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Introduction: A good understanding of the geometry of a theta divisor Θ of a principally
polarized abelian variety (A,Θ) requires a knowledge of properties of its canonical linear
system, the Gauss linear system |OΘ(Θ)|. A striking feature of the theta divisor Θ(C) of
the Jacobian of a curve C is that the dual of the branch divisor of the associated Gauss
map γΘ on Θ, is not a hypersurface as expected but a non degenerate curve [A], namely
the canonical model Cω ⊂ |ωC |∗ ∼= |OΘ(Θ)| of C. This feature is so striking that one is
led to ask whether it is shared by other principally polarized abelian varieties, for example
by those p.p.a.v.’s most similar to Jacobians, the Prym varieties. For the Prym variety
(P,Ξ) of a connected étale double cover of curves π : C̃ → C the most natural first
question of this type is whether the branch divisor of γΞ is dual to the Prym canonical
model ϕη(C) = Cη ⊂ |ωC ⊗ η|∗ of the curve C. Specialization to a Jacobian (an approach
proposed in private communication by Donagi), e.g. by letting C become trigonal, seems
to imply that the set of Prym varieties whose Gauss map γΞ has branch divisor dual to
Cη is a union of proper subvarieties of all Pryms, but gives no information on the possible
number of such subvarieties. One obstacle to proving a more precise result has been a lack
of computable models for the divisors in the Gauss linear system on a Prym theta divisor.

In the present paper we construct explicit models for the Gauss divisors Γp parametrized
by points ϕη(p) of the Prym canonical curve Cη and deduce from their geometry that in
fact Cη is never dual to a component of the branch divisor of γΞ, for any connected étale
double cover C̃ → C of any non hyperelliptic curve C of genus g ≥ 4. (These may be
considered as limiting cases of the models Spq given in [BD2, proof of Prop. 1, p.615] for
proper intersections of translates of theta divisors on Prym varieties.) Although this means
one cannot repeat for any Prym varieties Andreotti’s proof [A] of the Torelli theorem, it
raises the question of whether the property that the dual of the branch divisor of the
Gauss map is a non degenerate curve may be characteristic of Jacobians. This question
remains open even among Prym varieties. A result of Beauville and Debarre stated in
[BD2, Remarque 1, p.619], along with a result in the present paper, seems to imply that
the set of Prym varieties of dimension ≥ 4 whose Gauss map γΞ has branch divisor dual
to any curve is a union of proper subvarieties of all Pryms, and that Jacobians are an
irreducible component of this union, but again leaves open the possible number of such
subvarieties. An alternate model for the Gauss map on a Prym theta divisor given by Verra
in [Ve], although complicated, has enabled him to compute the degree of γΞ for a generic
Prym, and could eventually be useful in determining the branch divisor. For generic four
dimensional Pryms, i.e. all generic p.p.a.v.’s of dimension four, Adams, McCrory, Shifrin,
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and Varley have computed in unpublished work [AMSV1,2], that both the branch divisor of
γΞ and its dual variety, are irreducible surfaces of degree 60 in P

3. Since for a general Prym
(P,Ξ) (of dimension ≥ 8), Cη does equal the base locus of the tangent cones at double
points of Ξ, the present result exhibits another contrast between theta divisors of Pryms
and theta divisors of Jacobians of curves (of genus ≥ 5) and of intermediate Jacobians of
cubic threefolds, where the dual of the branch divisor of γΘ is equal, in general, to the
base locus of the tangent cones at singular points.

The method of constructing the divisors Γp in this paper is the following: the Prym
theta divisor Ξ associated to a double cover C̃ → C with genus(C) = g, admits a surjective
map ϕ : X → Ξ with generic fiber P

1, where X ⊂ C̃(2g−2) parametrizes certain divisors
on C̃ of degree 2g − 2 (see “The setup” below for precise definitions). Each point p in C̃
determines a generic section Dp ⊂ X of this map in the sense that if Dp = {those divisors
D in X such that p belongs to D} then the restriction ϕ : Dp → Ξ has degree one. Since
each Dp thus maps birationally to Ξ, for any p �= q on C̃ the image ϕ(Dp ∩Dq) ⊂ Ξ should
represent a “self intersection” of Ξ and hence is a candidate for an element of the Gauss
linear system |OΞ(Ξ)|. The cases q �= p, p′ are computed in [BD2, p.615], and are not
Gauss divisors, but proper intersections of translates of Ξ. The limiting case q = p′, is a
Gauss divisor, which we compute as follows.

Theorem. If p and p′ are the preimages of a point p of C via the étale connected double
cover C̃ → C, where C is smooth and non hyperelliptic of genus g ≥ 4, then

1) ϕ(Dp ∩ Dp′) = Γp ⊂ Ξ is the Gauss divisor corresponding to the point ϕη(p) on
Cη ⊂ |ωC ⊗ η|∗ ∼= |OΞ(Ξ)|.

2) If furthermore g ≥ 5 and p is a general point of C, then p is a ramification point
of only finitely many g14 ’s, and for any such p, Γp is normal and irreducible.

3) If the curve Cη were dual to a component of the branch divisor of γΞ on Ξsm, then
each Γp would be singular in codimension one.

It follows (with a special argument for genus 4) that Cη is never dual to a component
of the branch divisor of γΞ on Ξsm, for any étale connected double cover C̃ → C of
any smooth non hyperelliptic curve C of genus g ≥ 4. We sketch the proof of the main
result: the theta divisor Ξ of the Prym variety of an étale double cover π : C̃ → C of a
curve C of genus g, can be modeled by “precanonical effective even line bundles on C̃”,
i.e. Ξ = {ξ ∈ Pic2g−2(C̃) : h0(ξ) ≥ 2 and even, and N(ξ) = ωC} where N is the norm
map N : Pic(C̃) → Pic(C). Consequently, the Abel map α̃ : C̃(2g−2) → Θ̃ restricts to
a surjective map ϕ : X → Ξ with generic fiber P

1, where X = α̃−1(Ξ). One can then
relate the structure of X and ϕ to the Gauss linear system on Ξ as follows: for a double
cover π : C̃ → C if p ∈ C̃, and X ⊃ Dp = {precanonical effective even divisors containing
p}, then for every p �= q in C̃, Beauville’s homological calculations in [B] imply that
Ξ ⊃ ϕ(Dp ∩ Dq) has the homology class [Ξ]2 of a Gauss divisor on Ξ. We then complete
the proof of part 1) of the theorem by proving a set theoretic inclusion ϕ(Dp ∩Dp′) ⊂ Γp,
where p is any point of C and {p, p′} = π−1(p).

The organization of the paper is as follows: after setting up the definitions, conventions,
and notations, we restate the main theorem and its corollary. We prove the corollary first,
assuming the theorem, followed by a proof of each of the three parts of the theorem in
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order. At the end of the paper we make some remarks on the case when the base curve C
of the double cover is hyperelliptic, the relation with Andreotti’s result, and more detailed
remarks on related results of other workers including those above. Finally we pose some
open questions; for example: if a component of the branch divisor of the Gauss map on
an indecomposable principally polarized abelian variety (A,Θ) is dual to a non degenerate
curve, is (A,Θ) a Jacobian?

The setup: We work over the complex numbers. If C is a smooth connected projective
curve of genus g ≥ 2, Pic(C) its Picard variety, and Pic2g−2(C) ⊃ Θ = {L : h0(L) �= 0}
the natural theta divisor, the pair (Pic0(C), [Θ]), where [Θ] is the homology class of any
translate of Θ in Pic0(C), is the Jacobian of C, a principally polarized abelian variety
denoted J(C). If π : C̃ → C is a connected étale double cover, and N : Pic(C̃) → Pic(C)
the associated norm map on line bundles, then N−1(0) = {L ∈ Pic0(C̃) : N(L) = OC}
has two connected components, and the Prym variety of π is by definition [Mu1, p.331]
P 0 = the (g − 1) dimensional connected component of N−1(0) which contains 0, with
principal polarization (equal to half that) induced from Pic0(C̃). We consider also [Mu1,
p.342] the associated “precanonical” cosets of the Prym variety, both the “odd” one P− =
N−1(ωC)odd = {L : N(L) = ωC , h

0(L) odd} ⊂ Pic2g−2(C̃), and the “even” one P+ = P =
N−1(ωC)ev = {L : N(L) = ωC , h

0(L) even} ⊂ Pic2g−2(C̃), the latter with natural divisor
Ξ = Ξ(C̃/C) = (P ∩ Θ̃)red = the “Prym theta divisor”, and its parametrization ϕ : X → Ξ
(with fiber ∼= P

1 over a generic point of any component of Ξ) defined by the restriction of
the Abel map α̃ : C̃(2g−2) → Pic2g−2(C̃) to α̃−1(Ξ) = X. P− admits a parametrization
ϕ− : X− → P− where ϕ− is a map with fiber ∼= P

0 over a generic point of P−, and ϕ− is
defined as the restriction of the Abel map α̃ : C̃(2g−2) → Pic2g−2(C̃) to α̃−1(P−) = X−.
Furthermore, when C is non hyperelliptic, [B, Cor. of Prop. 3, p.365] X and X− are
irreducible. We should remark that in [B] the definition of the scheme structure on X,
X− is different from that given above, i.e. if α : C(2g−2) → Pic2g−2(C) is the Abel map
for C, π : C̃(2g−2) → C(2g−2) the norm map on divisors, and {ωC} the canonical point in
Pic2g−2(C), then in [B, p.359, line -6] the scheme structures on X, X− are defined as in
[W, (8.3), p.99], i.e. as inherited from that defined by the equation X ∪X− = π−1(|ωC |).
But in fact the two scheme structures π−1(|ωC |) and α̃−1(Ξ∪P−) on X ∪X− agree, since
first of all π−1(|ωC |) = (α ◦ π)−1(ωC) = (N ◦ α̃)−1(ωC) = α̃−1(P ∪ P−). Then since the
scheme α̃−1(P ∪P−) is reduced by [B, p.359], and contains the scheme α̃−1(Ξ∪P−), and
since as sets α̃−1(P ∪ P−) and α̃−1(Ξ ∪ P−) are equal, then as schemes they are equal as
well.

If p is a point of C̃, and Dp ⊂ X is the subset of X whose corresponding divisors on
C̃ contain p, then we claim Dp ⊂ X is a divisor with non empty intersection with every
fiber of ϕ, hence ϕ(Dp) = Ξ. I.e. since the finite norm map π : C̃(2g−2) → C(2g−2), maps
X onto |ωC | and Dp ⊂ X onto the codimension one subspace |ωC − p| + p ⊂ |ωC |, Dp is a
divisor in X. Since Dp meets each positive dimensional linear series ϕ−1(y) in codimension
at most one, Dp ∩ ϕ−1(y) �= ∅ for every y in Ξ.

Our main observation is that when C is non hyperelliptic of genus g ≥ 4, then the
set ϕ(Dp ∩ Dp′) with its reduced scheme structure is the Prym canonical Gauss divisor
Γp, which we shall define next. If C is non hyperelliptic, η the square trivial line bundle
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corresponding to π : C̃ → C, (i.e. the unique line bundle on C such that η �= OC ,
π∗(η) = OC̃ , for π∗ : J(C) → J(C̃)), then the Prym canonical map ϕη : C → |ωC ⊗ η|∗ =
P(T0(P )) is a morphism, and we denote by Λp the hyperplane in |ωC ⊗ η| parametrizing
Prym canonical divisors on C containing ϕη(p). We denote by Γp ⊂ Ξ the Gauss divisor
corresponding to Λp, i.e. Γp = (the closure in Ξ of) γ−1

Ξ (Λp) where γΞ : Ξsm → |OΞ(Ξ)|∗ ∼=
P(T0(P ))∗ ∼= |ωC ⊗ η| is the Gauss map defined on the smooth points of Ξ. Equivalently
Γp is the Gauss divisor in |OΞ(Ξ)| corresponding to the point ϕη(p) of the Prym canonical
model ϕη(C) of C in |ωC ⊗ η|∗ = P(T0(P )) ∼= |OΞ(Ξ)|, where a direction v in T0(P )
corresponds to the divisor on Ξ of the directional derivative ∂vϑ, where ϑ is a theta
function on P vanishing simply on Ξ.

Theorem. Assuming the notation of the setup above, if C is a smooth non hyperelliptic
curve of genus g ≥ 4, π : C̃ → C a connected étale double cover, p any point of C, and
π−1(p) = {p, p′} then

1) ϕ(Dp ∩ Dp′) = Γp ⊂ Ξ, the Gauss divisor corresponding to the point ϕη(p) on the
Prym canonical model of C.

2) If furthermore g ≥ 5 and p is a general point of C, then p is a ramification point
of only finitely many g14 ’s, and for any such p,Γp is normal and irreducible.

3) If a component of the branch divisor of the Gauss map were dual to the Prym
canonical curve, then the divisors Γp would be singular in codimension one.

Corollary. If C is a smooth non hyperelliptic curve of genus g ≥ 4, π : C̃ → C any
connected étale double cover, and Bγ is the (closure of the) branch divisor of the Prym
Gauss map γ : Ξsm → |OΞ(Ξ)|∗ ∼= |ωC ⊗ η|, then Bγ does not contain the dual (ϕη(C))∗

of the Prym canonical curve.

Proof of Corollary.
It follows from the theorem, parts 1) and 2), that if C has genus g ≥ 5, and p is general

on C, the Gauss divisor Γp is normal, hence non singular in codimension one, which
contradicts the assumption that Bγ contains ϕη(C)∗ by part 3). So assume C has genus
g = 4. Then by Recillas’ theorem [Re], the Prym variety P (C̃/C) is a Jacobian J(Σ) of a
curve Σ of genus 3, hence by Andreotti’s proof of Torelli [A], the branch divisor Bγ is the
union of the dual of the image in P

2 of Σ and the lines dual to the images of any ramification
points of the canonical map ϕω : Σ → P

2. Since the Prym canonical map ϕη on a non
hyperelliptic curve C is a non constant morphism, the only way Bγ can contain ϕη(C)∗ is
if ϕη(C) = ϕω(Σ). Now ϕω(Σ) has degree either 4 or 2 and ϕη(C) has degree a divisor of
6. Thus we need only consider the case where the Prym canonical map ϕη : C → ∆ ⊂ P

2

is a degree three cover of a plane conic, i.e. is given by the composition of a g13 and the
quadratic Veronese map P

1 → P
2, which implies that ωC ⊗ η = (ϕη)∗(O(1)) = O(2 · g13).

But since ∆ = ϕη(C) = ϕω(Σ), Σ is hyperelliptic of genus three, hence P (C̃/C) = J(Σ)
is a hyperelliptic Jacobian, so by [Mu1, Theorem, part (c), p.344], the genus four curve C
has an effective even theta characteristic. That implies C has only one g13 , and for that
one we have O(2 · g13) = ωC , contradicting the fact deduced above that O(2 · g13) = ωC ⊗ η,
since η is non trivial. This proves the corollary.

Proof of Theorem.
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Recall the conventions from the setup above, in particular g = g(C), g̃ = g(C̃) = 2g−1,
dim(P ) = dim(X) = g − 1, dim(Ξ) = g − 2, dim(Γp) = g − 3.
Steps for the proof of part 1): Assume C is a smooth non hyperelliptic curve of genus
g ≥ 4, π : C̃ → C a connected étale double cover, p any point of C, π−1(p) = {p, p′}, and
ξ is the cohomology class of the Prym theta divisor Ξ. Then:
i) the (g−3) (i.e. highest) dimensional part of the subset ϕ(Dp∩Dp′) ⊂ Ξ with its reduced
scheme structure, has cohomology class ξ2 in H∗(P ), (the class of a Gauss divisor on Ξ);
and
ii) The set ϕ(Dp∩Dp′) is contained in the Gauss divisor Γp = the pullback of the hyperplane
Λp corresponding to the Prym canonical point ϕη(p).
iii) Corollary: ϕ(Dp ∩ Dp′) = Γp, more precisely the set ϕ(Dp ∩ Dp′) is the support of
the reduced Cartier divisor Γp on Ξ.

Proof of i), the cohomology class of the (g − 3) dimensional components of
ϕ(Dp ∩Dp′). We will identify ϕ(Dp ∩Dp′) as a translate of one component of the “special
subvariety” associated in [B] to the linear series |ωC − 2p|. If p is any point of C, since C
is non hyperelliptic, the system |ω − 2p| has at most a base divisor of degree one, hence
contains a reduced divisor. [Indeed, if q is a base point of |ω − 2p|, then h0(ω − 2p− q) =
h0(ω − 2p) hence by Riemann-Roch h0(2p + q) > h0(2p) = 1, so 2p + q defines a g13 on
C. Then for any point r of C, h0(2p+ q + r) cannot equal 3 by Clifford’s theorem (since
C is non hyperelliptic and of genus g ≥ 4), so h0(2p + q + r) = h0(2p + q) = 2, hence by
Riemann-Roch h0(ω − 2p − q − r) < h0(ω − 2p − q), i.e. the base divisor of |ω − 2p| is
only the single point q with multiplicity 1.] Thus the hypotheses of [B, p.359] hold and
π−1(|ωC−2p|) ⊂ C̃(2g−4) consists of two connected reduced components, S0∪S1. We index
them so that S0 + p+ p′ ⊂ X, and S1 + p+ p′ ⊂ X−. By [B, Remarque 1, p.360], S0 has
at most two types of irreducible components, those collapsing by α̃ to lower dimensional
subvarieties, and those on which α̃ is birational. The same argument, i.e. the fact that
|D| ∼= P

0 for a general point D on a component of S0 on which α̃ is birational, proves that
the image cycle α̃∗[S0] is reduced, and is the component in the expected dimension (g−3),
of the cycle of the reduced image variety V0 = α̃(S0), in Beauville’s notation. Moreover,
since deg(ωC − 2p) = 2g − 4 > 2(dim |ωC − 2p|) = 2(g − 3), [B, Thm.1, p.364] shows
that the cohomology class of (the g − 3 dimensional part of) V0 in P (after appropriate
translation), is ξ2. Since Dp ∩ Dp′ is the set of those precanonical divisors on C̃ which
contain the points p and p′, it follows that Dp ∩ Dp′ = p + p′ + S0 as sets, and we give
Dp ∩ Dp′ the scheme structure induced from p + p′ + S0 as well, which is thus reduced.
In particular dim(Dp ∩ Dp′) = dim(S0) = dim(|ωC − 2p)|) = g − 3. (In fact the natural
intersection scheme structure for Dp ∩Dp′ is also reduced, but we do not need this.) Then
the g − 3 dimensional part of ϕ(Dp ∩ Dp′) = α̃(p) + α̃(p′) + V0 also has cohomology class
ξ2 in P . QED for i).

Remark. In particular since the class ξ2 is non zero, ϕ is birational on at least one
component of Dp ∩ Dp′ .

Proof of ii), the inclusion relation ϕ(Dp∩Dp′) ⊂ Γp. Since C is non hyperelliptic, the
linear system |ωC ⊗ η| is base point free by Riemann Roch, and the Prym canonical map
ϕη is a morphism from C to |ωC ⊗ η|∗. We will examine the relation between the Prym
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canonical map of C, and the canonical maps of C and C̃, within the common projective
space |ω̃|∗ = PT0J̃ . The linear space of differentials on C̃ decomposes as a direct sum
of symmetric differentials and skew symmetric ones, corresponding respectively to the
pull backs of usual differentials on C and of Prym differentials on C. Hence these define
complementary subspaces of linear forms on |ω̃|∗ ∼= P

2g−2 whose zero loci define disjoint
subspaces of |ω̃|∗ corresponding respectively to the Prym canonical space |ωC ⊗η|∗ ∼= P

g−2

and to the canonical space |ω|∗ ∼= P
g−1 for C. Since C and C̃ are non hyperelliptic,

they are embedded canonically in |ω|∗ and |ω̃|∗ respectively. Given a point p on C̃, with
corresponding point p = π(p) on C, the Prym canonical point ϕη(p) in |ωC⊗η|∗ is obtained
by projecting p into |ωC ⊗ η|∗ from the center |ω|∗. Since |ω|∗ is the zero locus of the skew
symmetric Prym differentials, which have no base locus on C̃ for C non hyperelliptic, p does
not lie in the center of projection. Thus the join 〈p, |ω|∗〉 is one dimension larger than |ω|∗
and the Prym canonical image ϕη(p) equals the one point intersection 〈p, |ω|∗〉∩ |ωC ⊗η|∗.
Claim 1. [cf. T1, p.957, line 11]: If Lp,p′ is the line in |ω̃|∗ joining p to p′, the Prym
canonical point ϕη(p) = Lp,p′ ∩ |ωC ⊗ η|∗.
Proof. Since the join 〈p, |ω|∗〉 is defined by the skew symmetric differentials vanishing on
p, and since a skew symmetric differential vanishes at p if and only if it vanishes at p′, the
three joins 〈p, |ω|∗〉, 〈p′, |ω|∗〉, and 〈p, p′, |ω|∗〉 are all equal to each other, and thus ϕη(p)
also equals the intersection 〈p, p′, |ω|∗〉 ∩ |ωC ⊗ η|∗. Since we have the inclusion Lp,p′ ⊂
〈p, p′, |ω|∗〉, we also have an inclusion Lp,p′ ∩ |ωC ⊗η|∗ ⊂ 〈p, p′, |ω|∗〉∩ |ωC ⊗η|∗ = {ϕη(p)}.
A symmetric differential also vanishes at p if and only if it vanishes at p′, so the three
joins 〈p, |ω ⊗ η|∗〉, 〈p′, |ω ⊗ η|∗〉, and 〈p, p′, |ω ⊗ η|∗〉 are also all equal to each other. Since
the join 〈p, p′, |ω ⊗ η|∗〉 is thus at most one dimension larger than the space |ω ⊗ η|∗, the
intersection Lp,p′ ∩ |ωC ⊗ η|∗ is non empty and hence equals {ϕη(p)}. QED Claim 1.

Claim 2. If γΞ is the Gauss morphism defined on the smooth points Ξsm ⊂ Ξ, then
ϕ(Dp ∩ Dp′) ∩ Ξsm ⊂ γ−1

Ξ (Λp), where Λp is the hyperplane in |ωC ⊗ η| of Prym canonical
divisors which contain p.

Proof. We must show, for x in Dp∩Dp′ , if ϕ(x) lies in Ξsm, then the hyperplane γΞ(ϕ(x))
contains ϕη(p). We know that ifDx is the canonical divisor on C̃ corresponding to the point
x, then the linear span Dx of this divisor in |ω̃|∗ contains p and p′ hence also the line Lp,p′ .
Moreover the span Dx is one of the rulings on the quadric tangent cone Q̃ϕ(x) to Θ̃ at the
point ϕ(x). Thus we have inclusions ϕη(p) = Lp,p′∩|ω⊗η|∗ ⊂ Dx∩|ω⊗η|∗ ⊂ Q̃ϕ(x)∩|ω⊗η|∗.
However, by [Mu1, p.343] this last intersection is set theoretically just the tangent space
to Ξ at ϕ(x), i.e. is equal to γΞ(ϕ(x)). QED Claim 2.

Corollary. ϕ(Dp ∩ Dp′) ⊂ Γp.

Proof. Since Γp is defined as the closure of γ−1
Ξ (Λp) in Ξ, Claim 2 implies that ϕ(Dp ∩

Dp′)∩Ξsm ⊂ Γp. To see that ϕ(Dp∩Dp′)∩singΞ ⊂ Γp also, we recall that singΞ is contained
in every Gauss divisor on Ξ, hence in particular ϕ(Dp∩Dp′)∩singΞ ⊂ singΞ ⊂ Γp. I.e. recall
the global sections of OΞ(Ξ) on Ξ, are spanned by the partial derivatives ∂ϑ/∂zj of a theta
function for Ξ, (in terms of linear coordinates zj on the universal cover of P), hence all
Gauss divisors contain the base locus singΞ of the partial derivatives. QED for Cor.
and for ii).
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We pause for some interesting remarks before resuming the argument with the proof of
iii) below.

Remark. This argument shows that for any point ϕ(x) of Ξ, smooth or not, if PTCϕ(x)(Θ̃)
denotes the projectivized tangent cone to Θ̃ at ϕ(x) (translated to a hypersurface in PT0J̃ ∼=
|ω̃|∗), then the intersection PTCϕ(x)(Θ̃)∩|ω⊗η|∗ contains the Prym canonical point ϕη(p)
as long as Dp ∩ Dp′ intersects the fiber ϕ−1(ϕ(x)) non-trivially. Since to meet Dp ∩ Dp′

imposes at most two conditions on the fiber ϕ−1(ϕ(x)), any fiber ϕ−1(ϕ(x)) of dimension
≥ 2 meets Dp∩Dp′ for every point p. Hence for any point ϕ(x) of multiplicity ≥ 3 on Θ̃, the
Prym canonical curve ϕη(C) is contained in the intersection PTCϕ(x)(Θ̃)∩ |ω⊗ η|∗. When
furthermore PTCϕ(x)(Θ̃) does not contain the projective tangent space |ω⊗η|∗ to the Prym
variety, then the tangent cone to Ξ at ϕ(x) equals the intersection PTCϕ(x)(Θ̃) ∩ |ω ⊗ η|∗
(as subsets of the Prym canonical space |ω ⊗ η|∗ ∼= P

g−2) and thus contains the Prym
canonical curve. In particular this occurs at so called “stable” double points as we will
observe next.

Definition. [T1, p.960]: Given a double cover C̃/C and associated Prym variety, a point
of Ξ(C̃/C) which is of even multiplicity 4 or more on Θ̃, is called a “stable” singularity of
the Prym theta divisor.

Remarks. 1) The property of being “stable” is not intrinsic to the geometry of Ξ, but
depends on the particular double cover C̃/C giving rise to Ξ [D2, p.546].
2) Stable singularities were originally introduced simply as “case 2” singularities in [Mu1,
p.345].

Corollary. [T1, Lemma 2.3, p.963]: The tangent cone to Ξ(C̃/C) at a stable double point
contains the Prym canonical model of C.

Proof. If ϕ(x) is a stable singularity such that the intersection PTCϕ(x)(Θ̃) ∩ |ω ⊗ η|∗
contains the space |ω⊗η|∗, then the restriction to Ξ of an equation for Θ̃ would begin with
a term of degree at least 6, hence ϕ(x) would be a point of multiplicity ≥ 3 on Ξ. Hence
at a stable double point the intersection PTCϕ(x)(Θ̃) ∩ |ω ⊗ η|∗ is proper, and the result
follows from the remarks just above the previous definition. QED Corollary.

Remarks. 1) The statements of Claim 1 above and of the previous corollary appear in
[T1] as cited, but because the “Correction” [T2] to parts of that paper has appeared, we
include proofs of the relevant statements for completeness.
2) It is an open problem to determine precisely those cases when the intersection of the
tangent quadrics to Ξ at all stable double points of Ξ equals precisely the Prym canonical
curve. Debarre [D1] proved this is true for a general Prym variety of dimension ≥ 8, but
it fails for general Prym varieties of dimension ≤ 6.

Now we resume the argument.

Proof of iii), ϕ(Dp ∩Dp′) = Γp. So far we know the following: ϕ(Dp ∩Dp′) =W1 ∪W2,
whereW1 is a reduced pure (g−3) dimensional (i.e. pure codimension one) closed algebraic
subset of Ξ ⊂ P,W2 is a (possibly empty) closed algebraic set of dimension less than (g−3),
and ϕ(Dp ∩Dp′) ⊂ Γp, where Γp ⊂ Ξ is a Gauss divisor, i.e. an effective Cartier divisor in
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the linear system |OΞ(Ξ)| on Ξ, and the two divisors W1 and Γp have the same homology
class in H∗(P,Z) by i). In other words, we have an inequality W1 ≤ Γp of Weil divisors on
Ξ, andW1 and Γp have the same homology class on P . Then we can immediately conclude
that W1 = Γp by the following lemma.

Lemma 1. Suppose that we have an inequality D1 ≤ D2 of algebraic k-cycles on a
projective variety V , and that D1 and D2 have the same homology class in H∗(V,Z).
Then D1 = D2.

Proof. By embedding V in P
N , we may assume that D1 and D2 are algebraic k-cycles in

P
N satisfying D2 = D1+D′, where D′ is an effective algebraic k-cycle in P

N with homology
class 0 in H2k(PN ,Z). Then D′ must be the zero k-cycle. Otherwise, write D′ = ΣnαWα

(summation over a nonempty finite index set {α}) with nα > 0 and Wα (nonempty,
irreducible) of dimension k in P

N . Then the intersection number of a codimension k-linear
subspace of P

N with the homology class of D′ is Σnαdα, where dα is the degree of Wα in
P

N ; but dα > 0, so Σnαdα > 0, and the homology class of D′ is nonzero, contradiction.
QED Lemma 1.

Now iii) follows since W1 = Γp by Lemma 1, and ϕ(Dp ∩ Dp′) ⊂ Γp by ii), hence as sets
ϕ(Dp ∩ Dp′) ⊂ Γp = W1 ⊂ W1 ∪W2 = ϕ(Dp ∩ Dp′), thus ϕ(Dp ∩ Dp′) = Γp as sets. This
proves part 1) of the theorem.

Proof of Theorem, part 2): Normality of Γp = ϕ(Dp ∩Dp′). First we prove Dp ∩Dp′

is normal and irreducible.

Lemma 2. If C is non hyperelliptic of genus g ≥ 5, and p is a ramification point of only
a finite number of g14 ’s on C, then (Dp ∩ Dp′) is normal and irreducible.

Proof. Since Dp ∩ Dp′ = p + p′ + S0, it suffices to prove S0 is normal and irreducible.
Thus it suffices to verify the hypotheses of [B, Cor., Prop. 3, p.365], i.e. that the linear
system |ωC(−2p)| is base point free and defines a birational morphism with at most one
ramification point in each fiber, and no ramification point of index ≥ 4. Our hypothesis
implies that p is not a ramification point of any g13 on C, hence for every point q, h0(2p+q) =
1 = h0(2p), so h0(ωC(−2p)) > h0(ωC(−2p − q)), and the system |ωC(−2p)| is base point
free. In order for a fiber of the morphism associated to |ωC(−2p)| to dominate a divisor
q+r, we must have h0(2p+q+r) = 2, so that 2p+q+r is one of the finitely many divisors
of g14 ’s which dominate 2p. Hence for every point q not in the support of one of these
divisors, q is a non singular, singleton fiber of the morphism, which is thus birational onto
its image. On the other hand if q+r+s+t is any divisor of degree 4 which is dominated by
the fiber containing q, then we must have h0(ωC(−2p− q)) = h0(ωC(−2p− q− r− s− t)),
hence h0(2p+ q + r + s+ t) = 4. Since the linear system |2p+ q + r + s+ t| is thus a g36 ,
and C is non hyperelliptic with g(C) ≥ 5, this contradicts Clifford’s theorem. Thus there
cannot be more than one ramification point in each fiber, and no ramification point can
have index ≥ 4. QED Lemma 2.

Next we check that the hypotheses of Lemma 2 hold at a general point of the curves
under consideration.
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Lemma 3. If C is non hyperelliptic of genus g ≥ 5, then at most a finite number of points
p of C are ramification points of infinitely many g14 ’s.

Proof. By Martens’ theorem, [ACGH, p.191], the variety W 1
4 ⊂ Pic4(C) parametrizing

all line bundles L defining g14 ’s on C is of dimension ≤ 1. Consider the incidence variety
I ⊂ C×W 1

4 consisting of pairs (p, L) such that p is a ramification point of L, and consider
the projection maps I → W 1

4 and I → C. Since each g14 has at most a finite number of
ramification points the map I → W 1

4 is finite, so dim(I) ≤ 1. Then the map I → C has
infinite fibers over at most a finite number of points of C, i.e. at most a finite number of
points of C are ramification points of infinitely many g14 ’s, as claimed. QED Lemma 3.

Next we prove normality and irreducibility of the image ϕ(Dp ∩ Dp′).

Lemma 4. If C is non hyperelliptic, g(C) ≥ 5, and (Dp ∩Dp′) is normal and irreducible,
then ϕ(Dp ∩ Dp′) = Γp ⊂ Ξ is also normal and irreducible.

Proof. ϕ(Dp ∩ Dp′) is irreducible since Dp ∩ Dp′ is. For normality, we first show ϕ is
an injective immersion except on a subset of Dp ∩ Dp′ whose image has codimension at
least 2 in ϕ(Dp ∩ Dp′). Consider the maps ϕ : Dp → Ξ, and ϕ : (Dp ∩ Dp′) → Γp ⊂ Ξ.
First throw out the singular points Z1 = sing(Ξ), from Ξ, and throw out also their inverse
images ϕ−1(Z1) = W1 from Dp ∩ Dp′ . Since Ξ is the Prym theta divisor of a connected
étale double cover of smooth curves, and C is non hyperelliptic of genus g ≥ 5, Mumford’s
theorem [Mu1, p.344, part d] implies Z1 has codimension ≥ 3 in Ξ, hence ϕ(W1) ⊂ Z1 has
codimension ≥ 2 in the divisor Γp ⊂ Ξ. Then for all D in (Dp∩Dp′)−W1, ϕ(D) is a smooth
point of Ξ, and ϕ : X → Ξ is a P

1 bundle over a neighborhood of ϕ(D). Then we throw
out of Ξ also the set Z2 of divisor classes with p and p′ both as base points, and throw
out from Dp ∩ Dp′ the inverse image set ϕ−1(Z2) = W2. Since ϕ : W2 → ϕ(W2) = Z2 has
positive dimensional fibers, and ϕ : Dp ∩ Dp′ → Γp is birational by the remark following
the proof of Step (i), part 1 of the theorem, W2 ⊂ (Dp ∩ Dp′) is a proper exceptional
subvariety of codimension ≥ 1, and hence ϕ(W2) ⊂ Γp has codimension ≥ 2. Then for D
in (Dp ∩Dp′)−W1 −W2, either p or p′ is not a base point for the pencil |D|, hence either
the map ϕ : Dp → Ξ or the map ϕ : Dp′ → Ξ is, near D, a bijective map to a smooth
variety, hence a local isomorphism by Zariski’s Main Theorem. Thus, near such a point D
the map ϕ : Dp ∩Dp′ → Γp is the restriction of a local isomorphism, hence ϕ is immersive
on (Dp ∩ Dp′) −W1 −W2. Since the fibers of ϕ : Dp ∩ Dp′ → Ξ are projective spaces, ϕ
immersive implies ϕ is also injective on (Dp ∩Dp′)−W1 −W2. Thus ϕ : Dp ∩Dp′ → Γp is
an injective immersion on the open set (Dp ∩Dp′)−W1 −W2, and the image ϕ(W1 ∪W2)
of the complement has codimension at least 2 in ϕ(Dp ∩ Dp′) = Γp. Then we throw out
the subset W3 = sing(Dp ∩ Dp′) ⊂ (Dp ∩ Dp′). Since (Dp ∩ Dp′) is assumed normal, W3

has codimension at least 2 in (Dp ∩ Dp′), hence ϕ(W3) has codimension at least 2 in Γp.
Then (Dp ∩ Dp′) − W1 − W2 − W3 is smooth and maps isomorphically to its image by
ϕ, consequently the image of this set is a smooth subset of Γp whose complement has
codimension at least 2. Since Γp is a divisor in the Gauss linear system, it is a Cartier
divisor, hence a local complete intersection in P , and since it has been shown to be smooth
in codimension one, it is normal. QED Lemma 4.

We have shown that if p is a general point of C and C is non hyperelliptic of genus
g ≥ 5, then p is a ramification divisor of only finitely many g14 ’s on C, and that for any
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such p, ϕ(Dp ∩Dp′) = Γp is normal and irreducible. This completes the proof of part
2) of the theorem.

Remarks. We can be more precise about when Γp is normal. If C has only finitely many
g14 ’s then the previous lemmas imply Γp is normal for every p on C. In particular by [Mu1,
Theorem, p.348] if g(C) ≥ 6 and C is neither trigonal nor bi-elliptic (i.e. not a double
cover of an elliptic curve) nor a plane quintic, then C has only finitely many g14 ’s. If C is
a plane quintic, all g14 ’s are of form |g25 − q| for some point q on C. [Since the net of conics
containing three non collinear points of P

2 have no other base point, a net of conics has
four base points only if the points are collinear. By the adjunction formula and Riemann
Roch, thus every divisor of a g14 on a plane quintic consists of four collinear points.] Hence
a point p can only be a ramification point of those series |g25 − q| such that the tangent
line to C at p contains q, a finite set of g14 ’s, hence again Γp is normal for every point p of
a plane quintic C. If C is bi-elliptic of genus g ≥ 6, then by [R, Prop. 2.5, Cor. 2.6, pp.
234-5], there is a unique double cover C → E of an elliptic curve E, and every g14 on C is
pulled back from a g12 on E, [cf. also S, p.129]. Hence if p is not a ramification point of the
double cover C → E, then p is a ramification point of only finitely many g14 ’s, and hence
Γp is normal. If C is trigonal and has a base point free g14 , then the two series g13 and g14
give a birational map from C to a curve of type (3,4) on P

1×P
1, hence of arithmetic genus

≤ 6. Hence if C is trigonal of genus g ≥ 7, then every g14 is of form q + g13 , for the unique
g13 on C, hence if p is not a ramification point of the unique g13 , then p is a ramification
point of only the one g14 = p + g13 . Hence Γp is normal if p is not a ramification point
of the g13 . If g(C) = 4, and Γp is singular, Welters’ singularity criterion [cf. B, Prop. 3,
p.365] implies that ωC = |2p + 2q + 2r| for some points q, r on C, i.e. O(p + q + r) is an
effective theta characteristic on C. Hence if C has no effective even theta characteristic,
and p is not in the support of any of the finitely many odd theta characteristics of C, then
Γp is normal (i.e. a smooth curve). However if C has an effective even theta characteristic,
there is a double cover for which the Prym variety is a hyperelliptic Jacobian, hence Ξ is
singular. Since all Gauss divisors on Ξ contain the singular point, hence all Gauss divisors
Γ on Ξ, including Γp for every p on C, are singular. Since here every Γ is a curve, all Gauss
divisors are non normal.

Proof of 3), singularities of “branch” Gauss divisors. Let (A,Θ) be a d-dimensional
p.p.a.v. with (reduced and) irreducible theta divisor, let Θsm be the smooth points of Θ,
and let γ : Θsm → P

∗T0A ∼= (Pd−1)∗ be the Gauss map, i.e. the map such that γ(p) = TpΘ,
translated to a hyperplane in T0A. Since Θ is irreducible and ample, the Gauss map is
generically finite and dominant [K, Cor. 9.11, p.85], hence the differential of γ is generically
invertible, and the locus where it is non invertible is defined locally by the determinant
of the differential, hence has pure codimension one in Θsm. The ramification locus of γ is
the subset R of Θsm where the differential of γ is not invertible (as a linear map of d− 1
dimensional linear spaces) and the branch divisor B is the codimension one part of the
closure of the image of R in P

∗T0A.
Next we observe that tangent hyperplanes to the branch divisor B yield singular mem-

bers in the Gauss linear system on Θsm; (note: all Gauss divisors on Θ are singular at all
points of singΘ).
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Lemma 5. Let S be an irreducible component of the branch divisor of γ, y a smooth
point of S, H the tangent hyperplane to S at y, and D = γ−1(H) the divisor in the Gauss
linear system associated to H. If x is a smooth point of Θ such that γ(x) = y and the
image of the tangent space TxΘ under the differential γ′(x) is contained in (the tangent
space at y to) H, then D is singular at x.

Proof. If λ is a local equation for H near y, and (λ ◦ γ) the composed local equation for
D near x, then the linear term of (λ ◦ γ) is zero at x since it defines the linear functional
λ′(y) ◦ γ′(x), which is zero by hypothesis. QED Lemma 5.

Proposition. Let γ : Θsm → (Pd−1)∗ be the Gauss map on an irreducible theta divisor of
a d-dimensional principally polarized abelian variety, d ≥ 3. If S ⊂ (Pd−1)∗ is a component
of the branch divisor of γ whose dual variety S∗ is a curve, if H is a tangent hyperplane
to S at a general point of S, and D = γ−1(H) is the corresponding Gauss divisor, then D
is singular in codimension one.

Proof. After resolving the map γ to make it regular, let R be the closure in the normalized
graph of γ, of the set {smooth points x in Θsm at which γ′(x) is not invertible}. There
must be a component R1 of R such that γ(R1) = S, and since R1 and S are irreducible
of the same dimension the induced map γ1 : R1 → S is generically finite and surjective.
We remove from S the images of all added points, i.e. of all points of R1 − Θsm, and
remove also from S all singular points of S, and all images of singular points of R1. We
then remove from R1 all preimages of points removed ¿from S, leaving a surjective map
γ2 : U → V from an open smooth subset U ⊂ R1, onto an open smooth subset V ⊂ S.
By [Mu2, p.42], every point y of V outside a proper Zariski closed subset has the property
that at every point x of γ−1

2 (y) in U , the differential γ′2(x) has image equal to the tangent
space TyS. Since for x in U ⊂ R, dimy S ≥ rankxγ

′(x), it follows that the image of γ′(x)
also lies in TyS. If H is the tangent hyperplane to S at y, it follows that the hypotheses of
the previous lemma hold and hence D = γ−1(H) is singular at x. Since we are assuming
S∗ is a curve, for each given tangent hyperplane H to S, the set of points y of S such
that H = TyS, has codimension one in S. Thus for a general H, the set of points x at
which γ−1(H) = D is singular, has codimension one in D. QED Proposition. This
completes the proof of the theorem.

Remarks on the hyperelliptic case. Given a connected étale double cover π : C̃ → C,
where g(C) ≥ 4 and C is hyperelliptic but C̃ is non hyperelliptic, the Prym variety P (C̃/C)
is a product of two hyperelliptic Jacobians [Mu1, p.346], hence Ξ(C̃/C) is reducible, and
the rational Gauss map γΞ is the disjoint union of the Gauss maps on the two components
of Ξ. The two images lie in disjoint linear subspaces of PT0P

∗, neither of which can contain
the dual of the Prym canonical curve, since the Prym canonical map is a morphism to a
spanning curve. If C̃ and C are both hyperelliptic, then using [Mu1, p.346], the double
cover π corresponds to a square trivial line bundle η = p − q, where p, q are Weierstrass
points on C. Then the rational Prym canonical map ϕη : C ��� P

g−2 is not a morphism
but has base divisor p+q, the Prym variety P (C̃/C) ∼= J(Σ) is isomorphic to the Jacobian
of a hyperelliptic curve Σ of genus g− 1, and the image of the rational map ϕη is the same
as the image of the canonical map ϕω : Σ → P

g−2, i.e. is the rational normal curve in P
g−2

of degree g−2. Consequently by Andreotti’s proof of Torelli for the hyperelliptic Jacobian
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J(Σ), in this case alone the branch divisor of the Gauss map on Ξ(C̃/C) = Θ(Σ) contains
the dual of the image curve ϕη(C).

Remarks on the relation with Andreotti’s result. There is one subtle difference
between our result and an exact analog of Andreotti’s: in his paper [A] Andreotti works
with the branch divisor of the normalized Nash blowup N(γ) of the Gauss map γ on a
Jacobian theta divisor Θ [A p.820, ACGH p.246], whereas we work with the branch divisor
of the actual Gauss map on smooth points, as in [GH, p.360] which could conceivably be
smaller. I.e. Andreotti first extends the rational Gauss map to a morphism on the Nash
blowup of Θ, then takes the normalization, considers the locus of those points in the target
over which the fiber is a finite set of exactly degree(γ) distinct points, and finally takes
the codimension one part of the complement of this locus as the branch divisor. Thus the
branch divisor of γ consists of the union of only those components of the branch divisor of
N(γ) which can be detected from the behavior of the derivative of γ at smooth points of
Θ. For Prym varieties, we do not know at present whether the dual of the Prym canonical
curve can occur as a component of the possibly larger branch divisor of N(γ). However,
for general Prym varieties of dimensions 4 and 5, the theta divisor is smooth, the Gauss
map is a morphism, so the Nash blowup is the identity map, and the two branch loci are
the same. Hence our results do imply that for all classical Prym varieties of dimensions 4
and 5 with smooth theta divisors, the dual of the Prym canonical curve is not a component
of the branch divisor of either γ or N(γ). As we have mentioned, for Jacobians the branch
divisors of both γ and N(γ) are equal, but in some examples they can differ. In particular,
Varley has shown (unpublished) that for the theta divisor of the 4 dimensional abelian
variety studied in [V], the branch divisor of γ is empty, while that of N(γ) is the union
of the quadrics dual to the tangent cones of Θ at the double points. The unpublished
result of Adams, McCrory, Shifrin, and Varley, that for a general 4 dimensional principally
polarized abelian variety, both the branch divisor of the Gauss map and its dual, are
irreducible surfaces of degree 60 in P

3, was mentioned in the talk [AMSV1] and is based
on results published in [AMSV2].

Open questions: For the theta divisor Θ of a Jacobian variety of a curve C of genus
g, precise information about the Gauss map follows ¿from Riemann’s theorem that Θ =
{ξ ∈ Picg−1(C) : h0(ξ) ≥ 1} and the corollary that the Abel map α : C(g−1) → Θ gives
a birational resolution of Θ. I.e. points p of canonical space |ωC |∗ parametrize Gauss
divisors on Θ, where to p corresponds the Abel image in Θ of those D = x1 + ... + xg−1

in C(g−1) such that p lies on a hyperplane containing D in |ωC |∗. Of special interest are
those Gauss divisors corresponding to points p of the canonical model of C in |ωC |∗, the
only one parameter family of reducible Gauss divisors on Θ(C) for C non hyperelliptic and
g ≥ 4. I.e. if C(g−1) ⊃ Dp ={those D in C(g−1) which contain p}, then the Gauss divisor
corresponding to p is the reducible, hence non normal, hypersurface α(Dp) ∪ (α(Dp))′,
where (α(Dp))′ denotes the image of the set α(Dp) under the involution L �→ (ωC −L) on
Θ. (To see this is the only infinite family of reducible Gauss divisors on non hyperelliptic
Jacobian theta divisors for g ≥ 4, note that if p is a point of |ωC |∗ not on Cω then after
projection ¿from p, the Gauss divisor defined by p is parametrized by the family of those
divisors of degree g−1 on the projected curve that lie in hyperplane sections, an irreducible
family by the monodromy lemma p.111 of [ACGH], provided the projection is birational.
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If the projection is not birational and g ≥ 5, it must be of degree 2 onto a curve of
degree g-1 in P

g−2, thus an elliptic curve, and there are only finitely many such bielliptic
projections of C. Or if g = 4 there can also be one projection of degree 3 onto a plane conic.
Cf. [ACGH, Exercise batch E, pp.268-9].) Andreotti observed further that the canonical
curve parametrizing reducible Gauss divisors is dual to the branch divisor of the Gauss
map for a Jacobian. Hence the following questions arise for the Gauss map on the theta
divisor of any indecomposable principally polarized abelian variety (A,Θ): i) Is there a
non degenerate (i.e. irreducible, spanning) curve of reducible Gauss divisors? ii) Is there a
non degenerate curve of non normal Gauss divisors? iii) Is the branch divisor dual to a non
degenerate curve? For Jacobians we have seen that the canonical curve of Gauss divisors
answers yes to each of these. Hence, if g = dim(A), we might even restrict the curve in
these questions to be of genus = g, and degree = 2g− 2. We note that property i) implies
ii) since Gauss divisors are connected on abelian varieties of dimension ≥ 3, and iii) implies
ii) by the previous proposition. It is natural to ask whether these properties characterize
Jacobians. If Ag is the moduli space of p.p.a.v.’s (A,Θ) with dim(A) = g, recall the
Andreotti Mayer locus Ag ⊃ Ng−4 ={those (A,Θ) in Ag such that dim(singΘ) ≥ g − 4}.
Beauville and Debarre prove in [BD1] that if |OΘ(Θ)| contains even one reducible Gauss
divisor, then (A,Θ) belongs either to Ng−4 or to another subvariety Eg ={(A,Θ) such that
there is an elliptic curve E ⊂ A with E · Θ = 2}. In particular the locus Jg of Jacobians
is an irreducible component of those (A,Θ) such that |OΘ(Θ)| contains a reducible Gauss
divisor. They also give a way to produce, on certain p.p.a.v.’s isogenous to products (which
constitute most known examples of p.p.a.v.’s in Ng−4), degenerate families of reducible
Gauss divisors, and conclude that the property of having a single reducible Gauss divisor
seems not much stronger than that of belonging to Ng−4. It is not apparent to us however
that any of their examples has a non degenerate curve of reducible Gauss divisors, hence
property i) above may well be stronger, hence more characteristic of Jacobians. As to the
existence of non normal Gauss divisors, the result stated in [BD2, Remarque 1, p.619] (that
a p.p.a.v. with a non normal Gauss divisor is either isogenous to a product or belongs
to Ng−4) seems to imply also (since a general Jacobian is “simple”) that Jacobians are
an irreducible component of the set of those p.p.a.v.’s having a single non normal Gauss
divisor. In particular Jacobians appear to be a component of the set of p.p.a.v.’s satisfying
any one of the three properties in questions i) - iii) above, but we do not know of any non
Jacobians satisfying any of them.
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