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We give a local deformation theoretic proof of Farkas’ conjecture that a principally polarized complex
abelian variety of dimension 4 whose theta divisor has an isolated double point of rank 3 at a point of order
two is a Jacobian. The argument yields an explicit local normal form for the theta function near such a
point. The proof depends only on the facts that the theta function is even, a general theta divisor is smooth,
and a general singular theta divisor has only ordinary singularities.

Introduction

Hershel Farkas conjectured [F] in 2004 the following statement designed to complete the geometric
Schottky problem in genus 4: if the theta divisor on a 4 dimensional complex principally polarized abelian
variety (ppav) (A,Θ) has an isolated double point of rank 3 at a point of order two for the group law,
then (A,Θ) is a Jacobian of a smooth curve of genus 4 (which then has a vanishing even theta null). This
was proved by Grushevsky and Salvati Manni in 2006 in [G-SM1] and completes the Andreotti - Mayer
(and classical) program of characterizing Jacobians of genus 4 curves among all 4 dimensional ppav’s by the
singular points on Θ.

Characterization of genus 4 Jacobians:
Let A be a 4 dimensional complex ppav and Θ a symmetric theta divisor on A, and sing(Θ) its variety

of singular points.
i) A is a product of lower dimensional Jacobians, iff sing(Θ) has dimension 2.
ii) A is a hyperelliptic Jacobian, iff sing(Θ) has dimension one.
iii) A is a non hyperelliptic Jacobian with no vanishing even theta null, iff Θ has exactly 2 “conjugate”

singularities, (inverses for the group law).
iv) A is a non hyperelliptic Jacobian with a vanishing even theta null, iff Θ has an isolated rank 3 double

point at a point of order two.
The “only if” statements are classical, and the “if” statements are due in parts i), ii), iii) to Beauville, and in
iv) to Grushevsky and Salvati Manni. See [B, Thm. p.149, (6.6) p.181, (7.4) p.184, (7.5) p.191] and [G-SM1].

In this paper we prove a local structure theorem for theta functions which implies the following statement
in genus 4:

Proposition: Locally near an isolated rank 3 double point (x;s) = (0;0) of the fiber ϑ(x; 0) = 0 over s = 0
in C4 ×H4, the ideal of the universal theta function of 4 variables is generated (after equivariant change of
variables) by a polynomial of form x2

1 +x2
2 +x2

3 +x4
4 +b(s)x2

4 +c(s), where b, c are analytic functions on Siegel
space H4 near s = 0 such that b(0) = c(0) = 0. Moreover no component of the divisor {b2(s)− 4c(s) = 0} is
contained in the divisor {c(s) = 0}.

This implies Farkas’ conjecture as follows:

Corollary: A four dimensional ppav (A,Θ) whose theta divisor has an isolated double point of rank 3 at a
point of order two is a Jacobian of a smooth non hyperelliptic curve of genus 4 with a vanishing even theta
null.
Proof of Corollary: By the proposition, in every neighborhood of s = 0, there are points s in H4

with b2(s) − 4c(s) = 0 and c(s) 6= 0, over which the theta divisor has two distinct non-zero ordinary
double points (odp’s) {x,−x} as singularities. Since there is only one component of the discriminant lo-
cus N0 in A4 over which the general singular theta divisor has more than one singularity, namely J4 =
{Jacobians and products of Jacobians}, (A,Θ) lies on J4. But (A,Θ) is neither a product of Jacobians nor
a hyperelliptic Jacobian, since on those ppav’s Θ has no isolated singularities. The double point of order two
then represents the vanishing even theta null on the corresponding smooth non hyperelliptic curve. QED
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Motivation from deformation theory of singularities

Although the argument does not appeal to general theorems of deformation theory, it is suggested by
them. One knows that every family of local hypersurface singularities which specializes to a given isolated
singularity, is pulled back by a classifying map from one standard model family, the versal family for that
singularity. A double point of “corank one” is one of the simplest singularities, defined by a function
analytically equivalent to one of form (x2

n + ... + x2
1 + xm

0 ), for m > 2, and the versal deformation of this
singularity is equivalent to that of the monomial xm

0 , i.e. to a generic monic polynomial of degree m, [A-G-V,
pp.187-188]. If the function is also even, and the singularity is at x = 0, the model is (x2

n + ...+x2
1 +x2k

0 ), for
some k ≥ 2, and the original family is equivalent by the argument below to one of this form: (x2

n + ...+x2
1 +

x2k
0 + ak−1(s)x2(k−1)

0 + ...+ a1(s)x2
0 + a0(s)), where all aj(0) = 0. A reference for hypersurface deformations

in the analytic case is [K-S], and a reference for deformations of even hypersurfaces in the formal case is [R].
Thus for a theta function with an isolated double point of corank one, the model is that of a generic

even polynomial y2k +ak−1(s)y2(k−1) + ...+a1(s)y2 +a0(s), specializing to the monomial y2k for s = 0. The
discriminant locus of this polynomial has two components: one is the locus a0 = 0, where generically there is
one odp at y = 0; the other is the pullback of the discriminant locus of the polynomial tk + ak−1(s)t(k−1) +
... + a1(s)t + a0(s), under the map y 7→ y2 = t, where generically there are 2 odp’s which are negatives of
each other.

In some sense this explains why N0 has two components and the structure of generic singularities of
theta on those components. In particular, near a ppav with an isolated double point of corank one at 0 on
theta, the family of all ppav’s is locally the pullback of the general “even” deformation of the singularity y2k

by a classifying map whose image meets a generic point of both components of the discriminant locus.

Proof of the proposition

Step one: We construct a local classifying map, using Weierstrass preparation to produce a polynomial
generator for the ideal of the theta divisor locally near the given singularity.

Preparation Lemma: Let F (x; s) be analytic near (0; 0) in Cn+1 × Cr and “even in x”, i.e. F (−x; s) =
F (x, s), and let F (x; 0) have a “rank n (or corank one) double point” at x = 0, (where if n = 0, this means
F (x0; 0) has no terms of degree two or less in x0).

Then there is an analytic coordinate system (z; s) = (z(x; s); s) near (0; 0), which is equivariant for the
minus map in x, i.e. z(−x, s) = −z(x; s), such that in these coordinates F has the form:

F (z; s) = F (x(z; s); s) = unit · (z2
n + ...+ z2

1 + g(z0; s)), where the unit is analytic in (z; s) and even in
z = (z0, ..., zn), and g is analytic in (z0; s) and even in z0. If moreover the point x = 0 is an isolated singularity
of F (x; 0), then the function g may be taken to be a polynomial in z0: g(z0; s) = z2k

0 +
∑

0≤j≤k−1

aj(s)z2j
0 , for

some finite k ≥ 2, with analytic coefficients a(s), such that all aj(0) = 0.

Proof: After a linear change of the coordinates x in Cn+1, which we continue to denote by x, we may arrange
the homogeneous quadratic term of F (x; 0) to be x2

n + a rank n − 1 quadratic in (x0, ..., xn−1). Then by
Weierstrass preparation [G-R, p.68], there is a unique expression F (x; s) = unit · (x2

n + b1xn + b0) where
b1 and b0 are analytic on a neighborhood of (0; 0) in Cn × Cr and vanish at (0; 0). By the uniqueness of
this Weierstrass polynomial, and the evenness of F in x, it follows that b1 is odd in x, and both b0 and
the unit are even in x. Now complete the square in the variable xn, by putting yn = xn + b1/2, so that
F (x0, ..., xn−1, yn; s) = unit · (y2

n + c0) where yn is odd in x, c0(x0, ..., xn−1; s) = b0 − b21/4 is even in x, and
c0(x; 0) has a rank n− 1 double point at x = 0.

Next repeat the argument for c0 that was given for F . I.e. change (x0, ..., xn−1) linearly again until the
homogeneous quadratic term of c0(x; 0) begins with x2

n−1, use Weierstrass, complete the square replacing
xn−1 by yn−1, to get F (x0, ..., xn−2, yn−1, yn; s) = unit · (y2

n + unit · (y2
n−1 + d0(x0, ..., xn−2; s))) where both

units and d0 are even in x, and yn−1 and yn are both odd in x. Then divide yn by an analytic, hence even,
square root of the inner unit, replacing yn by zn, which is thus still odd in x.

Then F (x0, ..., xn−2, yn−1, zn; s) = unit · (z2
n + y2

n−1 + d0(x0, ..., xn−2; s)), where the outer unit is the
product of the two previous units, and d0 is even in x, and d0(x; 0) has a rank n− 2 double point at x = 0.
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Continuing in this way, repeatedly changing the x’s linearly, applying Weierstrass, replacing the x’s with y’s
by completing the square, and then by z’s after dividing by square roots of units, we eventually come to an
expression F (x0, y1, z2, ..., zn; s) = unit · (z2

n + ...+ z2
2 + y2

1 + g(x0; s)), where y1 and all the zj are odd in x,
and g is even in x0. If g(x0; 0) is identically zero, we let z1 = y1, z0 = x0, and stop here, noting that the
singular locus of F (x; 0) is the smooth curve (x0, 0, ..., 0).

If g(x0; 0) is not identically zero, but vanishes at x0 = 0 to finite order 2k ≥ 4, then we may apply
Weierstrass again to write g(x0; s) = unit · (x2k

0 +
∑

0≤j≤k−1

aj(s)x2j
0 ), where the evenness of the Weierstrass

polynomial in x0 and of the unit, follows from the evenness of g in x0, and the uniqueness of the Weierstrass
polynomial and of the unit. Dividing y1 by a square root of the unit replaces it by z1 so that, again with a
new unit out front, F (x0, z1, ..., zn; s) = unit · (z2

n + ... + z2
1 + x2k

0 +
∑

0≤j<k

aj(s)x2j
0 ), for some finite k ≥ 2.

Renaming x0 = z0, we have our result. QED

Step two: Next we deduce a general result for theta functions with a corank one double point at a point of
order two. Hg denotes Siegel space of genus g, and Ag = Hg/Sp(g,Z) the moduli variety of g dimensional
ppav’s. We assume as known that the discriminant locus N0 parametrizing ppav’s in Ag with singular theta
divisor, has exactly two irreducible components for g ≥ 4, called N ′0 and θnull, and that a general theta
divisor over N0 has only odp’s as singularities, two of them over N ′0 and one of them over θnull [B, D1,
G-SM2, S-V1,2].

Theorem: (i) Locally near an isolated corank one double point at (x; s) = (0; 0) of the fiber ϑ(x; 0) = 0
over s = 0 in Cg × Hg, the ideal of the universal theta function of g ≥ 4 variables is generated (after an
equivariant change of variables) by a polynomial of form x2

1 + ...+x2
g−1 +x2k

g +
∑

0≤j<k

aj(s)x2j
g , where k ≥ 2,

and the aj(s) are analytic functions on Hg near s = 0 with aj(0) = 0.
(ii) If ∆(a) is the discriminant function of the polynomial tk +

∑
0≤j<k

ajt
j , then no component of the divisor

D∗1 = {∆(a(s)) = 0} is contained in the divisor D∗0 = {a0(s) = 0}.
(iii) In particular in every neighborhood of s = 0, there are points s in Hg with ∆(a(s)) = 0 and a0(s) 6= 0,
over which the theta divisor has at least two distinct non zero points {x,−x} as singularities. Hence s = 0
lies on both components of N0.

Proof: Part (i) follows from the preparation lemma and the evenness of ϑ at points of order two and even
multiplicity on Θ. Hence there is a neighborhood of (0; 0) in Cg × Hg such that the critical locus of the
restriction of ϑ to this neighborhood is locally isomorphic to a neighborhood of (x; s) = (0; 0) in the critical
locus of an analytic family of polynomials of form (x2

1 + ... + x2
g−1 + x2k

g +
∑

0≤j<k

aj(s)x2j
g ), for some finite

k ≥ 2. The Jacobian criterion shows that the critical locus of this family is isomorphic to that of the family
of even monic polynomials x2k

g +
∑

0≤j<k

aj(s)x2j
g of the variable xg. In particular (x1, ..., xg−1, xg) is a singular

point for (x2
1 + ...+ x2

g−1 + x2k
g +

∑
aj(s)x2j

g ) if and only if x1 = ... = xg−1 = 0, and xg is a singular point
of the polynomial f(xg) = x2k

g +
∑
aj(s)x2j

g .
Thus the critical locus we want to analyze near our isolated corank one double point, is locally the pull-

back by the coefficient functions aj(s), of the critical locus of the generic even polynomial y2k +
∑

0≤j<k

ajy
2j ,

near the singular point y = 0, of y2k, i.e. near the point (y; a0, ..., ak−1) = (y; a) = (0; 0) in C × Ck. Thus
we recall next the structure of the critical and discriminant loci of this model, the monic even polynomials
of one variable.

Let V = the space of monic even polynomials y2k +
∑

0≤j<k

ajy
2j of degree 2k in the variable y,

parametrized by (a0, ..., ak−1) in Ck ∼= V . The discriminant locus is the subset D in V of those poly-
nomials having a repeated root, and the critical locus is the subset in C × Ck of pairs (y; a) where y is a
repeated root of the polynomial with coefficient vector a. We deduce that D has exactly two irreducible
components as follows. The singular points, or repeated roots, of a given even polynomial f(y) = h(y2) are
the common zeroes of h(y2) = 0 = d

dyh(y2) = 2y · h′(y2).
Thus if h(t) has degree k in t, the singular points of the even polynomial h(y2) of degree 2k in y,
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consist of the point y = 0 for those h(t) with zero constant term, and the two square roots y,−y, of
singular points t of the polynomial h(t). The discriminant locus of polynomials h(t) of degree k is known
classically to be irreducible [cf. S-V3] and the space of polynomials with zero constant term is parametrized
by the irreducible space Ck−1. Thus the discriminant locus of even polynomials h(y2) of degree 2k has two
irreducible components, D0 = those h(y2) with zero constant term, and D1 corresponding to those h(y2)
where h(t) has a repeated root.

As remarked above, the critical locus of this model family consists of pairs (y; a) in C × Ck such that
y is a singular point of the polynomial with coefficient vector a. Over a generic point of D0, we have h(y2)
where h(t) is a generic polynomial with zero constant term hence no multiple roots. Thus the only multiple
root of h(y2) for such h is y = 0. Hence the projection map C × Ck → Ck restricted to the critical locus
has degree one over D0. Over a generic point of D1, we have h(y2) where h(t) is a singular polynomial with
only one repeated root t which is non zero, so the repeated roots of h(y2) are then precisely the two square
roots of t. Thus over D1 the projection from the critical locus has degree two.

Of special interest to us is the neighborhood of the point (y; a) = (0; 0) in the critical locus, i.e. of the
singular point y = 0 for the monomial y2k. Since this monomial has only one root, this is the only singular
point, and since k ≥ 2 by hypothesis, this monomial lies on both components D1 and D0 of the discriminant
locus. We want to examine the singularities over the component D1 near this point.

A polynomial in D1 has form f(y) = h(y2) where h(t) has a repeated root. Hence if h(t) has a repeated
root at a non zero number t, then both square roots of t are singular points of f(y) = h(y2) so the critical
locus has at least two points over this polynomial f(y). Hence the only polynomials in D1 having only one
critical point over them, are those of form h(y2) where h(t) has a singular point at t = 0, and nowhere else.
This means both the constant term and linear term of h(t) are zero, hence h(t) is divisible by t2, so h(y2) is
divisible by y4. In particular, if f(y) = h(y2) on D1 has only one critical point, it occurs at y = 0, which is
a point of multiplicity ≥ 4.

Since the polynomial y2k has only one singularity, at y = 0, and the projection map from the critical
locus to the parameter space V of even polynomials is proper, hence all polynomials near this one have all
their singularities near y = 0. I.e. given any open disc I around y = 0, there is a neighborhood of y2k such
that all polynomials in this neighborhood have all their singularities in I.

Since y2k lies on both D0 and D1 in V , and a general theta divisor over Hg is smooth, the pullbacks D∗0
and D∗1 of D0, D1 by the map s 7→ a(s) are both non empty (possibly reducible), divisors through 0 in Hg.
Since theta has singularities over all points of D∗1 and D∗0 , both D∗0 and D∗1 are contained in the discriminant
locus N0 of Hg. According to the definitions, D∗0 is contained in θnull. To complete the proof of part (ii),
we will show that no component of D∗1 lies in θnull.

We see this as follows: since a component Z of D∗1 has the same dimension asN0, if Z lies in θnull it would
contain a generic point of θnull, hence the singularity of theta over a generic point of Z would be a single
odp, since that is the generic singularity over θnull. But over D∗1 and near s = 0, the critical locus of theta
contains an isomorphic copy of the full critical locus of some polynomial f(y) = y2k +

∑
0≤j<k

ajy
2j = h(y2)

in D1. If this were only one point, we remarked above then the corresponding critical point over D1 would
be at y = 0 and of multiplicity ≥ 4 for f , since f(y) = h(y2) and h(t) is a polynomial with singularity at
t = 0. Hence the singularity of theta would be that of the polynomial (x2

1 + ... + x2
g−1 + f(xg)) where x4

g

divides f(xg). Then the singularity at x = 0 would be a corank one double point, and not an odp, which
contradicts the known structure of singularities over a general point of θnull. Thus every component Z of
D∗1 is contained in the other component N ′0 of N0, where the generic singularity on theta is two odp’s. This
finishes the proof of (ii). Finally, since the point s = 0 lies on some such component Z of D∗1 , the point s = 0
lies on both components of N0, and part (iii) follows. QED

Remark: Since the map from critical to discriminant locus in the model family of polynomials was proper,
the non-zero singularities {x,−x} produced in the previous argument over a general point of D∗1 converge
to (x; s) = (0; 0), as s→ 0 in Hg. Hence the point s = 0 actually lies on that component of the intersection
of the two components of N0 called Rg in [D1, pp.706-707]. Thus an isolated double point of corank one at
a point of order two is a limit of the two ordinary double points on some nearby singular theta divisors.

Step three: Now we can deduce the proposition originally announced. Note that when g = 4, N ′0 = J4 =
{genus 4 Jacobians and products of lower genus Jacobians}.
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Proposition: Locally near an isolated rank 3 double point at the origin (x; s) = (0; 0) in C4×H4, the ideal
of the universal theta function of 4 variables is generated by the polynomial x2

1 + x2
2 + x2

3 + x4
4 + bx2

4 + c,
where b(s), c(s) are analytic functions on Siegel space H4 near s = 0, such that b(0) = c(0) = 0. Moreover
no component of the divisor {b2(s)− 4c(s) = 0} is contained in the divisor {c(s) = 0}.
Proof: By parts i) and ii) of the theorem for g = 4, it remains only to compute k for the polynomial
(x2

1 + x2
2 + x2

3 + x2k
4 ) which defines the genus 4 Jacobian theta divisor near the vanishing theta null. By the

local algebra definition [A-G-V, pp.121,242], the Milnor number of this isolated singularity equals 2k − 1.
For a Jacobian with one vanishing even theta null, we can compute this number globally topologically to
be 3 as follows [cf. S-V1]. The sum of the Milnor numbers of all the singularities of Θ (the global Milnor
number) equals the difference between the Euler characteristic of Θ and the Euler characteristic of a generic
smooth theta divisor. Hence the difference between the global Milnor numbers of the theta divisors of a
generic Jacobian and a Jacobian with one vanishing even theta null equals the difference between their Euler
characteristics. Comparing the Abel maps onto these two theta divisors shows this difference is one. Since
a generic Jacobian theta divisor has just two odp’s as singularities, the Milnor number of the theta divisor
of a Jacobian with one vanishing even theta null is 3.

It follows that when g = 4 the polynomial model for the rank 3 double point has k = 2. Thus near
the point (x; s) = (0; 0), which is singular on the theta divisor of a genus 4 Jacobian with a vanishing
even theta null, in suitable coordinates the theta function is associate in the local ring, to a polynomial
x2

1 + x2
2 + x2

3 + x4
4 + b(s)x2

4 + c(s), with coefficients b, c, analytic on H4. Since b2 − 4c = 0, and c = 0 define
the discriminant loci D1 and D0 in the space of even polynomials of degree 4, they also define the pullbacks
locally in H4, namely D∗1 in J4, and D∗0 in θnull. QED

Comparisons and generalizations

The proof of Farkas’ conjecture by Grushevsky and Salvati Manni in [G-SM1] is a global one, establishing
a containment relation between the closure of the set of genus 4 Jacobians with vanishing even theta null
and the set of 4 dimensional ppav’s with a double point of rank < 4 at a point of order two, comparing the
degree of these varieties in a projective embedding, and invoking Bezout’s theorem to conclude equality as
sets.

Since their argument treats all ranks less than 4, using [CM, Thm.3] it implies that that on an inde-
composable 4 dimensional ppav A, the only possible singularities of theta are double points; and when theta
is singular, an indecomposable A fails to be a Jacobian if and only if theta has a double point of rank 4 at
a point of order two, if and only if all double points of theta have rank 4 and occur at points of order two.
Moreover, by [D2,V], there are at most ten of these isolated rank 4 vanishing theta nulls, and the maximum
number occurs on a unique 4 dimensional ppav.

In higher dimensions, it is proved in [G-SM2] that if g ≥ 4, the set of ppav’s of dimension g whose theta
divisor has a point of order two with positive corank, equals Debarre’s non-reduced component Rg of the
intersection of the two irreducible components of N0. Their argument uses the heat equation satisfied by
the theta function to show that the equations defining the two loci are the same. In a forthcoming work
we propose to strengthen our local arguments to remove the hypothesis of corank one used here, and to
deduce these lower rank and higher dimensional results as well from general principles valid for all general
even analytic hypersurfaces.
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