider the highest power of that factor which occurs as a companion matrix; 
the product of these highest occurring powers, is the minimal polynomial of T. 

Remark:  I.e. if the minimal polynomial for T in the previous corollary has form 
f1^r1. f2^r2.....fs^rs, then there will be at least one companion matrix for each 
power fi^ri, but there may also be other companion matrices associated to equal or 
lower powers of each fi.  Next we show how to obtain a matrix in terms of the 
companion matrices of just the irreducible factors fi.

General Jordan form:  Given a T cyclic subspace, i.e. one with a T-cyclic basis of 
form {v, T(v), T^2(v),....,T^(n-1)(v)}, the matrix associated to this basis is the 
companion matrix of the restricted minimal polynomial of T on this subspace.  If 
that minimal polynomial is a power f^r of some polynomial f, we can tweak the 
basis slightly to obtain a matrix containing r copies of the companion matrix of f, 
plus some 1’s.  This displays more precise information than the companion matrix 
of f^r.  I.e. it is more informative to know the coefficients of f than the coefficients 
of f^r, just as it is more informative to represent a number as 3^6 than as 729.

To see how to do this, let f(X) = a0+a1X+a2X^2+...+an-1X^n-1 + X^n, and 
assume the minimal polynomial of T on a given T-cyclic subspace is f^r, with T-
cyclic vector v.  This means the T-cyclic subspace has dimension n.r with basis 
{v, Tv,...,T^(nr-1)v}.  In this basis, the matrix of T will be the companion matrix of 
the polynomial f^r, all 1’s below the main diagonal, and (minus) the first n.r 
coefficients of f^r  in the last column.  Instead of this basis, the Jordan form uses 
instead the sequence {v,Tv,...T^n-1(v), f(T)(v), f(T)(T(v)),...,f(T)(T^n-1(v)),...
f^(r-1)(v),...,f^(r-1)(T^n-1(v))}.  



Try this for r=2 to see what the matrix looks like.  Each of the first n-1 basis 
vectors is taken by T to the next basis vector.  Hence the first n-1 columns are [0, 
1,.....,.0]. [0, 0, 1,......,0], ....., [0, 0, .....0, 1;0, .....,0]]. 
But the nth basis vector, T^n-1(v), is taken by T to 
T^n(v) =  -a0v -a1Tv-....- an-1T^n-1(v) + f(T)(v), whose coefficient vector is 
[-a0, -a1, .....,.-an-1; 1, 0.....; ...0]. I.e. we have a copy of the companion matrix for 
f followed by a single ‘1’ in the nth column.  Then the next n-1 basis vectors are 
each again taken to the next basis vector, while the last one, T^(n-1)(f(T)(v)), is 
taken to T^n(f(T)(v)) = 
-a0.f(T)(v) -a.1f(T)(T(v))-....- an-1.T^(n-1)(f(T)(v)) + f(T)(f(T)(v)) 
= -a0.f(T)(v) -a.1f(T)(T(v))-....- an-1.T^(n-1)(f(T)(v)), since f(T)(f(T)(v)) 
= f^2(T)(v) = 0, by hypothesis.
Thus the lower right hand block of the matrix is the companion matrix of f.

Thus the matrix of T in this basis is this:

|0   0..........0   -a0  | 0...............0|
|1   0 .........0   -a1  | 0...............0|
|0   1 .........0   -a2  | 0 ..............0|
|0   0           |....................|
|.................... ......  |....................|
|0   0........ 1  -an-1| 0.............   0|
|0   0  .......0     1   | 0 0..........-a0|
|0......................0  | 1 0......... -a1|
|0......................0  | ....................|
|........................   | .....................|
|0......................0 | 0 .......1 -an-1|

Thus the upper left and lower right blocks are copies of the companion matrix of f, 
the upper right block is all zeroes, while the lower left block has a single ‘1’ in its 
upper right corner, and zeroes elsewhere.  This is the elementary Jordan block 
associated to f^2.

In general, for f^r, f of degree n, we get an n.r by n.r matrix with r copies of the 
companion matrix for f along the diagonal, but also with a single ‘1’ below the last 
entry of each companion matrix except the lower right one.  Thus if
the n by n companion matrix of f is as follows:



|0   0.............0   -a0  |
|1   0 ............0   -a1  |
|0   1 ............0   -a2  |      =  Cf  

|..............................  |
|0   0........... 1  -an-1|

and we define a special n by n matrix with a single ‘1’ in it as follows:

|0   0   0   0   1|
|0   0   0   0   0|
|0   0   0   0   0|   = E.
..................
|0   0   0   0   0|
|0   0   0   0   0|.

Then the elementary Jordan block associated to f^r is the following r.n by r.n 
matrix, containing r copies of Cf, and r-1 copies of E:

|Cf  0     0    0    0    0|
|E   Cf   0    0    0    0|
|0    E   Cf   0    0    0|
..................................    = J(f),r
|0    0    E   Cf   0    0|
|0    0    0    E   Cf   0|
|0    0    0    0    E  Cf|.

Remark:  Thus every k-linear operator has a matrix representation consisting of 
blocks of this type where all polynomials f are irreducible over k, although finding 
a corresponding basis in practice assumes the ability to factor the minimal 
polynomial into irreducible factors.  Moreover, the number and sizes of the blocks 
corresponding to each irreducible factor are uniquely determined by the operator.  
Indeed they are determined by the dimensions of the subspaces ker(f^s(T)), for all 
irreducible factors f of the minimal polynomial and all powers f^s that divide that 
polynomial.  Precisely, the dimension of the quotient ker(f^s(T))/ker(f^(s-1)(T)), as 
a vector space over the field k[X]/(f), equals the number of blocks J(f),r that occur 
for r ≥ s.
It is usual to rearrange the full block matrix so that all occurrences of the same 



irreducible factor are adjacent.  If we choose an ordering for these irreducible 
factors, and if within the part of the matrix devoted to a single factor we order the 
blocks by size, then the matrix is uniquely determined.

Since the general Jordan form is a refinement of the rational canonical form, we 
can work backwards and recover the rational canonical form from the general 
Jordan form.  E.g. take the largest Jordan block corresponding to each irreducible 
factor of the minimal polynomial of T; the product of the minimal polynomials of 
these blocks is the largest invariant factor, i.e. the minimal polynomial of T.  Then 
take the second largest Jordan block corresponding to each irreducible factor; the 
product of their minimal polynomials equals the second largest invariant factor of 
T; etc...  In this way the general Jordan form determines all the invariant factors of 
T.  The uniqueness of the general Jordan form thus implies the uniqueness of the 
rational canonical form as well.

One can describe how to reconstruct the invariant factor decomposition from the 
Jordan one as follows.  We know that if two T-cyclic subspaces have relatively 
prime restricted minimal polynomials, then their product is still T-cyclic.  Indeed 
from our lemmas about minimal polynomials, we can take the sum of the two 
cyclic vectors of the subspaces as a cyclic vector for their product.  Hence in the 
Jordan decomposition we choose for each irreducible factor fj of the full minimal 
polynomial, a T-cyclic subspace corresponding to a power of fj, and we choose 
these subspaces as large as possible.  Then the product of these subspaces is a 
maximal T-cyclic subspace.  Then we repeat this process, choosing from among the 
remaining T-cyclic subspaces, again choosing as large a one as possible for each 
irreducible factor fj of the minimal polynomial.  Continuing, we eventually have 
the T-cyclic invariant factor decomposition, in which the T-cyclic subspaces are as 
large as possible.

Examples:  Recall the earlier example A =
|1   0    1|
|1   1    0|
|0   1    1|.  In this case we found minimal polynomial X^3 -3X^2 +3X -2, hence the 
rational canonical form is just the companion matrix:

| 0   0    2|
| 1   0   -3|
| 0   1    3|.  But we can factor this polynomial as (X-2)(X^2-X+1), so the 



Jordan form consists of two companion matrix blocks, one associated to each 
irreducible factor:

| 2   0    0|
| 0   0   -1|
| 0   1    1|.  

The upper left block is the companion matrix of  (X-2), i.e. just the one by one 
matrix [2], and the lower right block is the 2 by 2 companion matrix of X^2-X+1.  
In both cases the coefficients have their signs reversed, and begin with the constant 
coefficient.
The second example from above was A =
| 1   1   -1|
| 1   -1   1|
|-1   1    1|, with minimal polynomial (X^3 -X^2 - 4X +4), which factors 

completely over Q as (X-1)(X-2)(X+2).  Since the irreducible factors are all linear 
and occur only to the first power, the Jordan matrix is composed entirely of 
companion matrices of the linear factors, hence is “diagonal”, as follows:
| -2   0   0|
|  0   1   0|
|  0   0   2|, where we have chosen to order the characteristic roots by size.

Of course these computations were done over the rational field Q.  If we extend 
our field to the complex field, we could factor the first example also into distinct 
linear factors, (X-2)(X^2-X+1) = (X-2)(X- (1+isqrt(3))/2)(X- (1-isqrt(3))/2).  As 
noted there, this yields a diagonal Jordan matrix, with the roots of this polynomial, 
namely {2, (1+isqrt(3))/2, (1-isqrt(3))/2}, on the diagonal.  

Similarly, the 3rd example mentioned above, namely A =
| 1    0   -1|
| 0   -1    1|
| -1   1    0|, with minimal polynomial X(X^2-3), has the following Jordan form

| 0  0   0|
| 0  0   3|
| 0  1   0|, over the rational field, and the following diagonal Jordan form over R:

| 0        0         0|
| 0  -sqrt(3)     0|



| 0       0  sqrt(3)|.

Remark:  Existence of the Jordan form is often asserted only over the complex 
field, or with the added hypothesis that the minimal polynomial does factor into 
linear factors (not necessarily distinct) over the given field.  This special case, the 
“classical” Jordan form, is the most important one, so we discuss it separately in 
the next section.  For now, observe that the theory of this section implies the Jordan 
form is diagonal, with the roots of the minimal polynomial along the diagonal, if 
and only if the minimal polynomial factors into distinct linear factors over k.

Eigenvectors, diagonalizable matrices, and classical Jordan form
The classical Jordan form is the special case of the general Jordan form when the 
minimal polynomial of the operator T factors into linear factors, not necessarily 
distinct, over the field k.  This is always true over the complex numbers or any 
algebraically closed field, and can be forced in any case by passing from the given 
field to an extension of it which contains the roots of the minimal polynomial.  
This provides us with a canonical form for our matrix which is as simple as 
possible, frequently diagonal, and always “almost diagonal”.  In this case all 
irreducible factors of the minimal polynomial are of form (X-c), so the minimal 
polynomial for a T-cyclic subspace is of form (X-c)^r, for r ≥ 1.  From our earlier 
theory, an elementary Jordan block, for (X-c)^r, looks like this r by r matrix:

|c  0  0  0  0  0|
|1  c  0  0  0  0|
|0  1  c  0  0  0|
.......................    = J(c),r
|0  0  1  c  0  0|
|0  0  0  1  c  0|
|0  0  0  0  1  c|

Thus when the minimal polynomial of a matrix has all its roots in the field k, the 
Jordan form will be composed of blocks like the one above, of various sizes, and 
for various constants c.  These constants c are called “generalized eigenvalues”.  
Notice that on a T-cyclic subspace where T has the elementary Jordan block matrix 
above, the operator (T-c)^r  is identically zero.  Thus analyzing T in this setting 
involves studying the null spaces of operators of form (T-c)^r.  We want to 
introduce the usual terminology for elements of such null spaces.

Defn: An eigenvector of a k- linear map T, is a non zero vector v such that T(v) is 
a scalar multiple of v, i.e. such that T(v) = cv for some scalar c in the field k.  



The scalar c is the eigenvalue associated to v.  (Other terms used in place of 
“eigen”, rough translations from German, are “proper” and “characteristic”.)

Rmk: Any non zero vector in the kernel of T is an eigenvector with eigenvalue 
zero.  Since an eigenvector of T with eigenvalue c is a non zero vector in the kernel 
of (T-cI), a non zero vector in the kernel of (T-cI)^r is called a generalized 
eigenvector of T.

Defn:  Given a linear map T:V-->V, and a scalar c, the eigenspace of T 
corresponding to c, is the kernel of (T-c); the kernel of a power (T-c)^r is called a 
generalized eigenspace of T.

Remark: Thus the eigenspaces and generalized eigenspaces consist of the 
corresponding eigenvectors, or generalized eigenvectors, plus the zero vector.
Since this is a rather fine distinction we may sometimes make the careless error of 
referring to an eigenspace as a subspace of eigenvectors.

Eg.  If c is constant, the functions a.ect with a ≠ 0, i.e. the non zero elements of the 
kernel of (D-c),  are eigenvectors of the operator D acting on smooth functions. 
The function a.t.ect is in the kernel of (D-c)^2, and the functions a.t^(r-1).ect are 
elements of the kernel of (D-c)^r, hence generalized eigenvectors of D.  In this 
setting these eigenvectors are often called eigenfunctions.

E.g. A 90 degree counter-clockwise rotation T of the real plane R^2 about the 
origin, is a linear map with no eigenvectors.  Since this operator satisfies T^2 = -I, 
the minimal polynomial is X^2+1.  The matrix is
| 0  -1|
| 1   0|.

If we consider the action of this operator on the complex “plane” C^2, defined by 
multiplying complex coordinate vectors by the same matrix, the extended operator 
will then have complex eigenvalues ± i, and corresponding complex eigenvectors.

Geometry of eigenvectors:  Recall that a vector v in real Euclidean space has both 
a length and (if v ≠ 0) a direction.  An eigenvector is a non zero vector v such that 
either T(v) = 0, or v and T(v) have the same (or opposite) direction.  Hence v spans 
a line that is mapped by T into itself.

As illustrated by the rotation operator above, the concept of eigenvalue is 
dependent on the given field.



Proposition:  The eigenvalues of the k-linear map T are exactly those roots of the 
minimal polynomial of T which lie in the field k.
Proof: If c is a root in k of the minimal polynomial f, then f(X) factors over k as 
(X-c).g(X), for some g of lower degree.  Since f is minimal there is some vector v 
that is annihilated by f but not by g.  Then f(T)(v) = 0 = (T-c)(g(T)(v)).  Since 
g(T)(v) ≠ 0, g(T)(v) is an eigenvector of T with eigenvalue c.
Conversely, if c is an eigenvalue of T in k, then there is some vector v ≠ 0 with 
(T-c)(v) = 0, i.e. T satisfies (X-c) at v.  Since the polynomial (X-c) is linear, it is the 
minimal polynomial of T at v.  Since the minimal polynomial of T on all of V also 
vanishes at v, it must be a multiple of (X-c), i.e. c is a root in k of that minimal 
polynomial.  QED.

Corollary:  If the minimal polynomial of T factors completely into linear factors 
over the field k, then the eigenvalues of T are exactly the roots of the minimal 
polynomial, hence also exactly the roots of the characteristic polynomial.
Proof:  Since the characteristic and minimal polynomials have the same 
irreducible factors, they also have the same roots, so this follows from the previous 
proposition.  QED.

The fundamental result, as before, is that we can reduce the study of an operator to 
subspaces on which the minimal polynomial is as simple as possible.

Decomposition Lemma: If a linear map T:V-->V has minimal polynomial 
(X-c1)r1(X-c2)r2....(X-ct)rt with all ci distinct, i.e. if all the roots ci are in the field 
of scalars, then V is isomorphic to the product of the subspaces Vi = ker(T-ci)ri.  
The restriction of T to the subspace Vi has minimal polynomial (X-ci)ri.

Proof: This is just the special case of the general decomposition lemma proved 
earlier, when the roots of the minimal polynomial all lie in the field of scalars. 
QED.

Corollary:  Whenever the minimal polynomial of T:V-->V has all its roots in the 
field of scalars, there is always a basis for V composed of generalized eigenvectors.
Proof:  Just choose a basis for each subspace ker(T-ci)ri and combine them to get a 
basis for V.  QED.

The simplest case thus occurs when there is a basis of (ordinary) eigenvectors, the 
“diagonalizable” case.
Definition:  An operator T:V-->V is “diagonalizable” if and only if there is a basis 



in which the matrix of T is diagonal, i.e. the matrix consists of all zeroes except 
possibly along the main diagonal.

Theorem: A linear map T:V-->V is diagonalizable iff there is a basis for V 
composed of eigenvectors or “eigenbasis”, iff the minimal polynomial has form 
(X-c1)(X-c2)....(X-ct) where all ci are distinct.
Proof:  If V has dimension n, the rules for forming a matrix from a basis {v1, ..., 
vn}, imply the matrix of T:V-->V will be diagonal if and only if for every basis 
vector vj, we have T(vj) = cj.vj, for some scalar cj.  This says exactly that a matrix 
is diagonal if and only if it is associated to a basis of eigenvectors, hence an 
operator is diagonalizable if and only if there exists a basis of eigenvectors.

If V has an eigenbasis and c1,...,ct, is a maximal sequence of distinct scalars among 
its sequence of eigenvalues, then the polynomial (X-c1)(X-c2)....(X-ct) annihilates 
every vector in the eigenbasis when T is substituted for X.  I.e. the factors 
(T-c1)(T-c2)....(T-ct) commute with one another, so since (T-ci) annihilates all the 
basis eigenvectors associated to the eigenvalue ci, this product annihilates the 
entire basis, hence the whole space.  Thus the minimal polynomial must divide this 
polynomial, hence must also have distinct linear factors.  (In fact no proper factor 
can annihilate the whole basis, since e.g. the map (T-c2)(…)(T-ct) takes v1 to 
(c1-c2).(…)(c1-ct).v ≠ 0.  So (X-c1)(X-c2)....(X-ct) is the minimal polynomial.)

Conversely, if the minimal polynomial factors into distinct linear factors, then the 
decomposition lemma above implies that the space is a product of subspaces of 
form ker(T-ci).  Hence choosing a basis for each of these and combining them into 
a basis for V gives a basis of eigenvectors.  QED.

Corollary:  If the characteristic polynomial of T factors into distinct linear factors, 
then it equals the minimal polynomial, and T is diagonalizable.

Remark:  The last part of the proof of the previous Theorem shows that if an 
operator T is diagonalizable on V, and if we can actually compute the roots of its 
minimal polynomial, then it is straight forward to compute a basis that diagonalizes 
the operator.  Namely for each eigenvalue c, compute a basis for the kernel of 
(T-c).  Combining these bases, for all eigenvalues c, gives an eigenbasis of V.

Remark:  Over the complex numbers, most polynomials factor into distinct linear 
factors, so statistically speaking, “most” complex matrices are diagonalizable, i.e. 
diagonalizable matrices form a dense open subset of all complex nxn matrices.  For 



example a quadratic polynomial X^2+bX+c has a repeated root if and only if b^2 = 
4c, so in the (b,c) plane of all monic quadratic polynomials, those with a repeated 
root lie on the parabola b^2 - 4c = 0.  Thus, the characteristic polynomial of a 2 by 
2 matrix with rows [a b], [c d] has a repeated root if and only if (a+d)^2 - 4(ad-bc) 
= 0.  Hence such matrices lie on a 3 dimensional quadratic “hypersurface” in the 4 
dimensional space of all 2 by 2 matrices.

Remark: If T:R^n-->R^n is given by a matrix B in the standard basis, and if 
{v1, ..., vn} is an eigenbasis, and if N is the matrix with the eigenvectors vj as 
columns, then the matrix N-1.B.N will be diagonal.  I.e. N takes the standard basis 
vectors ej to the eigenvectors vj, then B stretches those eigenvectors to cj.vj, so 
N-1 takes those stretched eigenvectors back to the stretched standard basis vectors 
cj.ej, and the resulting matrix, for the composition taking each ej to cj.ej, has the 
cj’s on the diagonal and zeroes elsewhere.

Eg: The map T:R2-->R2 with T(1,0) = (0,1), and T(0,1) = (0,0), satisfies X2 = 0, 
i.e. T(T(v)) = 0 for all v, but T(1,0) ≠ (0,0), so T has minimal polynomial X2.  By 
the theorem, T is not diagonalizable.

Eg: Prove directly that in the previous example, all eigenvectors have form (0,y).

Eg: The map c:V-->V multiplication by the scalar c, has diagonal matrix c.I in 
every basis.  In particular, every basis is an eigenbasis for the identity map.  

Eg. The map T:R2-->R2 sending (1,0) to (1,0) and (0,1) to (0,2) has diagonal 
matrix with columns (1,0) and (0,2) in the standard basis, i.e. the standard basis is 
an eigenbasis.  But (1,1) is not an eigenvector, so in the basis {(1,0), (1,1)} the 
matrix of f is not diagonal, but has columns (1,0), (-1,2).

Ex: The derivative map D acting on polynomials of degree ≤ 2, has no eigenbasis, 
but any non zero constant polynomial is an eigenvector with eigenvalue zero.

Ex:  Let V be the solution space of the differential equation f’’ - f = 0, on the space 
of real-valued differentiable functions of a real variable.  This is the kernel of 
D^2-1, where D is the derivative operator, with minimal polynomial X^2-1 on V.  
It follows (from linear algebra and the mean value theorem) that V has dimension 2 
over R, hence {e^t, e^-t} is an eigenbasis for the operator D on V.

[Sketch of proof that f’’- f = 0 has 2 dimensional solution space:  Let W be any 



finite dimensional subspace of solutions containing e^t and e^-t.  Since D^2-1 = 
(D+1)(D-1) is identically zero on W,  (D+1) must map W into the kernel of (D-1).  
Thus W/ker(D+1) injects into ker(D-1), so dim(W) ≤ dim(ker(D-1)) + 
dim(ker(D+1)).  Thus it suffices to show dim(ker(D±1)) = 1.  But if f solves 
f’-af=0 for any constant a, then the derivative of (f/e^at) equals e^at.(f’-af)/e^(2at) 
= 0, hence by the mean value theorem f/e^at = c is constant, so f = c.e^at.  Thus the 
kernel of (D-a) is one dimensional with basis e^at.]

Ex:  Let V be the solution space of the differential equation f’’+f = 0, acting on the 
space of real-valued differentiable functions of a real variable.  Again V has 
dimension 2 over R, with basis {cos(t), sin(t)}.  The minimal polynomial of D on 
V is X^2+1, so there are no real eigenvalues or eigenvectors.  (Note the matrix for 
D in this basis is the same as the matrix for the 90 degree cc rotation of the real 
plane).  If we consider the solutions as a subspace of complex - valued functions of 
a real variable, then an eigenbasis exists over C:{cos(t) + i.sin(t), cos(t) - i.sin(t)} = 
{e^(it), e^(-it)}.

Ex:  Let A be the following matrix over Q:
| 1   1   1|
| 0   2   2|
| 0   0   3|.  Then the characteristic polynomial is the determinant of [X-A] =

| (X-1)  -1   -1|
|  0  (X-2)   -2|
| 0     0   (X-3)|,

which equals (X-1)(X-2)(X-3), with roots {1,2,3}, all in Q and distinct.  Hence A is 
diagonalizable with eigenvalues 1,2,3.  We claim an eigenbasis is given by 
{(1,0,0), (1,1,0), (3,4,2)}.  
Check this by finding bases for each of the kernels of the operators (A-I), (A-2.I), 
(A-3.I).  
Check also that if N is the matrix with these eigenvectors as columns, then 
N^-1.A.N is diagonal.

Remark:  We chose this matrix to be “triangular”, i.e. all zeroes below the main 
diagonal, so we could be sure the eigenvalues were exactly what we wanted them 
to be.  This is the only general class of matrices I know whose characteristic 
polynomials are easy to factor into linear factors, and even to arrange to have any 
desired linear factors.



How to determine diagonalizability over Q in practice
 Notice that although it is not so practical to find all irreducible factors of a monic 
polynomial over Q, it is always feasible to find all linear factors, since by the 
rational root theorem they must have form (X-c) where c is an integer factor of the 
constant term.  I.e. after factoring out any powers of X from our polynomial, we 
get a non-zero constant term with a finite number of integer factors, hence a finite 
list of other possible linear factors of our polynomial.  Thus given an integer 
matrix, we can always decide whether or not it is diagonalizable over Q, and if so, 
we can find an eigenbasis that diagonalizes it.  Namely we can compute the 
characteristic polynomial either by diagonalizing the characteristic matrix, or by 
taking its determinant, and we can find all linear factors.  If those suffice to factor 
it completely, then we can see whether they are all distinct or not.  If the 
polynomial does factor completely into distinct linear factors, then we can 
diagonalize it over Q by finding bases for the eigenspaces.  If there are not enough 
integral linear factors to factor it completely, or if there exist repeated factors, then 
the matrix is not diagonalizable over Q.  As always you must take this algorithm 
with a few grains of salt, since if the constant term of the characteristic polynomial 
turns out to be say 5040, it might take you awhile to find the rational roots by hand.

Ex: Decide whether the following matrix is diagonalizable over Q, and if it is, find 
a basis of eigenvectors.  A= 

| 5     -4    2|
| 12  -10   6|
| 12  -10   7|.

Hint:  Start by computing the characteristic polynomial of A, then use the rational 
root theorem to find its rational, i.e. integral, roots.

You should find that it is indeed diagonalizable over Q.  I made up this example by 
starting from a diagonal integral matrix D and an integral matrix N whose 
determinant I cooked up to equal one.  Try it, it’s not too hard if you keep the 
numbers small and throw in some zeroes.  Then the inverse matrix N^-1 is also 
integral, and can be found by row reduction as discussed earlier.  Then I multiplied 
N.D.N^-1 to get this matrix A.  So if you find a matrix N whose columns are a 
basis of eigenvectors for A, then N^-1.A.N should be the diagonal matrix D.  
Please verify that your eigenvectors are correct by multiplying them by A.  If they 
don’t work, try recomputing the characteristic polynomial.  (I got X^3-2X^2-X+2).

How to compute a Jordan basis



If the characteristic polynomial does factor completely into linear factors over a 
field k, even if there are repeated linear factors, then the matrix has a (classical) 
Jordan form over k.  Given this factorization, we can compute a basis of 
generalized eigenvectors that puts the matrix in Jordan form.  As stated above, the 
factorization exists theoretically if the field is algebraically closed, such as the 
complex numbers.  In practice we usually use integer matrices, and then it is 
unusual for the characteristic polynomial to factor completely into linear factors 
over Q.  Still one can always decide whether or not this is true, by computing the 
characteristic polynomial, and then using the rational roots theorem to find all 
linear factors.  If the characteristic polynomial does factor completely into linear 
factors over Q, then as stated above one can compute the Jordan form as well as a 
basis of generalized eigenvectors that put the matrix into that form.  Thus over Q, 
although one cannot feasibly calculate the general Jordan form of an arbitrary 
matrix, due to the difficulty of finding non linear irreducible factors of the 
characteristic polynomial, one can determine whether a classical Jordan form exists 
for the matrix over Q.  If it does, one can calculate both the classical Jordan form 
and, with considerably more effort, a basis that achieves this form.

Notice that it is immediate from the relatively prime decomposition theorem that a 
basis of generalized eigenvectors exists whenever the characteristic polynomial 
factors into linear factors; what is more difficult is that such a basis can be chosen 
to be “cyclic” and hence give a Jordan matrix.  This is a corollary of the general 
theory we gave for existence of rational canonical form, but we will deduce it 
again without assuming that theory.  The benefit is that one can obtain the classical 
Jordan form without the abstraction of the theory of k[X] spaces and their 
presentations, but the price is that the direct argument we will give is more 
complicated.  Recall also that we did not explain how to choose the cyclic basis 
that gives the rational canonical form associated to the invariant factors of the 
characteristic polynomial, but referred to the algorithm in Dummitt and Foote.
So another plus is that the more complicated argument that follows will show how 
to actually choose a cyclic basis that puts the matrix in Jordan form.

Jordan canonical form - “almost diagonalizable” maps
We have shown that an operator is diagonalizable if its minimal polynomial factors 
into distinct linear factors.  Over an algebraically closed field like the complex 
numbers, the minimal polynomial of an operator will always factor into linear 
factors, but not necessarily distinct ones.  If not, the map will not be 
diagonalizable, but it is almost diagonalizable, as we show next.  The essential new 
wrinkle is the explicit consideration of “nilpotent” maps.  Indeed, it will turn out 
that in this setting every operator is uniquely a sum of a diagonalizable part and a 



nilpotent part.

Jordan canonical form
An operator is called “nilpotent”, if some power of it is identically zero.  E.g. the 
differentiation operator D acting on the space of polynomials of degree ≤ n, is 
nilpotent of order n+1, since the n+1st derivative of a polynomial of degree ≤ n is 
zero.  In the decomposition lemma above, transformations T whose minimal 
polynomials have repeated linear factors (X-c)r, with r ≥ 2, give a decomposition 
of the space into a product of subspaces on which the map (T-c) is not identically 
zero but is nilpotent.  I.e. (T-c)r is identically zero on ker(T-c)r by definition of 
kernel.  Since T = c.Id + (T-c), on this subspace T is thus the sum of the diagonal 
operator c.Id and the nilpotent operator (T-c).  This leads to what is called “Jordan 
form”, or a “Jordan matrix” for T.  

The Jordan matrix of a nilpotent operator
We want to show how to choose a basis that puts a matrix in Jordan form.  The 
simplest case is for a nilpotent n by n matrix with minimal polynomial X^n.  This 
case is not too bad.  I.e. if V is n dimensional and T:V-->V satisfies the minimal 
polynomial X^n = 0, we want to find a cyclic vector v such that {v, T(v), T^2
(v),...., T^n-1(v)} is a basis.  In this basis the matrix will be the following Jordan 
form, with 1’s just below the main diagonal:

| 0 ............0|
| 1 0..........0|
| 0 1 .........0|
................
| 0 .........1 0|

Hence we need a v that does not lie in the kernel of T^(n-1), or equivalently we 
need v to be a basis for the quotient space V/ker(T^(n-1)).  In chapter one we 
observed that to find a basis for a quotient space we first find a basis for the 
subspace in the bottom, then extend that to a basis for V, and the extra vectors 
added to extend the basis are a basis for the quotient space.

Of course here kerT^(n-1) is n-1 dimensional and we just need to choose one 
vector not in this kernel.  If we have computed the matrix for T^(n-1) that is easy.  
I.e. by hypothesis this matrix is not zero and the jth column is the image of ej under 
T^(n-1).  Hence if the jth column is non zero, then ej is a cyclic vector.  
We need to prove if T^(n-1)(v) ≠ 0, then {v, T(v), T^2(v),...., T^n-1(v)} is a basis.  



Since each vector is a basis of one of the successive quotients kerT^s/kerT^(s-1), it 
follows from our earlier theory that their union is a basis for V.
To check it directly, assume we have a linear relation a0.v + a1.T(v) + a2.T^2(v) 
+ ... + an-1.T^n-1(v) = 0.  Apply T^(n-1) to this equation getting T^(n-1)(a0.v) = 
a0.T^(n-1)(v) = 0, since T^(n-1) annihilates all other vectors in the proposed basis.  
But since T^(n-1)(v) ≠ 0, this implies that a0 = 0.  Since a0 = 0, we have  a1.T(v) + 
a2.T^2(v) + ... + an-1.T^n-1(v) = 0, to which we can apply T^(n-2) and conclude 
a1 = 0.  Continuing, all coefficients aj = 0, so the sequence {v, T(v), T^2(v),...., 
T^n-1(v)} is independent, hence a basis of our n dimensional space.

The case we just argued corresponds to a matrix with only one elementary Jordan 
block.  Then next simplest case is where there is more than one block, but all 
blocks are the same size.  This happens if the minimal polynomial of T on V is X^r, 
and the dimension of ker(T^r)/ker(T^(r-1)) = s, where dim(V) = r.s.  Then there are 
s elementary blocks, each of them of dimension r by r.  In this case we choose a 
basis of the quotient space ker(T^r)/ker(T^(r-1)), say x1,...,xs, and then we claim 
the union of the cyclic sequences {...; xj,T(xj),...,T^(r-1)(xj);...} form a basis for V.  
I.e. {x1,T(x1),...,T^(r-1)(x1); x2, T(x2),...,T^(r-1)(x2);...; xs,T(xs),.....,T^(r-1)(xs)} 
is a cyclic basis of V.  The same arguments for independence work again.  E.g. 
applying T^(r-1) to a linear relation among these vectors gives a linear relation 
among the x’s, which are independent; continuing as before, the sequence is 
independent.  By hypothesis dim(V) = r.s, so these independent vectors form a 
basis, and are visibly cyclic.  
The easiest way to choose a basis for ker(T^r)/ker(T^(r-1)) ≈ V/ker(T^(r-1)) ≈ 
Im(T^(r-1)), may be to row reduce the matrix for T^(r-1) to identify the pivot 
columns, and choose the standard basis vectors corresponding to the pivot columns 
of T^(r-1) as basis.  I.e. we want a sequence of s vectors such that only the trivial 
linear combination of them lies in ker(T^(r-1)); equivalently, only the trivial linear 
combination of their images under T^(r-1) is zero.  This is given by standard basis 
vectors whose images under T^(r-1) are independent, e.g. the standard basis 
vectors corresponding to pivot columns of T^(r-1).  So this is not too bad either; we 
only need to compute the matrix for T^(r-1) and then row reduce it.

The next simplest case seems to be two blocks of different sizes, one smaller than 
the other.  Here we are looking for two cyclic vectors v,w, with basis
{w, T(w), ..., T^(s-1)(w); v, T(v),...,T^(r-1)(v)}, where r < s.  We need w to be a 
basis for the one dimensional space kerT^(s)/kerT^(s-1) ≈ V/kerT^(s-1) ≈ 
ImT^(s-1).  We can proceed as above and choose w as a standard basis vector 
corresponding to a non zero column of the matrix for T^(s-1).  
Then we need to choose v so that {T^(s-r)(w), v} is a basis of kerT^r /kerT^(r-1).  



This seems more complicated; we could proceed as follows.  First choose a basis 
for kerT^(r-1), and add to this sequence the vector T^(s-r)(w), and then add on also 
a basis for kerT^r.  Now reduce that sequence to an independent set, which will 
consist of first the basis for T^(r-1), then the vector T^(s-r)(w), and finally one 
more vector v.  Then the pair {T^(s-r)(w), v} is the basis we want of kerT^r/kerT^
(r-1), and hence {w, T(w), ..., T^(s-1)(w); v, T(v),...,T^(r-1)(v)} is our cyclic basis 
for V.  At each stage we have bases for the successive quotient spaces, so their 
union is indeed a basis for V.

That was a little complicated but we can prove the following theorem by these 
arguments, without assuming our earlier results on existence of cyclic bases.
Theorem: If a k-linear operator T:V-->V has minimal polynomial 
(X-c1)r1(X-c2)r2....(X-ct)rt with all ci distinct in k, then in some basis T has a 
matrix in Jordan form over k.  For each factor (X-c)^r, there is a sequence of 
elementary Jordan blocks of size ≤ (r by r), with c along the diagonal.  The number 
of such blocks equals dim.ker(T-c).  For each s ≤ r, the number of such blocks 
which are at least s by s in size equals dim(ker((T-c)^s)/ker((T-c)^(s-1))).  At least 
one such block has size (r by r); the sum of the sizes of all blocks with c on the 
diagonal equals the largest power of (X-c) which divides the characteristic 
polynomial of T.

Rmk: In particular, if T is diagonalizable, then the Jordan form is diagonal, and if 
T is not diagonalizable, the Jordan form is the closest thing to being diagonal.  
Moreover, the description t the end of the statement of the theorem shows that the 
number and size of elementary Jordan blocks is determined by the operator T, so 
the Jordan form is uniquely determined by T, up to ordering of the various blocks.

Proof:  By the decomposition lemma V is the product of the subspaces ker(T-ci)ri, 
and since all polynomials in T commute with each other, each such subspace is T - 
invariant.  So it suffices to show each subspace W = ker((T-c)^r) has a basis putting 
the matrix in Jordan form.  Since on this subspace (T-c)r = 0, but (T-c)r-1 ≠ 0, the 
operator N = (T -c) is nilpotent on W of order r, so V = ker(Nr).  Consider the 
quotient space V/ker(Nr-1), and choose a basis [x1],...,[xn] for it.  Since N induces 
an injection of V/ker(Nr-1) to the quotient ker(Nr-1)/ker(Nr-2), we may extend the 
independent set {[N(x1)],...,[N(xn)]} to a basis {[N(x1)],...,[N(xn)], [y1],...,[ym]} 
for ker(Nr-1)/ker(Nr-2).  Next we extend the independent set 
{[N2(x1)],...,[N2(xn)], [N(y1)],...,[N(ym)]} to a basis for 
ker(Nr-2)/ker(Nr-3). ...   Continuing, we obtain a basis 



{[Nr-1(x1)], ..., [Nr-1(xn)], [Nr-2(y1)], ..., [Nr-2(ym)],..., [z1],...,[zq]} for ker(N).  
Then the union of the vectors representing these bases is a basis for V:
x1,   ......    ,xn;
N(x1),...    , N(xn),     y1,...,ym;
N2(x1),..., N2(xn)],  N(y1)],...,N(ym),.......:
...................
Nr-1(x1), ..., Nr-1(xn), Nr-2(y1), ..., Nr-2(ym),..., z1,...,zq.

Re-ordering the vectors along the columns in the list above gives the cyclic basis 
we want, namely:
{x1,N(x1),.., Nr-1(x1); x2, N(x2),.., Nr-1(x2) ; .... ; xn, N(xn),.., Nr-1(xn); 
y1,.., Nr-2(y1); y2, ..., Nr-2(y2) ; ym, ..., Nr-2(ym) ; 
....; 
z1, .... , zq}.

Then there are n = dim (V/ker(Nr-1)), elementary Jordan blocks of size r by r 
corresponding to the x’s; there are m blocks of size (r-1) by (r-1), where n+m = 
dim (ker(Nr-1)/ker(Nr-2)), corresponding to the y’s;.....  Finally, in the matrix for N 
= (T-c), there are q blocks of size 1 by 1, i.e. one q by q block of all zeroes, 
corresponding to the remaining eigenvectors {z1, .... , zq}, where n+m+....+q = 
dim (ker(N2)/ker(N)) + q = dim(ker(N)).  

Finally the matrix for T = N+cI, in this basis, is obtained from the matrix for N, by 
adding c’s everywhere along the diagonal.  QED.

Rmk:  Actually computing these Jordan bases is tedious, but one might proceed 
like this.  For an integral matrix, compute the minimal polynomial by 
diagonalizing the characteristic matrix, and find its linear factors over Z by the 
rational root theorem.  If they suffice to factor it completely you may continue to 
find the Jordan form.  If (X-c)^r is the factor of the minimal polynomial 
corresponding to the root c, set N = (T-c) and compute bases of the subspaces 
ker(N), ker(N2),..., ker(Nr).  Write the basis for ker(Nr) after the basis for 
ker(Nr-1), and then reduce to a new basis for ker(Nr) that contains the basis for 
ker(Nr-1).  The additional vectors give a basis for ker(Nr)/ker(Nr-1).  These are the 
x’s in the proof above.  Applying N to this basis injects it into ker(Nr-1)/ker(Nr-2).  
Write this injected set after the basis for ker(Nr-2), then add on the basis for 



ker(Nr-1), and reduce to a new basis for ker(Nr-1) that contains, first the basis for 
ker(Nr-2), and then a basis for ker(Nr-1) that contains the injected basis from 
ker(Nr)/ker(Nr-1).  Thus we have extended the image of that basis to a basis for 
ker(Nr-1)/ker(Nr-2).  The extra vectors added are the y’s from above.  Continue....

For r=3, this looks as follows.  Let {x1,...,xn} be a basis of ker(N3), let {y1,...,ym} 
be a basis for ker(N2), and let {z1,...,zp} be a basis for ker(N).  Then reduce the 
sequence {y1,...,ym,x1,...,xn} to a basis for ker(N3), eliminating m of the x’s, 
getting say {y1,...,ym, x1,...,xr}, for simplicity, where r+m = n.  Thus {x1,...xr} is 
our basis for ker(N3)/ker(N2).
  
Then reduce {z1,...,zp,N(x1),...,N(xr),y1,...,ym} to a basis for ker(N2), eliminating 
p + r of the y’s, getting say {z1,...,zp, N(x1),..., N(xr), y1,...,ys}, for simplicity, 
where p+r+s = m.  Thus {N(x1),...,N(xr),y1,...,ys}, is our basis for ker(N2)/ker(N).
  
Finally reduce{N2(x1),..., N2(xr), N(y1),...,N(ys), z1,...,zp}, to a basis for ker(N), 
eliminating r+s of the z’s, getting say {N2(x1),..., N2(xr), N(y1),...,N(ys), z1,...,zt}, 
where r+s+t = p.  This last sequence is our basis for ker(N). 

Putting them all together gives our basis for ker (N3): 
{x1,...xr; N(x1),...,N(xr),y1,...,ys; N2(x1),..., N2(xr), N(y1),...,N(ys), z1,...,zt}.

Reordering the basis gives the one we want for our Jordan form matrix:
{x1,N(x1),N2(x1);...; xr,N(xr), N2(xr); y1,N(y1);...;ys,N(ys); z1,...,zt}.

The Jordan matrix will thus consist of r elementary blocks of size 3by3, s blocks of 
size 2by2, and t blocks of size 1by1.  In particular there is a total of  r+s+t= p = 
dim.ker(N) blocks of all sizes, since only the last column in each block 
corresponds to a basis vector for ker.(N).

E.g. A Jordan matrix for an operator T acting on a space V = ker(T-c)3 of 
dimension 9.  I.e. the minimal polynomial is (X-c)3 and the characteristic 
polynomial is (X-c)9.



c  0  0  0  0  0  0  0  0
1  c  0  0  0  0  0  0  0
0  1  c  0  0  0  0  0  0
0  0  0  c  0  0  0  0  0
0  0  0  1  c  0  0  0  0
0  0  0  0  0  c  0  0  0
0  0  0  0  0  1  c  0  0
0  0  0  0  0  0  0  c  0
0  0  0  0  0  0  0  1  c

This matrix consists of 4 Jordan blocks, one of them 3x3 and three of them 2x2.  
As before, set T-c = N.  Each of the 4 columns having only one ‘c’ in it and no ‘1’, 
i.e. the right most column of each block, represents a basis vector for ker(N), 
which thus has dimension 4.  The 4 columns just to the left of each of these 
columns, each having a 1 to the left of the previously mentioned c, represent a 
basis for ker(N2)/ker(N), which thus also has dimension 4.  The first column, the 
only column having a 1 in it and also lying 2 columns to the left of a column with 
only a c, represents a basis for ker(N3)/ker(N2), which thus has dimension 1.

Thus the fact there are 4 blocks means ker(N) has dimension 4.  The fact there are 
4 blocks at least 2x2 in size, means ker(N2)/ker(N) has dimension 4.  The fact 
there is one 3x3 block means ker(N3)/ker(N2) has dimension one.  The minimal 
polynomial of N is X3, so the minimal polynomial of T is (X-c)3.

Here the Jordan basis cannot all come from a basis of ker(N3)/ker(N2).  A basis 
vector v1 of that space only represents the leftmost column of the matrix, and then 
N(v1) and N2(v1) only give you the next 2 columns.  To get the rest of the Jordan 
basis we need to extend N(v1) to a basis of ker(N2)/ker(N), getting three more 
vectors v2, v3, v4, representing columns 4, 6 and 8 of the matrix above.  Then 
applying N to these gives the rest of the basis of ker(N), representing columns 
5,7,9.  The Jordan basis is {v1, N(v1), N2(v1), v2, N(v2), v3, N(v3), v4, N(v4)}.

E.g. If dim(V) = 3, and the minimal polynomial of T is (X-c)3, let N = T-c.  Then 
ker(N) is one dimensional, ker(N)2 is two dimensional and ker(N)3 = V is three 
dimensional.  Just pick any basis {w2, w3} of ker(N)2, and extend it to a basis {v1, 
w2, w3}, adding in one new vector v1.  Throw away {w2, w3} and apply N twice 



to v1; then {v1, N(v1), N2(v1)} is the Jordan basis.  In this basis the 3x3 matrix for 
T has c’s along the main diagonal, and a ‘1’ under each of the first two occurrences 
of ‘c’.  I.e. the three columns are the transposes of [c, 1, 0], [0, c, 1], [0, 0, c], so 
the matrix forms a single 3x3 Jordan block.

If the minimal polynomial is (X-c) then any basis is an eigenbasis and diagonalizes 
the matrix, since then T = cI.  If dim(V) = 3, the 3x3 matrix for T has c’s along the 
main diagonal and no 1’s.  The matrix is composed of three 1x1 Jordan blocks.

If dim(V) = 3, and T has minimal polynomial (X-c)2, again let N = (T-c).  Then ker
(N) is two dimensional, so pick a basis {w2, w3} of ker(N) and extend to a basis 
{w2, w3, v1} of V.  Throwing away {w2, w3} gives us a basis {v1} of ker(N)2/ker
(N).  Then N(v1) ≠ 0 belongs to ker(N), so we can reduce the sequence {N(v1), 
w2, w3} to a basis {N(v1), w} of ker(N), where w is either w2 or w3.  Then the 
Jordan basis for V is {v1, N(v1), w}.  In this basis the 3 by 3 matrix for T has c’s 
along the diagonal, and a single “1” occurring just below the first c.  I.e. the 
columns of the matrix are (the transposes of) [c,1,0], [0,c,0], [0,0,c].  Thus the 
matrix has one 2x2 Jordan block followed by a single 1x1 Jordan block.

Eg: The Jordan form of a linear map T:R2-->R2 with minimal polynomial (X-c)2 
has columns (c,1), (0,c).  The derivative D:V-->V acting on polynomials of degree 
≤ 2, has X3 as minimal polynomial, Jordan basis {X2, 2X, 2} and Jordan matrix 
with columns (the transposes of) [0,1,0], [0,0,1], [0,0,0].

Ex.  What is the (only possible) Jordan form of a 4x4 matrix with minimal 
polynomial (X-c)3?  What are all possible Jordan forms of a 5x5 matrix with 
minimal polynomial (X-c)3, or X2(X-2)3?

Rmk:  The map S whose matrix in the Jordan basis is just the diagonal entries is of 
course diagonalizable, and the map N whose matrix is just the off diagonal entries 
is nilpotent.  Moreover these matrices, hence these maps, commute.  Thus the 
original map T = S+N, is a sum of a diagonalizable map S and a nilpotent map N, 
such that S and N commute.  This sums up the theoretical content of this theorem, 
i.e. a linear operator T whose minimal polynomial factors completely into linear 
factors, can be written (uniquely) as the sum of a diagonalizable (“semi simple”) 
operator S and a nilpotent operator N which commute; i.e. T = S+N, and SN = NS.

Rmk:  The uniqueness of the Jordan decomposition can be sketched as follows.  If 



T = S+N where S is diagonalizable, N is nilpotent, and SN = NS, then S and N also 
commute with T and hence also with T-cI for any constant c.  Thus if c is an 
eigenvalue of T, both N and S map the kernel of (T-cI)k to itself.  But (T-cI) and N 
are both nilpotent on this subspace, and they commute, so their difference (T-N-cI) 
= (S-cI) is also nilpotent on this subspace.  Arguing backwards, T-cI is nilpotent on 
any subspace on which S-cI is nilpotent.  I.e. the same subspace, corresponding to 
the eigenvalue c, occurs in the decomposition lemma for both T and S.  

Thus the Jordan form for S on this subspace is a block in the general Jordan form 
for S.  Since S is diagonalizable, that Jordan form on this subspace is diagonal with 
the constant c along the diagonal.  I.e. on this subspace, the operator S is the 
diagonalizable summand we found above for T.  Since this holds on every 
subspace in the decomposition, this is true on all of V, and S is thus unique.  

In summary, the decomposition lemma yields a unique decomposition of V into 
subspaces of form ker(T-cI)k.  Then for any decomposition of T as S+N with S 
diagonalizable, N nilpotent and SN = NS, the restriction of S to each subspace ker
(T-cI)k must equal cI.  Thus S is uniquely determined on each subspace ker(T-cI)k, 
and hence also on their sum, i.e. on the whole space. Since N = T-S, N is also 
unique.

Note: We have seen that a linear map between two different spaces is determined 
up to isomorphisms of source and target just by its rank, or equivalently the 
dimension of its kernel.  Although the situation is more complicated for a map 
from a space V to itself, the theory of Jordan form shows that if the minimal 
polynomial is a product of powers of linear factors like (X-c)r, then the map T is 
determined up to an isomorphism of V just by the dimensions of the kernels of the 
powers (T-cI)j, for 1 ≤ j ≤ r, and for all roots c of the minimal polynomial.  

Example:  Consider the matrix A =
| 1  -2  -1  0|
| 1   0  -3  0|
|-1  -2  1  0|
| 1   2   1  2|  The characteristic matrix is thus X.I-A =

|(X-1)  2   1      0|
|  -1    X    3      0|
|   1    2 (X-1)   0|  
|  -1  -2   -1 (X-2)|.  I actually diagonalized this little guy and got the two invariant 



factors (X-2), (X-2)^2(X+2).  Hence the minimal polynomial is (X-2)^2(X+2), and 
the characteristic polynomial is (X-2)^3(X+2).  This already tells us exactly what 
the Jordan form J of this matrix is: there will be two blocks corresponding to 
characteristic value 2, one of size 2 and one of size 1, and there will be a single 
block of size 1 corresponding to characteristic value -2.  Namely J =
|-2  0  0  0|
| 0  2  0  0|
| 0  1  2  0|
| 0  0  0  2|.  It is more work to find a basis that puts it in this form, but it is doable 
if tedious arithmetic.

Since there are two powers of (X-2) in the invariant factor sequence, we know that 
ker.(A-2) will be two dimensional, and since the number of exponents ≤ 2 add to 3, 
we know ker.(A-2)^2 will be three dimensional.  Also ker.(A+2) will be one 
dimensional.

I got this basis for ker.(A-2): {(0,0,0,1), (1,-1,1,0)}, and extended it to this basis of 
ker.(A-2)^2: {(0,0,0,1), (1,-1,1,0), (0,-1,1,0)}.  Thus the last vector (0,-1,1,0) is a 
basis for the quotient space ker.(A-2)^2/ker.(A-2).  Since we want an (A-2) - cyclic 
basis, we want to use (A-2)(0,-1,1,0) = (1,-1,1,-1) as part of our basis for ker.(A-2).  
Thus we reduce the sequence {(1,-1,1,-1), (0,0,0,1), (1,-1,1,0)} to a new basis for 
ker.(A-2), getting {(1,-1,1,-1), (0,0,0,1)}.  Thus our new basis of ker.(A-2)^2 is
{(0,-1,1,0), (1,-1,1,-1), (0,0,0,1)}, which was denoted {x, (A-2)(x), y} in our 
abstract notation.  Then we compute as basis for ker.(A+2): {(-1,-1,-1,1)} = {z}.
In the resulting Jordan basis {(-1,-1,-1,1); (0,-1,1,0), (1,-1,1,-1), (0,0,0,1)}, the 
matrix of A should be the Jordan matrix J above.  I.e. if Q is the matrix whose 
columns are the vectors of this Jordan basis, we should have Q^-1AQ = J.  To 
check this without computing Q^-1 we could check equivalently that AQ = QJ, and 
I checked it that way.  But I made a lot of typos in copying it here, so please verify 
everything.  [I am also wondering why I ordered my Jordan blocks from largest to 
smallest, since the invariant factors go in the opposite order.)

Example:  Consider the matrix B =
| 5  -1  -3   2  -5|
| 0   2   0   0   0 |
| 1   0   1   1  -2|
| 0  -1  0    3   1|
| 1  -1  -1   1   1|, and diagonalize the characteristic matrix, getting the  invariant 
factor sequence: (X-2); (X-2)^2(X-3)^2.   (For me, this diagonalization was the 



hard part.)  Thus there are two Jordan blocks for the characteristic value 2, one of 
size 2 by 2 and one of size 1 by 1, and one 2 by 2 block for the characteristic value 
3.  I.e. the Jordan matrix J is this:
| 2  0  0  0  0|
| 1  2  0  0  0|
| 0  0  2  0  0|
| 0  0  0  3  0|
| 0  0  0  1  3|.  Again it takes more arithmetic to find the Jordan basis.  

By row reduction I got this basis for ker.(B-2): {(2,1,0,0,1), (1,0,1,0,0)}.  Then I 
got this additional vector in a basis for ker.(B-2)^2: (1,1,1,1,0), and hence as a 
basis for ker.(B-2)^2/ker.(B-2).  Fortunately, (B-2) of this last vector equals 
(1,0,1,0,0), so our new basis of ker.(B-2)^2 is just:{(1,1,1,1,0), (1,0,1,0,0), 
(2,1,0,0,1)}, which has the form {x, (B-2)(x), y}.

Computing gives this basis for ker.(B-3): {(-1,0,0,1,0)}, and a basis for (B-3)^2 is:
{(2,0,0,0,1), (-1,0,0,1,0)}, so (2,0,0,0,1) is a basis for ker(B-3)^2/ker(B-3).  Again 
fortunately, (B-3)(2,0,0,0,1) = (-1,0,0,1,0), so our Jordan basis of ker(B-3)^2 is 
{(2,0,0,0,1), (-1,0,0,1,0)}.  Ok, so our combined Jordan basis for the whole space is 
{(1,1,1,1,0), (1,0,1,0,0), (2,1,0,0,1), (2,0,0,0,1), (-1,0,0,1,0)}.  The matrix with 
these as columns is the change of basis matrix Q.  Thus we should have Q^-1BQ = 
J, which I verified, lazily as before, by checking that BQ = QJ.

Example:  Just for fun, and as easy calculation, let’s compare the difference 
between the companion matrix and the Jordan matrix for the same operator.  
Consider the polynomial (X-2)^4 = x^4 -8X^3 +24 X^2 -32X + 16, and the 
associated companion matrix A = 
| 0  0  0 -16|
| 1  0  0  32|
| 0  1  0 -24|
| 0  0  1    8|.  

Then (X-2)^4 is the characteristic and minimal polynomial for A.  We can easily 
confirm this by computation as follows.  From the columns of A we see that the 
standard basis is A-cyclic; i.e. Ae1 = e2, Ae2 = e3 = A^2e1, Ae3 = e4 = A^3e1, 
while Ae4 = -16e1 + 32e2 -24 e3 +8e4 = A^4e1.  Expressing everything in terms of 
e1, gives (-16 +32A -24A^2 +8A^3)(e1) = A^4e1, so (A^4 -8A^3+24A^2 -32A 
+16)(e1) = 0.  Since A commutes with every polynomial in A, this polynomial in A 
also annihilates A(e1) = e2, A^2(e1) = e3, and A^3(e1)= e4.  Hence this 
polynomial  in A does annihilate every vector in a basis, hence equals zero.  Since 



e1, A(e1) = e2, A^2(e1) = e3, and A^3(e1) = e4, are independent, no polynomial of 
degree less than 4 can annihilate e1, so the previous polynomial is indeed the 
minimal polynomial of A, both at e1 and on the whole space.

Now to get a Jordan basis, since (A-2) satisfies the polynomial t^4, hence is 
nilpotent of order 4, we want an (A-2) - cyclic basis.  This is easy to arrange from 
what we know about A.  Namely take u1 = e1, and then we want u2 = (A-2)(u1) = 
A(u1) -2u1 = A(e1) -2 e1 = e2 - 2e1.  Then we want u3 = (A-2)(u2) = A(e2) - 2e2 
-2A(e1) +4e1.  Finally we want u4 = (A-2)(u3) = e4 -6e3 +12e2 -8e1.

Then we can check that (A-2)(u4) = A(e4) -8e4 +24e3 -32e2  +16e1 = 0.  So in the 
basis {u1, u2, u3, u4}, (A-2) has this matrix:
| 0  0  0  0|
| 1  0  0  0|
| 0  1  0  0|
| 0  0  1  0|, so in that same basis, the operator A has this Jordan matrix:

| 2  0  0  0|
| 1  2  0  0|
| 0  1  2  0|
| 0  0  1  2|.  

As you can see, the difference between these matrices is that the first one, the 
companion matrix, displayed the coefficients of the minimal polynomial, while the 
second, the Jordan matrix, displayed its roots.  You will also recall that the 
coefficients of the minimal polynomial are always computable by diagonalization, 
while the roots require factorization also.  Hence the Jordan form, although 
simpler, may be impractical to compute for more difficult examples.

For more details and worked examples see my web notes, pp.11-16, at:
http://alpha.math.uga.edu/%7Eroy/845-2.pdf

Eg:  If f:V-->V is a linear map on a real vector space, with minimal polynomial 
X2+1, V decomposes as a sum of subspaces isomorphic to R[X]/(X2+1), i.e. of 2 
dimensional real subspaces, each of them one - dimensional over the field 
R[X]/(X2+1).  This quotient field is isomorphic to the complex numbers C, where 
X corresponds to i = sqrt(-1), so the operator f on this space corresponds to 
multiplication by i.  If V has dimension s over C, the real rational canonical matrix 
of f on V, consists of exactly s blocks, each 2 by 2, with columns (0,1), (-1,0).

http://alpha.math.uga.edu/%7Eroy/845-2.pdf
http://alpha.math.uga.edu/%7Eroy/845-2.pdf


Ex: A scalar c is an eigenvalue of f if and only if det(f-c.I) = 0, iff c is a root of the 
characteristic polynomial of f, if and only if c is a root of the minimal polynomial 
of f.

Ex:  Find all Jordan and rational canonical forms of linear maps of R3 with 
minimal polynomials (X-2)3, (X-2)2, and (X-2).

Chapter Five: Spectral theorems, detecting “orthogonal” diagonalizability 

In this chapter we consider vector spaces over the fields of real and complex 
numbers.  With a view to applications to mechanics and rigid motions, we will 
introduce notions of length and angle for vector spaces over the real numbers, and 
learn which maps are diagonalizable for some choice of mutually perpendicular 
axes.  These criteria are called “spectral theorems” and can be expressed in terms 
of symmetries.  We also apply our theory to solving linear differential equations.

Recall a diagonalizable operator over Q, whose eigenvalues are thus rational 
numbers, can be detected using the rational root theorem.  But a diagonalizable 
operator over R whose eigenvalues are irrational can be hard to recognize, since 
we often cannot factor the minimal polynomial. Thus it is useful to have a 
sufficient criterion for diagonalizability that does not require finding the irreducible 
factors of the minimal polynomial.  Such criteria exist and we discuss these next.

Notice that a diagonalizable operator T has the property that every subset of 
eigenvectors spans a T-invariant subspace.  Thus the first step in an inductive proof 
of diagonalizability of an operator T on V, is to find one eigenvalue, and hence one 
eigenvector.  The next step would be to find a complementary T invariant subspace 
on which one can then find another eigenvalue and eigenvector.  This would allow 
the proof to proceed by induction on dimension.  Now if we work over say the 
complex numbers then there is no problem of existence of an eigenvalue on any 
invariant subspace, since the minimal polynomial always has a complex root and 
hence there is at least one eigenvector.  So if we have a complex linear T, such that 
for the span of each eigenvector we can always find a complementary T-invariant 
subspace then we would be done.  Over the reals we have to work a little harder, 
but there is a similar theorem.

One idea for constructing an operator T that has this nice splitting process, that 
every invariant subspace has an invariant complement, is to introduce a notion of 



angles and perpendicularity, and then choose an operator T that preserves angles, 
or at least preserves perpendicularity.  Then since T preserves the line spanned by 
an eigenvector, it would also preserve the subspace perpendicular to that line, and 
this would give us a complementary T-invariant subspace.

The simplest operator that preserves perpendicularity would be a “rigid motion”, or 
length preserving operator.  This property can be expressed in terms of dot 
products.  Recall this notion.

Definition:  The dot product <v,w> = v.w of two vectors v = (a1,...,an), w = 
(b1,...,bn) in R^n is defined as a1b1+...+anbn.

By the n dimensional Pythagorean theorem, it follows that the squared length of a 
vector equals its dot product with itself.  We make this a definition.

Definition:  If v = (a1,...,an) is a vector in R^n, then v.v = a1^2+...+an^2 ≥ 0, so 
we can define its “length” to be sqrt(v.v) = |v| ≥ 0.

It is easy to check that the dot product is a “product” in the sense that it is 
distributive over addition and also commutes with scalar multiplication in each 
variable separately.  That is,

Ex.  Given vectors u,v,w in R^n, and a scalar c, we have u.(v+w) = u.v + u.w, and 
u.(cv) = (cu).v = c(u.v).

This lets us make a useful calculation.  Recall that if two vectors v,w starting from 
the origin are completed into a triangle by joining their “heads”, the vector joining 
the heads is parallel to and has the same length as the vector w-v.  Then we can 
relate the length of this third side of the triangle to the lengths of the first two sides 
by expanding a dot product.  I.e. then |w-v|^2 = (w-v).(w-v) = w.w - 2v.w + v.v = 
|v|^2 + |w|^2 - 2v.w.  Now by Pythagoras’ theorem |v|^2 + |w|^2 = |w-v|^2 if and 
only if v and w are perpendicular, and by our calculation, this is equivalent to v.w = 
0.  Thus we make another definition:

Definition:  Two vectors v,w in R^n are called “perpendicular”, also “orthogonal”, 
if and only if v.w = 0.

Definition:  If U is a subspace of R^n, define Uperp = {all vectors w in R^n such 
that v.w = 0 for all v in U}.



Note:  We defined length in terms of dot product, but the previous calculation also 
shows we could define dot product in terms of length.  I.e. we computed that 
(v.w) = (1/2)(|v|^2 + |w|^2 - |v-w|^2).

Remark:  Back in chapter 2, we defined a dot product on k^n for any field k, and 
noted that this gave an isomorphism from k^n to k^n*, sending each vector v to 
“dotting with v”, i.e. to the linear function v.( ), or sending each column vector to 
its transpose, the corresponding row vector.  Under this isomorphism, for each 
subspace U, the orthogonal complement Uperp in (k^n)*, of functions in k^n that 
vanish identically on U, corresponds to the subspace Uperp of k^n of vector that 
dot to zero with every vector in U.  But this copy of Uperp inside of k^n may not 
be perpendicular to U in the intuitive sense, i.e. it may overlap U in a non zero 
subspace, or equivalently some non zero vectors in k^n may be perpendicular to 
themselves!  E.g. if we consider the complex field k = C, then the vector (1,i) in 
C^2 has dot product 1^2 + i^2 = 1+ (-1) = 0, hence is perpendicular to itself in this 
sense.  Over the reals however, since R is ordered,  we have v.v > 0 if v ≠ 0.  This 
lets us use orthogonal complements to decompose R^n.

Ex.  If U is a subspace of R^n, and Uperp is its orthogonal complement in R^n 
with respect to the dot product, show that the map U x Uperp-->R^n, taking (v,w) 
to v+w, is injective, and hence an isomorphism. 

We often want to “normalize” our vectors by taking them to be length one, which 
we can do just by dividing a non zero vector by its length.  This gives another term,

Definition:  A set of vectors is called “orthonormal” if they are all of length one 
and mutually perpendicular.

Ex.  A set of orthonormal vectors in R^n must be independent.

Now we can define a length preserving operator in terms of dot products as well.
Definition:  An operator T:R^n-->R^n is called length preserving, or an isometry, 
if and only if for every vector v, |v| = |Tv|.

Ex.  Show that T is an isometry if and only if v.w = (Tv).(Tw) for all vectors v,w.
(Hint:  Use our observation above that length determines dot product.)  In 
particular an isometry preserves perpendicularity.



There is another equivalent description of an isometry in terms of transposes.

Lemma:  T:R^n-->R^n is an isometry if and only if its matrix is the inverse of its 
transpose.
proof:  If TT* = Id, then for all v,w, (Tv).(Tw) = v. (T*Tw) = v.w, recalling that we 
can move a matrix across a dot product by changing it into its transpose.  In the 
other direction, If v.w = (Tv).(Tw) = v.(T*Tw) for all v,w, then v.(w-T*Tw) = 0 for 
all v,w.  But if u = w-T*Tw, then u.u = |u|^2 = 0 implies u = 0.  Thus w-T*Tw = 0 
for all w, i.e. T*Tw = w for all w, so T*T = Id and T* = T^-1.  QED.

Definition: A real matrix A on R^n, is called orthogonal if A* = A^-1, i.e. 
orthogonal matrices are exactly those that define isometries.

Cor:  A matrix defines an isometry if and only if its columns are an orthonormal 
basis for R^n, if and only if its rows are as well.

Now we know that an isometry preserves perpendicularity, hence sends the 
subspace orthogonal to any eigenvector into itself.  This does not suffice to let us 
argue diagonalizability however, since an isometry may not have eigenvectors.  For 
example, a rotation of the plane about the origin does not have any eigenvector.  
Similarly a rotation of three space about an axis has one eigenvector, namely a 
vector spanning the axis, but usually has no eigenvectors in the plane perpendicular 
to the axis.  So a rotation of R^3 has one eigenvector but usually no eigenbasis.  
Thus it is quite interesting and beautiful that a slight tweak of the property of 
isometry does give us a class of diagonalizable operators, namely if we swap the 
property T* = T^-1 for the even simpler property T = T*, we hit pay dirt.

Definition:  A matrix A is symmetric if and only if A = A*, if and only if, for 
every i and j, the entry in the ith column and jth row equals the entry in the jth 
column and ith row.

Happily, you can check that symmetric matrices still preserve orthogonality, even 
though they usually do not preserve length.  This provides the inductive step in the 
argument for diagonalizability.

Ex.  If A is a symmetric matrix and v is an eigenvector for A, and w is a vector 
perpendicular to v, then Aw is also perpendicular to v.

The harder step of starting the induction by finding an eigenvector, is argued in the 
proof of the next theorem.



  
Thm: If A is a symmetric n by n real matrix, then Rn has a basis of mutually 
orthogonal unit length eigenvectors for A, hence an “orthonormal eigenbasis”.
Pf: (thanks to Ed Azoff) The continuous real valued function f(x) = Ax.x has a 
minimum c on the unit sphere in Rn, at some point y.  Thus Ax.x ≥ Ay.y = c for all 
x in the unit sphere.  Since x.x = 1 for all such x, thus Ax.x ≥ cx.x for all such x, 
hence Ax.x - cx.x = (A-cI)x.x ≥  0 = (A-cI)y.y, for all such x.
In particular, if B = A-cI, then for all real t, and all x in the unit sphere,  
0 ≤ B(y+tx).(y+tx).  
Since By.y = 0, expanding the right hand side, and using the symmetry of A, hence 
also of B, gives 0 ≤ 2t (By.x) + t2 (Bx.x).  Hence the discriminant (By.x )^2 of this 
quadratic is ≤ 0.  Since it is a square it is also ≥ 0, and thus By.x = 0 for every x in 
the unit sphere.  Thus By = 0 = (A-c)y, so Ay = cy, i.e. y is a (unit length) 
eigenvector for A.

Now restrict A to the subspace V of vectors orthogonal to y.  If v.y = 0, then Av.y = 
v.Ay = v.cy = c(v.y) = 0.  Hence A preserves V.  A still has the property Av.x = v.Ax 
on V, so the restriction of A to V has an eigenvector in V.  (Although V has no 
natural representation as Rn-1, the argument for producing an eigenvector 
depended only the symmetry property Av.x = v.Ax.) Repeating the argument, A has 
an eigenbasis of mutually orthogonal unit vectors. QED.

Remark:  There is a slightly more sophisticated version of this argument for 
existence of an eigenvalue that may seem simpler to some people.  Namely 
consider again the function f(x) = Ax.x on the unit sphere, and compute that its 
gradient vector, or derivative, is 2Ax, just as in the one variable case.  Then at an 
extremum y, this derivative must be zero on the tangent space to the sphere.  Thus 
the gradient vector 2Ay is perpendicular to the tangent space of the sphere, hence 
either zero or parallel to the radius vector y.  In both cases we have an eigenvector.  
Notice this finds an eigenvector with the largest eigenvalue at a maximum of f, and 
an eigenvector with smallest eigenvalue at a minimum of f.  Note too that Dr. 
Azoff’s argument in the proof above also works at a maximum point y.

Cor: If A is a symmetric n x n matrix, there is an orthogonal n x n matrix E such 
that E*AE is a diagonal matrix.
Pf: If E has columns equal to the eigenbasis for A, the matrix associated to the map 
A by that eigenbasis was essentially defined as E-1AE.  But since we chose the 
eigenbasis vectors of unit length, the fact that they are also mutually perpendicular 
implies E^-1 = E*. QED.



Ex.  Prove the converse of the previous corollary, i.e. that if A = EDE* where D is 
diagonal and E is orthogonal, then A is symmetric.

Understanding isometries of R^n

We have completely described real symmetric operators, i.e. those which equal 
their transpose.  Next we will describe operators which are inverse to their 
transpose, i.e. “orthogonal” operators.  Such an operator preserves distances and 
angles.  I.e. by definition, the columns of the matrix are all of length one and 
mutually orthogonal, so A takes the standard basis to a sequence of n mutually 
orthogonal unit vectors, i.e. to an “orthonormal basis”.

We don’t need to be actually in R^n for this discussion, but we do need an inner 
product.  This is worth discussing since one may encounter spaces in which there is 
a natural inner product but where one does not have a natural basis, so they are not 
naturally identifiable with R^n.

Def: A (real) inner product space is a real vector space V with a map VxV-->R, 
sending (v,w)--> v.w, and satisfying the usual properties of the dot product in R^n: 
v.w = w.v, v.v > 0 unless v=0, v.(u+w) = v.u + v.w, v.(tw) = t(v.w), i.e. symmetric, 
positive definite, and bilinear.

Def:  i) We say v and w are “orthogonal” vectors iff v.w = 0. The zero vector is 
thus orthogonal to every vector, and is the only vector that is orthogonal to itself. 
ii) The “length” |v| of a vector v is defined to be |v| = sqrt(v.v).  Note that |v| = 0 if 
and only if v=0, and |v| > 0 for all non zero vectors v.

Lemma: If V is a finite dimensional inner product space, then V is naturally 
isomorphic to its dual space by the map V-->V* taking v to v.( ).
Proof:  This map is linear since an inner product is bilinear, i.e. linear in each 
variable.  It is injective since if v.w =0 for all w, then v.v = 0 and then v = 0 by 
positive definiteness.  It is surjective since V and V* have the same dimension, so 
every linear injection is also surjective. QED.

Since a (finite dimensional) inner product space V is isomorphic to its dual, the 
transpose of a linear operator T:V-->V defines a linear operator T*:V-->V on the 
same space.  I.e. if v is a vector in V, it corresponds to the linear function f = v.( ) in 
V*, and thus T* of that element would be obtained by preceding that function by T, 
i.e. T*(f) would be the linear function v.T( ).  But we want this to be an element of 



V, so we need to identify the element T*(v) in V, such that the functions T*(v).( ) 
and v.T( ) are equal.  We know there is exactly one such element by the previous 
lemma, so we just define T*(v) to be the unique vector in V such that T*(v).(w) = 
v.T(w), for all w in V.  Then T*:V-->V is a linear operator, called the transpose of 
T, in case V is an inner product space. 
 
Thus T* is the composition of the maps V-->V*-->V*-->V, where the first and last 
maps are the isomorphisms of V with V* in the lemma, and the middle map is the 
abstract transpose of T defined earlier, i.e. it is the map “preceding by T”.

Def:  If V and W are inner product spaces, an “isometric isomorphism” is a linear 
isomorphism T:V-->W that carries the inner product of V into the one in W; i.e. 
such that u.v = T(u).T(v) for all u,v in V.

We know a basis {v1,...,vn} for a space V defines an isomorphism of V with R^n, 
but if V is an inner product space, we would like for the isomorphism to be an 
isometry for the usual inner product on R^n.  For this to be true we need to find an 
orthonormal basis for V, i.e. a basis of mutually orthogonal unit vectors.  I.e. 
assume {u1,...,un}is an orthonormal basis, and a1u1+...+anun and b1u1+...+bnun 
are any vectors, corresponding under this basis to the coordinate vectors (a1,...,an) 
and (b1,...,bn) in R^n.  Then since uj.uk = 0 unless j=k when it equals 1, the inner 
product expands as (a1u1+...+anun).(b1u1+...+bnun) = a1b1(u1.u1)+...+anbn
(un.un) = a1b1+...+anbn, the usual dot product in R^n.

An orthonormal basis can always be found as in the following proposition.  The 
procedure is often called the Gram - Schmidt process, but it is just the familiar 
geometric operation of orthogonal projection.

Proposition:  Every finite dimensional inner product space has an orthonormal 
basis, hence is isometrically isomorphic to some R^n with its usual dot product.
Proof: Start from any basis {v1,...,vn} and, since none of the vectors is zero, we 
make the first vector unit length by dividing by its length, i.e. set u1 = v1/|v1|.  
Now since we know u1.v2 = |u1||v2|cos(t) = |v2|cos(t), where t is the angle between 
u1 and v2, it follows that this number is the oriented length of the projection of v2 
onto the line through u1.  Hence |v2|cos(t).u1 = (v2.u1) u1 is the vector component 
of v2 parallel to u1, and thus w2 = v2 - (v2.u1) u1 is the vector component of v2 
perpendicular to u1.  Since v2 does not depend on v1, this component cannot be 
zero.  Now take u2 = w2/|w2|, and we have u2 perpendicular to u1 and also of 
length one.  Continue...



I.e. subtract off the components of v3 that are parallel to both u1 and u2, getting 
w3 = v3 - (v3.u1)u1 - (v3.u2)u2, and then set u3 = w3/|w3|, and so on.... until we 
have found {u1,...,un}.  Since no basis vector v depends on the previous v’s, hence 
not on the corresponding u’s, none of these w’s will be zero.  These u’s will then be 
mutually orthogonal, and all of length one, hence an orthonormal basis of V.  This 
basis defines an isometric isomorphism R^n-->V.  QED.

Ex.  If T:V-->V is an operator on an inner product space and we choose an 
orthonormal basis, then in this basis the matrix of T*:V-->V will be the transpose 
of the matrix for T.

Def:  An operator T:V-->V  on an inner product space is called symmetric if T=T*, 
and orthogonal if T* = T^-1.

Rmk: The same proof given above for matrices proves that every symmetric 
operator on a finite dimensional inner product space has an orthonormal basis of 
eigenvectors.  Next we prove an analogous result for orthogonal operators.

Prop: If T is real orthogonal on V, and dimV is finite/R, then V is an orthogonal 
direct sum of an eigenspace on which T = Id, an eigenspace on which T = -Id, and 
a collection of invariant 2-planes, on each of which T is a rotation.
proof: The first step is to produce an “indecomposable” invariant subspace U of 
dimension ≤ 2, i.e. a subspace of dim ≤ 2 that is not a direct product of smaller 
invariant subspaces.

Lemma: For every non constant factor f of the minimal polynomial of a linear 
operator T on a finite dimensional space V, over any field, ker(f(T)) ≠ {0}.
proof: If the minimal polynomial m = f.g, and f(T) is injective, since f(T)g(T)(x) = 
0 for all x, then g(T)(x) = 0 for all x.  Then g is a polynomial of lower degree than 
m that annihilates all of V, a contradiction.  QED.

Cor: If f is an irreducible factor of the minimal polynomial of any operator T on 
any finite dimensional space V, over any field, there is an indecomposable 
invariant subspace U of kerf(T) in V of dimension equal to deg(f).
proof: If x ≠ 0 lies in kerf(T), the T-cyclic subspace U generated by {x, T(x), T^2
(x),…} is invariant, and has dimension n for the smallest n such that T^n(x) 
depends on {x, T(x),…, T^(n-1)(x)}.   Let n = dimU, and assume T^n(x) = a0.x + 
a1.T(x) +…+an-1.T^(n-1)(x).  Then g(T)(x) = 0 for g(t) = t^n – an-1.t^(n-1) - …- 
a1.t – a0.  Since g(T) commutes with powers of T, g(T) annihilates all T^k(x) 



hence all of U, so we have found a monic polynomial g with deg(g)  = dimU, that 
annihilates the restriction of T to U.  We claim this is the minimal such polynomial.

To see that, if P(T) = b0 + b1T + b2T^2 + ...+ T^m is any polynomial which 
annihilates T restricted to U, then b0.x + b1T(x) + b2T^2(x) + ...+ T^m(x) = 0, so 
T^m(x) = - b0.x - b1T(x) - b2T^2(x) - ...- T^(m-1)(x) is a linear combination of the 
previous powers of T(x), so dim(U) ≤ m.  Thus the minimal polynomial of the 
restriction of T to U has degree = dim(U).  

Since U is a subspace of kerf(T), f(T) vanishes on U, so f is a multiple of that 
restricted minimal polynomial.  Since f is irreducible, f must equal that restricted 
minimal polynomial, so dim(U) = deg(f).  Since we could have chosen x≠0 in any 
non zero invariant subspace of kerf(T), this argument shows the dimension of any 
non trivial invariant subspace of kerf(T) has dimension ≥ deg(f).  In particular U is 
a minimal ≠ 0 invariant subspace, hence indecomposable.   QED.

Since an irreducible polynomial over the reals has degree ≤ 2, every linear 
operator on a finite dimensional real vector space has an indecomposable invariant 
subspace U of dimension 1 or 2, corresponding to a real irreducible linear or 
quadratic factor of the minimal polynomial.  Since T is length preserving, on every 
one dimensional invariant subspace, T = ±Id.  

If U has dimension 2, since T is length and angle preserving on U, if (x1,x2) 
is an orthonormal basis for U, Tx1 is length one and orthogonal to Tx2.  Hence T
(x1) = cos(a)x1 + sin(a)x2, and Tx2 = -sin(a)x1 + cos(a)x2, or else Tx2 = sin(a)x1 - 
cos(a)x2.  

But the minimal polynomial on U is irreducible over R.  If T(x1) = cos(a)x1 
+ sin(a)x2, and Tx2 = Tx2 = sin(a)x1 - cos(a)x2, the minimal polynomial equals 
t^2 – 1, which is reducible.  So in fact, T(x1) = cos(a)x1 + sin(a)x2, and Tx2 = -sin
(a)x1 + cos(a)x2, which is a rotation.  Since T is orthogonal also on Uperp, which 
is T invariant, the theorem is proved by induction on dimV.  QED.

Cor: Every orthogonal map of R^2 to itself is a rotation or reflection.  Every 
orthogonal map of R^3 to itself is either a rotation or a rotation followed by a 
reflection.  

More generally, in every even dimensional space R^2n, an orthogonal operator T 
admits a decomposition of the space into orthogonal 2 planes, such that either T is 
composed of a rotation in each of these planes, or of rotations in all but one of 
them and a reflection in that one.  



An orthogonal operator T on an odd dimensional space R^2n+1 admits a 
decomposition of the space into an orthogonal sum of 2 planes and one orthogonal 
line, such that T is composed of rotations in all the 2 planes and equals ± I in the 
remaining line.  

In all cases T is called orientation reversing or orientation preserving according to 
whether there is or is not a reflection present in this decomposition.  An orientation 
preserving orthogonal map is called simply a rotation.  (These 2 cases are 
distinguished by the sign of the determinant ±, equivalently by the constant term of 
the characteristic polynomial.)

Some remarks on complex spectral theorems
We have seen that inductive arguments to prove diagonalizability need existence of 
an eigenvector to get started, and then need a decomposability property to split off 
a complementary invariant subspace on which one can continue the argument.  We 
can make this precise with a definition.

Definition:  An operator T:V-->V is called “semi simple” if for every T-invariant 
subspace U, there is a T- invariant complement, i.e. there is a T-invariant subspace 
W such that the addition map UxW-->V taking (u,w) to u+w, is an isomorphism.

Lemma:  An operator T:V-->V on a finite dimensional space V over k, is 
diagonalizable over k if and only if it is semi simple, and its minimal polynomial 
splits into linear factors in k.
Proof:  If the minimal polynomial splits, there is an eigenvector and its span is T-
invariant. Assuming semi simplicity there is an invariant complement on which the 
minimal polynomial is a factor of the original one hence also splits in k, so we can 
finish by induction on dimension.
Conversely, if T is diagonalizable there is a basis of eigenvectors v1,...,vn.  If U is 
an invariant subspace with basis w1,...,wr, then reducing the sequence 
w1,..,wr,v1,...,vn to a basis give us w1,...,wr, followed by n-r of the basis vectors 
vj.  Since the vj are all eigenvectors these span an n-r dimensional T-invariant 
complement of U.  QED.

Now in our attempts to prove spectral theorems over R, we could use 
perpendicularity to get semi simplicity of both symmetric and orthogonal matrices, 
but we only had splitting of the minimal polynomial in the symmetric case, and 
even that took a bit of work.  If we consider complex matrices we always have 
splitting of the minimal polynomial, but we seem to lose the decomposition 
argument by dot products since in this case a subspace is no longer perpendicular 



to the subspace of vectors that dot to zero with it.  E.g. recall that with the usual dot 
product, the vector (1,i) in C^2 is “perpendicular” to itself!  But we can fix that by 
tweaking the definition of the dot product, and hence of perpendicularity. 

Complex conjugates:  Recall that if x+iy is a complex number, its “complex 
conjugate” is the number x-iy.  This has the useful property that for every x+iy, the 
product (x+iy)(x-iy) = x^2 + y^2 > 0 unless x = y = 0.

Definition:  On the complex coordinate space C^n, define the “hermitian product” 
of two vectors v = (a1,...,an) and w = (b1,...,bn) to be <v,w>  = a1b1’+...+anbn’ = 
v.w’, where b’ is the complex conjugate of b.

Then we have for all vectors u,v,w and all complex numbers c:
<v,w> = <w,v>’, 
<u+v,w> = <u,w> + <v,w>,
<v,u+w> = <v,u> + <v,w>,
<cv,w> = c<v,w>,
<v,cw> = c’<v,w>,
<v,v> ≥ 0, i.e. <v,v> is both real and non - negative.

Hermitian orthogonality
Defn:  Two vectors v,w in C^n are orthogonal with respect to the hermitian pairing 
if <v,w> = 0, and for a subspace U of C^n, its hermitian orthogonal complement 
Uperp = {all vectors w in C^n such that <v,w> = 0 for all vectors v in U}.

With this new definition we get what we need for decomposability.
Ex.  If U is a subspace of C^n and Uperp is its hermitian orthocomplement, then 
the addition map U x Uperp -->C^n is an isomorphism.

We can also define a hermitian length for vectors in C^n.
Defn:  If v is a vector in C^n,  since <v,v> ≥ 0, define |v| = sqrt(<v,v>) ≥ 0.
A vector is normal if it has length one.  Note: |v| = 0 only for v = 0.

Now it is easy to prove some complex spectral theorems by the usual arguments.

Defn:  If A is an n by n complex matrix, define its hermitian adjoint A* as the 
complex conjugate of its usual transpose.

Ex.  With these new definitions then we have A** = A, and for all v,w in C^n,
<Av,w> = <v,A*w>.



Defn:  A complex n by n matrix A is called hermitian if A = A*, and unitary if A* = 
A^(-1).

Ex.  Prove that if A is either hermitian or unitary, then there is an orthonormal basis 
of eigenvectors for A.

There is one more complex spectral theorem we can prove.

Defn:  An n by n complex matrix A is called normal if AA* = A*A, i.e. A 
commutes with its hermitian adjoint.

Note:  Hermitian and unitary operators are special cases of normal operators.

Theorem:  A normal complex matrix admits an orthonormal eigenbasis. 

Lemma:  If A is any complex n by n matrix and A leaves a subspace U of C^n 
invariant, then A* leaves Uperp invariant.
proof:  If v is in U and w is in Uperp, then Av is also in U so 0 = <Av,w> = 
<v,A*w>, so A*w is also in Uperp. QED.

Lemma:  If A is a normal complex n by n matrix, and v is an eigenvector for A, 
then A*v is also an eigenvector of A with the same eigenvalue.
proof:  By hypothesis, for some constant c, Av = cv, so A.A*v = A*Av = A*.cv = 
c.A*v.  QED.

sketch of proof of theorem:  Since the minimal polynomial splits over C, there is 
an eigenvalue c and a non empty space U of eigenvectors for c.  By the second 
lemma above, A* maps U into itself, so by the first lemma A = A** maps Uperp 
into itself.  Since Uperp is A invariant, and AA* = A*A still holds on Uperp, as do 
all properties of the hermitian product, we can continue the argument.  I.e. we can 
find another eigenspace inside Uperp and split it off, ....QED.

Remark:  To make this argument go through we have to show we get the 
orthogonal decomposition theory also for subspaces of C^n.  The point is that by 
dimension theory of intersections, if W is a subspace of V, and V is a subspace of 
C^n, then V is isomorphic to W x (Wperp meet V), where (Wperp meet V) is the 
perp of W relative to V.  Or we could define a hermitian inner product space 
abstractly and not be dependent on coordinates, as we did in the real case.  A Gram 
- Schmidt argument would again show there is actually no gain in generality, i.e. 



finding an orthonormal basis would show every n dimensional hermitian inner 
product space is isometrically isomorphic to C^n with its hermitian product.

Remark:  There is a cute trick for deducing the real symmetric spectral theorem 
from the complex hermitian one.  Note that if A is hermitian, i.e. if A = A*, with 
eigenvector v, then c<v,v> = <cv,v> = <Av,v> = <v,A*v> = <v,Av> = <v,cv> = 
c’<v,>.  So c|v| = c’|v|, and since |v| ≠ 0, hence c = c’, where c’ is the complex 
conjugate of c.  Thus every complex eigenvalue of a hermitian matrix is real.  So 
given a real symmetric matrix, just think of it as a complex matrix, and notice that 
it is hermitian since all the entries are real.  Then its characteristic polynomial 
det(A-X.I), which is the same no matter how we regard A, has only real roots.  
Thus a real symmetric A is not only semi simple, but also its characteristic 
polynomial splits in R.  QED.

Remark:  There is also a structure theorem for real operators that are normal in the 
sense that they commute with their transposes.  This decomposes the space into 
mutually orthogonal invariant subspaces of dimensions one or two. In this case the 
minimal polynomial factors over R into distinct irreducible factors of degrees one 
or two.  Of course any real polynomial factors over R into irreducible factors of 
degrees ≤ 2, but here the point is that the irreducible factors are all distinct.

A fundamental example: linear differential equations with constant 
coefficients. 
An important application of linear algebra is to solving linear ordinary differential 
equations (with constant coefficients), and systems of them.  We discuss this next.
 
Let V = the set of infinitely differentiable (“smooth”) real valued functions on the 
real line. Then V is infinite dimensional (it contains all polynomials of all degrees), 
the derivative map D:V-->V is linear, and surjective by the fundamental theorem of 
calculus, and ker(D) = the one dimensional space of constants by the mean value 
theorem.  If P(X) = Xn+an-1X(n-1)....+a1X+a0 is a polynomial with real 
coefficients ai, replacing X by D gives another linear operator P(D) on V.  Using 
our dimension theory, elementary facts about polynomials, and basic calculus, we 
will prove the following:

Proposition: dim.kerP(D) = deg(P) = n; and we will exhibit an explicit basis for 
kerP(D).  



Note: If f(k) denotes the kth derivative of a smooth function f, then ker(P(D)) = 
{all f in V such that: f(n)+an-1f(n-1)....+a1f’+a0f = 0}.  We start with the simplest 
case, degree(P) = one.

Lemma:  If c is a real constant, then ker(D-c) = {a.ecx, for all real scalars a}, i.e. 
ecx, is a basis.
Pf:  If (D-c)(f) = 0, then f’ = cf, so f/ecx, has derivative zero, so is constant, i.e. f = 
a.ecx. QED.

Cor:  If P(X) = (X-c1)r1(X-c2)r2....(X-ct)rt with ci distinct real numbers, and 
ri > 0, then dim.ker(P(D)) ≤ degree(P) = r1+...+rt = n.
Pf: Induction on deg(P).  Since all polynomials in D commute, ker (D-c1) is 
contained in kerP(D), and (D-c1 ) injects kerP(D)/ker(D-c1) into 
ker (D-c1)r1-1(D-c2)r2......(D-ct)rt.  Hence dim.kerP(D)/ker(D-c1) = 
dim.kerP(D) - 1 ≤  dim.ker (D-c1)r1-1(D-c2)r2......(D-ct)rt ≤ n-1. QED.

To obtain the full equality, we exhibit degP(D) independent elements of kerP(D).  
Lemma: dim.ker(D-c)r = r; indeed {ect, t ect, t2/2 ect, ..., tr-1/(r-1)! ect} is a basis.
Pf: By the previous corollary, it suffices to prove dim.ker(D-c)r ≥ r .  

Ex: Show (D-c) takes each element of this basis to the previous element, and 
annihilates the first element.  

By the exercise, these are all in ker(D-c)r and since the first k are in ker(D-c)k, but 
the k+1st is not, no element depends on the previous ones, hence they are 
independent.  QED.

Rmk: We have called a basis with the property in the previous exercise “cyclic”.  
In this basis the matrix for (D-c) consists of columns with most entries zero, but 
with “1’s” just above the diagonal: (0,...,0), (1,0,...,0), (0,1,0,...,0),...(0,...,0,1,0).  
The matrix of D adds the constant c along the diagonal: (c,0,...,0), (1,c,0,...,0), 
(0,1,c,0,...,0), ...,(0,...,0,1,c).  If we reverse the basis ordering, we can put the “1’s” 
just below the diagonal: (c,1,0,...,0), (0,c,1,0,...,0),...,(0,...,0,c,1), (0,....,0,c), as we 
did earlier in discussing Jordan form.

Lemma:  If all ci are distinct, W = ker(D-c1)r1(D-c2)r2....(D-ct)rt is isomorphic to 



the product of the subspaces Wi = ker(D-ci)ri.
Pf: This is our earlier relatively prime decomposition theorem.  QED.

Since the dimension of a product is the sum of the dimensions of the factors, we 
are done in case the polynomial P(X) factors completely into linear factors over the 
reals, i.e. when there are no irreducible quadratic factors.  In particular, we see that 
in the given basis for kerP(D), the matrix for D consists of blocks of the form 
described in the previous remark.  I.e. the jth factor (D-cj)rj gives an rj by rj block 
with the constant cj along the diagonal, and 1’s just above or just below the 
diagonal.  Such a matrix is thus in Jordan form.  Note also that it is easy to read off 
the polynomial P from this matrix.  The simplest case occurs when all the 
exponents rj  = 1, i.e. when the polynomial P is a product of distinct linear factors.  
In this case the basic solutions are all of form ecjt, and the matrix of D in this basis 
is “diagonal”, i.e. the constants cj appear along the diagonal and the off diagonal 
entries are zero.

We have shown earlier that a Jordan form matrix can be obtained, not just for the 
special operator D, but for any linear operator that satisfies a polynomial that 
factors into linear factors.  Recall however that if Q(X) is any factor of a 
polynomial P(X) satisfied by T, then the operator TxT acting on the product space 
kerP(T) x kerQ(T) will still satisfy the polynomial P(X), but the matrix will have 
blocks corresponding to both P and Q.  Thus the polynomial P satisfied by the 
operator does not fully determine the matrix in the general case.  I.e. in general 
there may be several blocks corresponding to the same root c of the polynomial P, 
so a more general operator resembles a direct product of copies of the differential 
operator D, acting on spaces corresponding to polynomials all of which divide P.  
In particular, whereas for the differential operator above, the dimension of kerP(D) 
equals the degree of P, for a general space V on which an operator T acts satisfying 
a polynomial P(X) (of minimal degree), we can only say the dimension of V is ≥ 
degree(P).  I.e. the example of the derivative above corresponds to an operator 
whose Jordan matrix is a single elementary Jordan block.

Digression: What happens when P has irreducible quadratic factors?
For application to solving differential equations, we will sketch the solution of 
more general linear constant coefficient differential operators, when the 
polynomial P(X) has some irreducible quadratic factors.  Recall the previous 
lemma is true if P is any product of powers of irreducible factors, whether or not 
the factors are linear.  If U = all infinitely differentiable complex valued functions 
on the real line, then U ≈ VxV, where (f,g) in VxV corresponds to f+ig in U, i.e. f 



and g are the real and imaginary parts of a function in U.  Then a polynomial P(X) 
with real coefficients again defines a linear operator on U by sending f+ig to P(D)
(f) +i P(D)(g).  Thus f+ig is in kerP(D) in U, if and only if both f and g both are in 
kerP(D) in V, i.e. kerP(D) in U is the direct product of two copies of kerP(D) in V.

By the same arguments as above, if c is a complex constant, the subspace ker(D-c) 
of U has complex dimension one, and basis ect, where ect is defined by the usual 
exponential series.  If P has complex coefficients, P(D) still acts on U, but the real 
part of P(D)(f+ig) will usually not equal P(D)(f).   Whether P(X) has real or 
complex coefficients, the arguments above show again that kerP(D) as a subspace 
of U, has complex dimension ≤ deg(P).  

Ex: Show that in a linear combination with complex coefficients of real valued 
functions, the real and imaginary parts are linear combinations of those same 
functions with real coefficients.  Hence if some real valued functions are dependent 
over the complex field, they are also dependent over the real field.

Lemma: As functions of the real variable t, eit = cos(t) + i sin(t).
Pf:  The function cos(t) + i sin(t) lies in ker(D-i), hence is a constant multiple of 
eit, and evaluating at t = 0, shows the multiplier is one.  QED.

Cor: As a subspace of V, ker(D^2 + 1) has as real basis {cos(t), sin(t)}.
Pf: We know the corresponding complex subspace of U has basis {eit, e-it}, in 
particular it has complex dimension two.  Thus any three functions in ker(D^2+1) 
in V, are dependent as elements of U over the complex field, hence also over R.  
Thus ker(D^2 + 1) has real dimension at most two.  But if a.cos(t)+b.sin(t) = 0, 
then evaluating this function and its derivative at t = 0,  implies a = b = 0.  Since 
cos(t) and sin(t) are independent over R, they are a real basis. QED.

Rmk:  Note ker(D^2 + 1) in U has complex bases {cos(t), sin(t)}and {eit, e-it}.

Similarly, one can check that if P(X) is an irreducible real quadratic polynomial 
with complex roots a ± bi, then both {e(a+bi)t, e(a-bi)t}, {eat.cos(bt), eat.sin(bt)} 
are complex bases of kerP(D) in U, and {eat.cos(bt), eat.sin(bt)} is a real basis of 
kerP(D) in V.  Thus for any real polynomial P(X), the subspace kerP(D) of V has 
real dimension = deg(P), and the corresponding subspace of U has complex 
dimension = deg(P).  Moreover any real basis for the subspace of V serves also as 
a complex basis for the corresponding subspace of U.



For powers of this irreducible quadratic factor, we get versions of the Jordan 
matrices.  E.g. for P^2(D), if u = a+ib, u’ = a-ib are the roots of P(X), we get these 
bases: {t.e^ut, t.e^u’t, e^ut, e^u’t}; {t.e^at.sin(bt), t.e^at.cos(bt), e^at.sin(bt), 
e^at.cos(bt)};  which lead to these matrices for the operator D on ker.P^2(D):

| u  0   0  0|
|0  u’  0  0|
|1  0   u  0|
|0  1  0  u’|  , (a version of the Jordan matrix with basis ordered differently).

and its real analogue:

|a  -b  0  0|
|b   a  0  0|
|1  0  a  -b|
|0  1  b   a|.

Note that P(X) here = X^2 -2aX + (a^2+b^2), and the matrix that appears here
|a  -b|
|b   a|, 

has P(X) as characteristic and minimal polynomial, just like the companion matrix 
for this polynomial, which appeared in our general Jordan matrices.

End of Digression.

Solving diagonalizable systems of linear differential equations:
Now we ramp up from solving the differential equation Df = cf, where c is a 
constant and f(t) is a real or complex valued function of t, to the system Dx = Ax, 
where x(t) = (x1(t),...,xn(t)) is a (real or complex) vector valued function of t.  Note 
that if A is a diagonal matrix, this is nothing new.  I.e. the equation becomes just 
Dxj(t) = cj.xj(t), so for all j, xj(t) = aj.e^(cj.t) for some constant aj.  Thus a basic 
solution is e^(cj.t).ej, where ej is the jth standard basis vector.  I.e. these n solutions 
give a real basis for the solution space.  But a diagonal matrix is just one with the 
standard basis vectors ej as an eigenbasis.  We claim that for any diagonalizable 
matrix A, a basic solution of Dx = Ax is just x(t) = e^(cj.t).vj, where vj is a basic 
eigenvector.  To see this, first observe a tiny extension of the product rule for D.

Lemma:  D(M.x(t)) = M.D(x(t)), if M is a constant matrix and D is differentiation 



of the vector valued function x(t).
Proof:  The jth entry of M.x(t) is a linear combination of the entries of x(t) with 
coefficients the jth row of M.  Thus the jth entry of D(M.x(t)) is the same linear 
combination of the derivatives of the entries of x(t), i.e. the jth entry of M.D(x(t)).  
QED.

Proposition:  If A is a diagonalizable matrix, with eigenbasis {vj}, and 
eigenvalues {cj}, the vector differential equation Dx = Ax, where x(t) is a vector-
valued function, has an n dimensional space of solutions, with basis e^(cj.t).vj, 
where here the function e^(cj.t) is multiplied by every (constant) entry in the 
eigenvector vj.
Proof:  By hypothesis, there is an invertible matrix Q, whose columns are 
eigenvectors {vj} of A, such that Q^(-1)AQ = M is diagonal with diagonal entries 
{cj}= the eigenvalues of A.  Since we know the basic solutions of  Dy = My are y 
= e^(cj.t).ej, we put x = Qy = e^(cj.t).Qej = e^(cj.t).vj, where vj is a basic 
eigenvector of A.  Then since Dy = My = Q^(-1)AQy, we have DQy = QDy = 
AQy, i.e. Dx = Ax.  Reasoning backwards, these are the only solutions, i.e. Dx = 
Ax if and only if x = Qy where Dy = My.  QED.

Cor:  Given any vector v in R^n, the solution of Dx(t) = A.x(t) can be chosen 
uniquely so that at t = 0 the value of x(0) is v.
Proof:  If x(t) is the jth basic solution, x(0) = vj, and the vectors {vj} form a  basis 
of R^n.  QED.

Exponentiating a matrix
In fact there is no need for the matrix to be diagonalizable in order to solve such 
systems.  Indeed there is a way to interpret all solutions of such systems as direct 
generalizations of the fact that c.e^(at), for c an arbitrary constant real number, is 
the general solution of f’= a.f.  I.e. for each square matrix A, we can define a 
matrix valued function e^(At), or a matrix with functions as entries, so that for C 
an arbitrary constant real vector, the vector valued function x(t) = e^(At).C is a 
general solution of the system Dx = Ax.  (When A is a one by one matrix, this 
specializes to the familiar solution e^(at).c = c.e^(at), since multiplication of one 
by one matrices is commutative.)  Since e^(At).C is a linear combination of the 
columns of the matrix e^(At) with coefficients from C, this means the columns of 
e^(At) form a basis of solutions of the system Dx = Ax.  In fact these are exactly 
the solutions we found for diagonal and diagonalizable matrices.

I.e. recall that the real number e^(at) is defined by an infinite series of terms each 
of which is a constant times a power of (at).  To define e^(A.t), where A is a matrix, 



we write down the same series with terms which are each a constant times a power 
of the matrix At.  So e^(A.t) = Id + A.t + (1/2!)A^2t^2 +...., which converges for 
the same reason the usual series for e^(at) does.

If M is diagonal, with diagonal entries a1,...,an, M^k is also diagonal with entries 
kth powers of the aj, so then this series converges to the diagonal matrix with 
diagonal entries e^(aj.t).  Thus e^(M.t) is the matrix whose jth column is e^(aj.t).ej, 
the jth basic solution we gave for the system Dx = Mx.

If A is only diagonalizable, with A = QMQ^(-1) and M diagonal, then A^k = 
Q.M^k.Q^(-1), since the Q’s and Q^(-1)’s in the middle cancel, so e^(At) = Q.e^
(Mt).Q^(-1).  I had expected the columns of this matrix to be the basic solutions 
mentioned above, namely e^(aj.t).vj, where vj is an eigenbasis for A, but this 
would pick out a special such eigenbasis, and there are of course many of them.  
As above however, the matrix Q carries solutions of Dx = Mx into solutions of Dx 
= Ax, and this is the case here.  I.e. the basic solutions of Dx = Mx are e^(aj.t).ej  
and if we apply Q to these we get Qe^(aj.t).ej = e^(aj.t).Qej = e^(aj.t).vj.  These are 
the columns of the matrix Q.e^(Mt) = e^(At).Q.

Of course the columns of e^(At) = Q.e^(Mt).Q^(-1) are also a basis of solutions of 
Dx = Ax, but I don’t know how to express those columns in any simpler way.  In 
fact if A is any square matrix at all, the series for e^(At) still converges to a matrix 
whose columns give a basis of solutions of Dx=Ax, as one can see just by 
differentiating the series term by term.  But I don’t know a simple way to write out 
the columns of that matrix.  However, in case the minimal polynomial of A factors 
completely into (not necessarily distinct) linear factors there is a way to do this as 
we will see next, using the Jordan normal form for such matrices. 

Recall, if the minimal polynomial of a linear operator T factors completely into 
linear factors, then T is uniquely expressible as a sum T = S+N, of a diagonalizable 
operator S and a nilpotent operator N such that SN = NS.  Then since e^tA = 
e^t.(S+N) = e^tS . e^tN, we can express the matrix e^tA as a product of two 
matrices we can compute, namely e^tS and e^tN.  I.e. we have already shown how 
to compute e^t.S for diagonalizable S, and for nilpotent N the series for e^tN is 
finite, and can thus be summed as a polynomial in N.  Thus, over the complex 
scalar field, we can always find a Jordan matrix for any operator and thus solve the 
corresponding linear system of differential equations.

Question:  Can we also use the rational canonical form to solve systems in terms 
of the solutions of the equations P(D)(f)?



Appendix:   Summary of determinants.

Definition: If A is an n x n matrix over R, define for each (i,j) with 1≤i,j≤n, Aij = 
the (n-1)x (n-1) matrix obtained by deleting from A the ith row and jth column.  
Then define determinants recursively as follows:  If n=1, and A = (a) define D(A) = 
a.  If we have defined D for all (n-1)x(n-1) matrices, and if A is in Matn(R), then 
set D(A) = a11 D(A11) - a12 D(A12) +.... ±a1n D(A1n), (expansion by the first 
row).

Examples:  D | a  b |  = ad-bc.   D |a  b  c |  = a(ei-hf) -b(di-fg) +c(dh-eg).
                        | c  d |                      |d  e  f |
                                                       |g  h  i |

Theorem: D(A) is n-linear and alternating as a function of the rows and columns 
of A.  Hence,
(i) If A' is the result of interchanging two rows or columns of A, D(A') = -D(A).
(ii) If A' is the result of adding to one row (or column) of A, a scalar multiple of 
another row (or column), then D(A') = D(A).
(iii) If A' is the result of multiplying through a row or column of A by a scalar c, 
then D(A') = c.D(A).

Corollary: If A is upper or lower triangular, e.g. diagonal, then D(A) = ∏aii, the 
product of the diagonal entries.  If A is a matrix with two equal rows or columns, 
then D(A) = 0.

Prop: (i) D(A*) = D(A), where A* is the transpose of A.
(ii) If A,B are both n x n matrices, then D(AB) = D(A)D(B); in particular if E is 
invertible then D(E-1AE) = D(A), so all matrices for the same linear map f:V-->V 
with respect to any basis of V, have the same determinant.

Remark: Using these properties of determinants we can make any row the first 
and expand, and can interchange rows and columns and expand.  In particular, we 
can expand a determinant by any row, not just the first.  I.e. for any choice of row, 
say i, we have D(A) = ∑j (-1)i+j aij D(Aij).



And we can also expand determinants by columns; i.e. for any choice of column, 
say j, we have D(A) = ∑i (-1)i+j aij D(Aij).

Cor (Cramer’s rule): Let B = (bij) = adj(A), be the matrix such that bij = (-1)i+j 
D(Aji).  (Note the interchange of indices.) Then AB = D(A).I = BA.  In particular, 
if D(A) ≠ 0, then D(A)-1B = D(A)-1.adj(A) is a (two sided) inverse for A.  Thus a 
matrix A over a field is invertible if and only if D(A) ≠ 0, and if the entries of A  
are only from a commutative ring, then A is invertible if and only if D(A) is a unit 
(invertible element) in that ring.

Cor (Cayley - Hamilton):  If A is a square matrix and ch,A(X) = D(X.I-A) is the 
characteristic polynomial of A, then ch,A(A) = 0.
Proof:  By the non commutative remainder theorem, it suffices to show that ch,A
(X) is divisible as a polynomial with matrix coefficients, either from the right or 
the left, by the linear polynomial (X-A).  But Cramer’s rule shows the 
corresponding matrix (X.I - A) does divide the matrix corresponding to the 
characteristic polynomial from both left and right, i.e. by Cramer, we have (X.I - 
A).adj(X.I-A) = adj(X.I-A).(X.I-A) = ch,A(X).I.  Since the matrix ring with 
polynomial coefficients is isomorphic to the polynomial ring with matrix 
coefficients, (X-A) does divide ch,A(X) both from left and right.  Hence A is a 
(right and left) root of ch,A(X). QED.

 Roy Smith


