

Sponsored by: UGA Math Department
Team Round, 3 problems / 1 hour / 210 points
October 21, 2023

WITH SOLUTIONS

Problem 1 (Party). Mo has invited 2023 guests for his retirement party. His way of the sharing the cake is quite eccentric: the first guest gets $\frac{1}{2023} \mathrm{rd}$ of the cake, the second guest gets $\frac{2}{2023}$ rd of what is left, the third guest gets $\frac{3}{2023} \mathrm{rd}$ of what is left, ..., and the last guest gets $\frac{2023}{2023} \mathrm{rd}$-that is everythingof what is left.
Which guest receives the largest piece?

Answer. 45
Solution. Let p_{n} be the size of the piece of the n-th guest. Instead of looking at the problem globally, we will compare successive terms to see when we reach an apex. We have $p_{n}=\frac{n}{2023}\left(1-\sum_{i=1}^{n-1} p_{i}\right)$. To make our life easy, and to be able to compare the sums appearing on the right hand side, let us compute

$$
2023\left(\frac{p_{n+1}}{n+1}-\frac{p_{n}}{n}\right)=\left(1-\sum_{i=1}^{n} p_{i}\right)-\left(1-\sum_{i=1}^{n-1} p_{i}\right)=-p_{n}
$$

We can now isolate $\frac{p_{n+1}}{p_{n}}$:

$$
\frac{p_{n+1}}{p_{n}}=(n+1)\left(\frac{1}{n}-\frac{1}{2023}\right) .
$$

The sequence decreases when $\frac{p_{n+1}}{p_{n}}<1$. This constraint is a quadratic inequality :

$$
n^{2}+n-2023>0
$$

which holds when $n \geq 45$. I.e. $p_{46}<p_{45}$ and the sequence goes decrescendo from there on. The maximal portion is thus the one of guest number 45 .

Problem 2 (Alea iacta est). Let Δ represent the difference between the largest possible sum and the smallest possible sum of all visible faces on a dice configuration. Imagine a construction like the one below but where the number of 'holes' is not 5 but some larger number g. If $\Delta=2032$ for that construction, what is the number of holes (g)?

Answer. 201
Solution. Note that Δ is additive: the total value is the sum of the Δ for each dice. The contribution to Δ of a dice depends on its position.

(i) If a dice is attached to two other dice along opposite faces (we'll call those linear dice), the sum of visible sides is 14 independently of their orientation. Hence $\Delta=0$ for each of those dice. (ii) If a dice is located on a corner (there are 4 of those), two adjacent sides are covered. The maximal amount covered is $11=6+5$ and the minimal amount covered is $1+2=3$. Therefore Δ for those dice is $(21-3)-(21-11)=8$. (iii) Finally, dice located at a T junction have two opposite sides covered (whose pips add up to 7) and an extra side. The amount hidden varies thus between $8=7+1$ and $13=7+6$. For those dice, Δ is thus equal $(21-8)-(21-13)=5$. If we let L be the number of linear dice, C the number of corner dice and T the number of T-junction dice, we can write

$$
\Delta=8 C+5 T
$$

Note that there are four corners $C=4$ and in our case $\Delta=2032$ so that $5 T=2000$ and $T=400$. Between any two adjacent holes, there are 2 junction dice. Hence $g-1=\frac{T}{2}$ and here $g=201$.

Problem 3 (This problem stinks). The septic number system consists of the positive integers of the form $7 n+1$: that is, $1,8,15,22$, etc. A septic prime is a septic number larger than 1 that cannot be written as a product of two smaller septic numbers. Every septic number larger than 1 can be written as a product of septic primes, but this factorization is not always unique. For example, $36 \times 169=78 \times 78$, and all of 36,169 , and 78 are septic primes. In this instance our two factorizations have length 2 , where the length is the number of septic primes involved in the factorization (with repeated primes counted multiply).

For each septic integer n, let

$$
E(n)=\frac{\text { largest length of a factorization of } n \text { into septic primes }}{\text { smallest length of such a factorization }} .
$$

Find the largest possible value of $E(n)$.

Answer. 3

Solution. We first argue that a value at least 3 is possible. Let $A=3^{6}$ and $B=5^{6}$. By Fermat's little theorem, $A \equiv B \equiv 1(\bmod 7)$, and so A and B are septic numbers. We claim they are both septic primes. Any nontrivial factorization of A in the positive integers has the form $3^{e_{1}} \cdot 3^{e_{2}}$, with e_{1}, e_{2} positive integers adding to 6 . Since 3^{e} is not $1 \bmod 7$ for any positive integer $e<6$, none of those factorizations are valid septically. Thus, A is a septic prime. A parallel argument shows B is a septic prime. Now notice that

$$
A \cdot B=15 \cdot 15 \cdot 15 \cdot 15 \cdot 15 \cdot 15
$$

and that 15 is a septic prime (since its nontrivial factors, 3 and 5 , are not 1 mod 7). Thus, $A B$ has a factorization as a product of 2 septic primes and as a product of 6 septic primes, and so $E(A B) \geq 6 / 2=3$.

Next we prove that no value larger than 3 is possible. It is helpful to separate out from the main proof the following key observation.

Lemma 1. Every septic prime is a product of at most six ordinary primes.
Proof. Let P be a septic prime and suppose for a contradiction that $P=$ $p_{1} \cdots p_{m}$, where each p_{i} is an ordinary prime and $m>6$.

Consider the list of $m-1$ numbers $p_{1}, p_{1} p_{2}, p_{1} p_{2} p_{3}, \ldots, p_{1} \cdots p_{m-1}$. Since P is an integer multiple of each of number on this list, and P is not a multiple of 7 , no term in the list is congruent to $0 \bmod 7$. Furthermore, no term is congruent to $1 \bmod 7$. To see this, suppose some number R on this list is congruent to $1 \bmod 7$, and let $S=P / R$. Since $P=S R$ and both P and R are congruent to $1 \bmod 7$, it must be that $S \equiv 1(\bmod 7)$ also. But then R, S are septic numbers larger than 1 with $P=R S$, contradicting that P is a septic prime. Putting these observations together, we conclude that each term on our list belongs to one of the 5 residue classes $2,3,4,5,6(\bmod 7)$.

Since the list has length $m-1>6-1=5$, two terms must coincide mod 7; say $p_{1} \cdots p_{k} \equiv p_{1} \cdots p_{\ell}(\bmod 7)$, where $1 \leq k<\ell \leq m-1$. Canceling, $p_{k+1} \cdots p_{\ell} \equiv 1(\bmod 7)$. (We use here that 7 is prime, so that cancellation is valid in the integers modulo 7.) Now taking $R=p_{k+1} \cdots p_{\ell}$ and $S=P / R$, we get the same contradiction as before: R and S are septic numbers larger than 1 multiplying to P.

Now n be a septic integer larger than 1 and suppose we have two factorizations of n into septic primes p_{i} and q_{j}, say

$$
\begin{equation*}
n=p_{1} \cdots p_{k}=q_{1} \cdots q_{\ell} \tag{*}
\end{equation*}
$$

where $k \geq \ell$. We must show that $k / \ell \leq 3$. Let us assume to start with that no p_{i} or q_{j} is prime in the ordinary integers.

In this case, we can show that the ratio $k / \ell \leq 3$ by counting the number of ordinary prime factors of n. We count with multiplicity, meaning that if a prime appears to the r th power in n, it is counted r times. Since each q_{j} has at most 6 ordinary prime factors (by the lemma), $n=q_{1} \cdots q_{\ell}$ has at most 6ℓ ordinary prime factors. On the other hand, since no p_{i} is prime, each p_{i} has at least two ordinary prime factors. Thus, $n=p_{1} \cdots p_{k}$ has at least $2 k$ ordinary prime factors. Hence,

$$
2 k \leq \# \text { ordinary prime factors of } n \leq 6 \ell,
$$

forcing $k / \ell \leq 6 / 2=3$.
Now suppose that some p_{i} is prime, say p_{1}. Then by unique factorization in the ordinary integers, some $q_{j}=p_{1}$, and we can assume (reordering if necessary) that $j=1$. Canceling $p_{1}=q_{1}$ in ($\left.{ }^{*}\right)$,

$$
p_{2} \cdots p_{k}=q_{2} \cdots q_{\ell}
$$

If any remaining p_{i} is an ordinary prime, we can continue the process. After finitely many steps, we are left with a factorization where none of the remaining p_{i} or q_{j} are prime. (If a remaining q_{j} were an ordinary prime, it would have to equal some p_{i}, but we removed all p_{i} that are ordinary primes.) If we have removed s primes, then either $s=k=\ell$ - which forces $\frac{k}{\ell}=1$ or from the case handled in the last paragraph,

$$
\frac{k-s}{\ell-s} \leq 3
$$

But $\frac{k}{\ell} \leq \frac{k-s}{\ell-s}$ (since $\ell \leq k$), and so $\frac{k}{\ell} \leq 3$ in this case as well.

Authors.

