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Chapter 0. Summary of Contents 
Mittag Leffler problems 
 We view the classical Riemann Roch theorem as a non planar version of the Mittag Leffler 
theorem, i.e. as a criterion for recognizing which configurations of principal parts can occur for a 
global meromorphic function on a compact Riemann surface.  For example, the complex 
projective line P1 = C !  {∞}, the one point compactification of the complex numbers, is a 
compact Riemann surface of genus zero.  Any configuration of principal parts can occur for a 
global meromorphic function on P1, and all such functions are just rational functions of z.   
 On a compact Riemann surface of genus one, i.e. a "torus", hence a quotient C/L of C by a 
lattice L, there is a residue condition that must be fulfilled.   If f is a global meromorphic function 
on C/L and F is the L - periodic function on C obtained by composition C-->C/L, then the 
differential form F(z)dz must have residue sum zero in every period parallelogram for the lattice 
L.  This necessary condition, properly stated, is also sufficient for existence of the function.   
 In the case of surfaces of genus g, such as the one point compactification of the plane 
curve {y2 = f(x), where f is a square free complex polynomial of degree 2g+1} there are g 
corresponding residue conditions.  Note this surface may be viewed as a branched cover of degree 
2 over P1 by projecting on the x coordinate (and ∞ is always a branch point).  Riemann's point of 
view was in the reverse order, since he considered as the basic object of study, a compact, 
connected branched cover of the projective line, and then proved such a manifold is a plane 
algebraic curve, possibly acquiring singular points from the plane mapping. 
 We discuss the classical proof of the theorem of Riemann and Roch, as well as the 
statement and some methods of proof for generalized versions in higher dimensions.  We also 
present a few of the many applications of RR for curves and surfaces. 
 
Riemann’s approach 
 The problem Riemann set himself was, given a distinct set of points on a surface of genus 
g branched over P1, to calculate the dimension of the space of meromorphic functions with poles 
only in that that set, and at worst simple poles.  It is now stated more generally and more 
formally using the concept of "divisors", which are essentially zeroes and poles with 
multiplicities.  A "divisor" is a finite formal linear combination of points, with integer coefficients 
D = ∑nipi, on a smooth projective curve X.  Then every meromorphic function f has an 
associated divisor div(f) consisting of the zeroes of f minus the poles of f, each counted with its 
appropriate multiplicity.  The degree of a divisor ∑nipi, is the sum of the integer coefficients, and 
for every meromorphic function f on a compact Riemann surface, the basic fact is that the degree 
of div(f) is zero, i.e. the number of poles and zeroes is the same, counted properly.  For example 
a complex polynomial of degree n, has n finite zeroes, but also has a pole of degree n at ∞.   
 If L(D) is the space of meromorphic functions whose divisor bounded below by -D, i.e. 
such that div(f) + D ≥ 0, in the sense that all coefficients of div(f) are ≥ the corresponding 
coefficients of -D,  then the RR problem is to compute the analytic invariant dimL(D). 
 Riemann’s approach was to solve first the analogous but simpler Mittag Leffler problem 
for meromorphic differentials, and then apply the usual criterion for exactness of differentials to 
pass to the case of functions.  He always assumed for argument's sake, the distinctness of his 
points, i.e. the simplicity of his poles, but was well aware of the general case and remarked that it 
was easily dealt with by taking additional derivatives.  
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The cohomological approach   
 The modern approach to Riemann Roch for curves is to define analytic cohomology 
groups H0(D), H1(D), such that H0(D) and L(D) are isomorphic, and prove that "chi(X,D)" = 
dimH0(D) - dimH1(D) [the analytic euler characteristic] is a topological invariant.  Then the 
problem has two stages, (i) (Hirzebruch Riemann Roch or HRR) prove chi(D) = d+1-g, where d 
is the degree of D and g is the topological genus of X;  this is essentially Riemann's theorem.  (ii) 
(Serre Duality or SD) prove that H1(D) is isomorphic to the dual space L(K-D)*, where K is the 
divisor of a differential form on X.  This is Roch's contribution to Riemann's theorem. 
Together these give the classical RRT: dimL(D) - dimL(K-D) = d+1-g.   
 More precisely, if D is a positive divisor of distinct points, i.e. one with all coefficients 
equal to +1, Riemann essentially proved that L(D)/C is the kernel of a linear map from Cd -->Cg, 
hence d-g ≤ dimL(D)-1 ≤ d, and also that dimL(K) = g.  Roch later proved the codimension of the 
image of Riemann's map was dimL(K-D), hence that dimL(D)-1= d-(g - dimL(K-D)), where by 
Riemann's computation L(K) = g, then dimL(K-D) ≤ g.   
 
The classical argument via residues 
 We give an account below of the classical proof of RR for curves, assuming Riemann’s 
existence and uniqueness results for holomorphic and meromorphic differentials of second kind.  
The only other tool is classical residue calculus of differential forms, i.e. Stokes theorem.  The 
proof in section III is the one originally given more briefly by Roch. 
 
A recursive computation of the arithmetic genus of curves 
 After presenting Riemann's and Roch's arguments, we give a proof of stage (i) in the 
modern approach to the HRR for curves as follows:  We use the simplest results of sheaf theory 
to prove that chi(D) - chi(O) = deg(D), by induction on deg(D).  Then we prove chi(O) = 1-g, by 
immersing X in the plane as a curve of degree n with only nodes, and proving the formula for 
chi(O) by induction on n.  The essential fact is that chi(O) depends only on the degree n, and can 
be defined for a reducible curve D+E with transverse components D, E , satisfying the inductive 
axiom chi(D+E) = chi(D)+chi(E)-chi(D.E), where chi(D.E) = deg(D.E).  The formula 1-g has the 
same properties.  This lets us go from knowing the equation chi(O) = 1-g for D and E separately, 
to deducing it for a smooth deformation of their union.   The argument in section IV was inspired 
by the introduction of Fulton’s paper [Am.J.Math, 101(1979)]. 
 
 Most modern proofs of HRR in higher dimensions seem to be of this type: they establish 
axiomatic properties which characterize an invariant uniquely, then show that both chi(D) and an 
appropriate topological expression in the chern classes of D satisfy the axioms.  The first such 
argument may be due to Washnitzer, although his published proof omitted part of the 
verification, later supplied by Fulton. 
 
Arithmetic genus of smooth projective surfaces in P3  
 To illustrate this method in higher dimensions we give a similar inductive argument in 
section IV for HRR on a smooth complex surface S which can be embedded in P3.  Here a divisor 
is a linear combination of irreducible curves on the surface.  It is possible to define the 
intersection of a curve in D "with itself" obtaining at least an equivalence class of divisors on that 
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curve, and a self intersectiion number, and then to do induction by appealing to the RRT on the 
curve. 
 
 Sheaf theory reduces the calculation of the difference chi(D) -chi(O) to the known HRR 
formula on the lower dimensional variety D, as follows: chi(D)-chi(O) = chi(O(D)|D) = (D.D) + 
1-g(D), where g(D) is the genus of the curve D.  Then the adjunction formula relating the 
canonical divisors of S and D, gives 1-g(D) = -(1/2)[(K+D).D], hence chi(D)-chi(O) = 
(1/2)([D.(D-K)].  To get a formula for chi(D), it suffices to calculate chi(O) for the surface S. 
 
   Knowing in advance the answer to be chi(O) = (1/12)(K2 + e(S)), where K is a 
“canonical” divisor of a differential 2 form, K2 is the self intersection number of K, and e is the 
topological euler characteristic, we can check the validity of this equation for chi(O) by induction 
on the degree of the embedded surface S in P3.  Again chi(O) depends only on deg(S) = n, and 
satisfies the same inductive rule as before for transverse unions, chi(Y+Z) = chi(Y)+chi(Z)-
chi(Y.Z).  Since chi(P2) = 1, we get chi(Sn,O) = chi(Sn-1,O) + 1 - chi(Cn-1,O) where Cn-1 is a 
smooth plane curve of degree n-1.  This determines chi(Sn,O) uniquely. 
   
 Then the adjunction formula for surfaces in P3 and a Lefschetz pencil on Sn give 
(1/12)(e(Sn) + K2) = n(n2 - 6n + 11)/6.  Checking that this formula satisfies the same inductive 
properties as does chi(O), gives the result, and hence the HRR for the smooth hypersurface Sn. 
 
 For stage (ii) of the modern proof of RRT for curves (the Serre duality result that 
H1(D)* is isomorphic to L(K-D)), we sketch Serre’s argument using the algebraic version of the 
classical residue pairing.  He lumps the relevant spaces H1(D)* for all D, into one large union, 
Weil’s space of "adeles", which is infinite dimensional over the base field k, but one dimensional 
as a vector space over the field k(X) of meromorphic functions on the curve X.  He then shows 
this union is isomorphic to the analogous one dimensional union of the spaces L(K-D) of 
meromorphic differentials for all D.  It is then easy to check this isomorphism restricts for each 
D to the desired isomorphism H1(D)* = L(K-D). 
 
Kodaira vanishing theorems 
 In higher dimensions to go from HRR to a computation of dimL(D) even in special cases, 
requires more than Serre’s duality.  I.e. Serre duality only transforms Hdim(X) into an H0, and 
we want our formula entirely in terms of H0's when possible.  Hence we appeal to  Kodaira 
vanishing which gives a sufficient criterion for the higher cohomology groups 
H1(D),....,Hdim(X)(D) to vanish, and which holds for all sufficiently "positive" divisors.  We 
state a modern version of this result apparently due to Rananujam, Mumford, Kawamata and 
Viehweg, but we do not give any proof.   
 The proof of the original vanishing theorem in the book of Kodaira and Morrow involves 
lengthy calculations in differential geometry and analysis to establish an inequality of “Bochner 
type” for curvature operators on harmonic forms on complex manifolds from which the result is 
easily deduced by Hodge theory.  A short account of a more recent proof by Kolla’r can be found 
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at the end of volume 3 of the introductory series by Ueno on algebraic geometry and scheme 
theory, (AMS translations).  The Kodaira vanishing theorem is available only in characteristic 
zero, i.e. it is false in positive characteristic. 
 
Computations using the Todd genus 
 Since the arguments we gave for HRR in dimensions 1 and 2 required knowing the 
topological formula for chi(O) in advance, we recall finally the formalism of Hirzebruch which 
shows in principle how to write down such formulas in all dimensions in terms of “chern roots”. 
The problem of giving the formulas in terms of chern classes is thus reduced to the elementary 
but tedious problem of expressing a given symmetric function in terms of elementary symmetric 
functions.  Finally we compute the invariants of a cubic threefold, noting they agree with those of 
P3, and discuss briefly how Clemens and Griffiths showed nonetheless a smooth cubic threefold 
is not even birational to P3.  Grothendieck’s relative version of the HRR for a map of two 
varieties is not discussed here; for this see Borel-Serre, or Fulton. 
 
Caveat 
 The discussion below focuses on what RR says and its proof, not much on what it is 
good for.  The RRT is a calculating tool par excellence, and has countless applications.  A 
standard application is that the complex structure on a Riemann surface of genus g always occurs 
in exactly one of two ways, either as a double cover of P1 with 2g+2 branch points, or as a 
smooth spanning curve of degree 2g-2 in Pg-1.  As Griffiths says, the study of curves does not 
really get going until after the RRT is available.  Almost the entire book by ACGH on geometry 
of algebraic curves assumes RRT for curves and other basic tools, and applies them extensively.  
Beauville’s beautiful book on algebraic surfaces shows how to classify surfaces not having too 
many holomorphic “multi” 2 forms, with RRT for curves and surfaces as a primary tool.  Most 
people think using the RRT is more important than proving it, but for those curious about the 
statement and methods of proof, I hope the present discussion is useful.  As a sample of its 
applications, there are a few exercises using RRT for curves at the end.   
 
Acknowledgments:  I am not an expert on Riemann Roch but I have used it for years on curves, 
and have always been fascinated by it.  These notes are those of an amateur in the topic, intended 
for students or other interested learners.  Any insights below come from reading or browsing first 
of all in Riemann’s works, then works by Siegel, Weyl, Gunning, Griffiths, Harris, Mumford, 
Walker, Serre, Fulton, MacDonald, Beauville, Kempf, Hirzebruch, Hartshorne, Atiyah, Bott- Tu, 
Washnitzer, and others, and from discussing the ideas with my friends and colleagues, especially 
Robert Varley.   
 
Suggestions for reading 
 One of my favorite accounts of algebraic curves over the complex numbers, including a 
proof and applications of RRT, is Griffiths’ China lecture notes on algebraic curves.  The 
statement of RRT as a residue criterion for existence of meromorphic functions, is very clear in 
Mumford’s yellow book on complex projective varieties and on pages 13-15 of Arbarello, 
Cornalba, Griffiths, Harris wonderful book on geometry of complex curves.  The classical proof 
of Roch given below, is very clearly explained on pages 244-245 of Grifiths Harris.   
 At some point one should read Riemann's own account, as well as Roch's.  There is now 
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an English translation of Riemann's works from Kendrick Press, where the relevant arguments 
appear on pages 98-99.  Roch's paper is in Crelle's Journal, vol 64 (1865) in very easy German.  I 
do not recommend the English version in the volume of selections on Classical analysis, ed. by 
Garrett Birkhoff, from Harvard University Press.  The articles are edited there rather 
unfortunately, essential remarks are removed, and misprints and errors are introduced so that 
Roch's argument is almost unintelligible, and Riemann's Brill - Noether estimate is transcribed 
incorrectly. 
 I recommend Fulton’s paper on the arithmetic genus for the axioms characterizing chi(O), 
and his book Intersection Theory for a wealth of beautiful material including a short exposition of 
Grothendieck’s version of HRR.  Kempf’s lectures on Abelian integrals from the University 
Autonoma in Mexico City are very clear in explaining the meaning and variational behavior of 
cohomology of line bundles on curves.  I like Hirzebruch for sheaf cohomology on manifolds, 
although FAC is of course also outstanding.  Kempf's little book on Algebraic Varieties is also 
excellent and amazingly succint for cohomology and a self contained proof of RRT and Serre 
duality (for vector bundles on curves).  Beauville’s book is a gem for Enriques’ classification of 
surfaces.  Serre’s Groupes Algebrique... is a classic for curves in the abstract algebraic case, even 
irreducible singular ones, and Rick Miranda's book is a fine introduction to complex curves aimed 
at undergraduates which also adapts Serre's proof of RR.  For traditional treatments that follow 
exactly the lines of Riemann's own work, but with the analysis and topology filled in, it is very 
instructive to consult Siegel's 3 volume work, and Weyl's classic The concept of a Riemann 
surface.  Both these books have useful bibliographies including 19th century works. 
 
 
Chapter I. Statement of RR for curves, and applications 
 
 Riemann's point of view was that functions are best understood by studying their largest 
domain of definition, a branched cover of the plane, and their singularities on that domain, hence 
meromorphic functions should be studied by examining their zeroes and poles on the full 
Riemann surface on which they exist.  From this perspective, the fundamental existence question 
for meromorphic functions on a given Riemann surface is the "Mittag Leffler" problem: to 
determine which configurations of polar singularities, or of zeroes and poles, can arise from a 
global meromorphic function. 
  
The Mittag Leffler problem in an open planar domain  
 If we restrict the domain of the functions to open subsets of the plane, as in the original 
Mittag Leffler problem, then we can assign polar behavior arbitrarily and always find a 
meromorphic function having this behavior.  I.e. given any discrete set of points {pi}, and any 
corresponding collection of polynomials Pi in (z-pi)-1 (without constant terms), there exists a 
globally defined meromorphic function f in the planar domain having as poles exactly the given 
set of points and having precisely the assigned polynomials as "principal parts" at those points, 
i.e. such that f - ∑Pi is holomorphic in the entire plane.  
  
 The uniqueness question is much more complicated, since two functions with the same 
polar behavior differ by an entire function, and there is an enormous collection of entire functions 
defined on an open subset of the plane.  In particular the space of functions with prescribed polar 
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behavior is infinite dimensional. 
 
The Mittag Leffler problem on a compact Riemann surface 
 When the Riemann surface under consideration is no longer planar, the global topology of 
the surface begins to play a role.   On a compact (connected) surface the uniqueness problem is 
easy, since the only entire functions are constants, so the interesting question is existence, and 
now there can be certain types of polar behavior which cannot occur.  Further, the fact that the 
space of entire functions on a compact surface is finite dimensional implies the space of 
meromorphic functions with given polar behavior is also finite dimensional, thus providing useful 
analytic invariants of the complex structure.   
 The "Riemann Roch problem" is that of computing the dimensions of spaces of 
meromorphic functions whose polar divisors are dominated by a given divisor.  The classical 
solution, the “Riemann - Roch” theorem, expresses a simple relationship between the dimensions 
of spaces of meromorphic functions with bounded polar behavior, and topological invariants of 
the surface and the bounding pole divisor. 
 
 
The Riemann Roch theorem 
 If a compact connected Riemann surface has genus g, then the "converse of the residue 
theorem" implies there are exactly g linear conditions on the infinite dimensional space of 
“principal parts”, i.e. configurations of potential polar behavior, that must be satisfied for a 
configuration to occur as principal parts of a global meromorphic function. However these g 
conditions may not all be independent on a given finite dimensional subspace of principal parts. 
 For instance since P1 has genus zero, there are no conditions, and every principal part 
occurs for the global rational function formed by adding up the Laurent polynomials defining the 
principal parts.  Note that since w = 1/z is a coordinate at z = ∞, hence at w = 0, the principal 
part a/w + b/w2 + ... + c/wd at infinity is realized by the ordinary polynomial   
az + bz2 + ... + czd.   
 On an elliptic curve, i.e. a Riemann surface X of genus one, there is one condition.  E.g. if 
the elliptic curve X is expressed as the quotient C/L of the complex numbers C by a period lattice 
L, then a meromorphic function on X is equivalent to a doubly periodic function on C with the 
given lattice L as periods. Then the necessary and sufficient condition on a set of principal parts 
P is that the total residues of the differential Pdz in any one period parallelogram be equal to 
zero. 
 This generalizes to a compact connected Riemann surface X of any genus.  If X has genus 
g, there are exactly g independent holomorphic differentials w1,...,wg on X, and a set P of 
principal parts on X occurs for some meromorphic function if and only if each of the g locally 
defined differentials Pw1,...,Pwg has zero total residue on X.   
 For example, given d general distinct points, we expect there to be at least d+1 - g 
independent meromorphic functions on X with at worst simple poles at these d points, (rather 
than d-g, since the constants always satisfy this condition).  There may be more, since the g 
residue conditions may not be independent when restricted to a given d dimensional subspace of 
principal parts. 
 
Riemann’s inequality  
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 If all g of the residue conditions are trivial on a given subspace of principal parts of 
dimension d, then there are d+1 such independent functions, the largest possible number.  At the 
other extreme, if all g of the conditions remain independent then there are d+1- g such functions, 
the minimal possible number.  This is Riemann’s inequality: for any subset of d distinct points, 
the space of meromorphic functions having at most simple poles contained in that set has 
dimension between d+1- g and d+1.   
 Thus if we choose d ≥ g+1 distinct points on X, there will always be some non constant 
meromorphic functions having at worst simple poles at those d points (and no poles elsewhere).  
A sequence of d+1 independent meromorphic functions with poles in a given set of d points 
define a map of C to a spanning curve of degree ≤ d in Pd.  Since such a curve must have degree d, 
the map is of degree one, and since such a curve is isomorphic to P1, thus C is isomorphic to P1, 
and g = 0. Thus the upper bound d+1 only occurs for the curve P1.  More striking, whenever g = 
0, the upper bound d+1 does occur, so every curve X of genus 0 is isomorphic to P1.  Hence a 
purely topological assumption yields an analytic conclusion - any Riemann surface 
homeomorphic to P1 is also analytically isomorphic to P1.  Over a hundred years later, an 
analogous statement for surfaces has been proved.  (A minimal complex algebraic surface 
diffeomorphic to P2 is also isomorphic to P2?) 
 
 Thus for curves of genus g ≥ 1, Riemann's inequality says, if L(p1+...+pd) is the space of 
meromorphic functions f with  
divpole(f) ≤ p1+...+pd, then d+1-g ≤ dimL(p1+...+pd) ≤ d. 
 
Riemann's theorem for positive divisors on elliptic curves 
 In particular on a Riemann surface of genus g = 1, i.e. on an "elliptic curve",  for any 
positive divisor D = p1+...+pd, where d > 0, we have the simple formula dimL(D) = deg(D).  I.e. 
Riemann's inequality is completely precise for positive divisors on elliptic curves, d ≤ 
dimL(p1+...+pd) ≤ d. 
  
Application to projective models of curves 
 A non constant meromorphic function on X with at most simple poles in the set 
p1,...,pd, defines a branched covering by X of P1, with the inverse image of the point at infinity 
contained in the set {p1,...,pd}.  If d ≥ g+1, Riemann's inequality implies dimL(D) ≥ 2, so L(D) 
contains at least one non constant function.  Thus every Riemann surface of genus g arises as a 
branched cover of P1 of degree ≤ g+1.   To be sure Riemann assumed all his surfaces arose as 
branched covers of P1, but made no hypothesis on the degree of the cover, so for him this is a 
"degree lowering" result for branched covers. 
 If g = 0, our curve is a degree one cover of P1 and thus isomorphic to P1.  So there is only 
one isomorphism class of genus one curves. 
 If g = 1, every curve of genus 1 is a double cover of P1, for instance by the map defined 
by the classical Weierstrass P - function.   
 If g = 1 and d = 3, we get two independent non constant meromorphic functions which 
embed our genus 1 curve in the projective plane as a cubic curve, as given classically by the P 
function and its derivative.  The map must be an embedding since the image curve spans the 
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plane, and the degree of the image curve times the degree of the map equals 3.  So the map has 
degree 1 and the image curve has degree 3.  Since a plane cubic has genus 1 if and only if it is 
smooth, the map is an embedding. 
 If g = 2, and d =3 we can represent the genus 2 curve as a 3 to 1 cover of P1, but in this 
genus there is actually a 2 to 1 cover, provided we choose the 2 points carefully.  To prove this 
we need Roch’s enhancement of Riemann’s theorem. 
  
Roch’s part of the theorem 
 It is easy to see a holomorphic differential w imposes no residue condition on the space 
of principal parts associated to d given distinct points if w vanishes at all the points.  The 
converse is also true, and this refinement of Riemann’s inequality is called the Riemann Roch 
theorem.  E.g. when D is a sum of distinct points, the deviation (d+1) - dim(L(D)), of dim(L(D)) 
from the maximum possible value d+1, equals the dimension of the quotient space of all 
holomorphic differentials modulo the subspace of differentials vanishing on D. 
 A precise statement of the Riemann Roch theorem is as follows.  Let D be any divisor on 
the compact connected Riemann surface X, i.e. let D = n1p1+....+nrpr be a formal finite linear 
combination of points of X, with arbitrary integer coefficients ni, and let d = n1+....+nr be the 
"degree" of the divisor D. 
 Let div(f) be the divisor of a non zero meromorphic function f on S (divisor of zeroes 
minus divisor of poles, where each zero and pole is counted with its order), let L(D) be the space 
consisting of the zero function and of all non zero meromorphic functions f on S such that div(f) 
+ D ≥ 0.  Let K(-D) be the space of those meromorphic differentials w on S such that w = 0 or  
div(w) - D ≥ 0.  Note that if D is positive, i.e. all coefficients ni > 0, then L(D) consists of f such 
that f = 0 or the polar divisor of f is bounded above by D: divpole(f) ≤ D, and K(-D) consists of 
holomorphic differentials whose zero divisor is bounded below by D: divzero(w) ≥ D.  As 
Mumford says, f is allowed to have poles on D and w is required to have zeroes on D. 
 
Then we have the following statement: 
Classical Riemann Roch formula [G.Roch, Jour. f. Math., 1865, vol.64] 
dim(L(D)) = d + 1 - g + dim(K(-D)). 
 
(Actually both Riemann and Roch only considered positive divisors it seems, but that is the main 
case.) 
  
Easy consequences of Riemann Roch 
 In case D = K or D = 0,  one of the integers, dim(K(-D)) or dim(L(D)), is readily 
computable.  Then the theorem lets us compute the other one too, at least if we start with D = 0.  
I.e. if D = 0, then d = 0, and dimL(0) = 1 since the only holomorphic functions are constants.  
Thus we get that dim(K-0) = dimension of the space of holomorphic differentials = g.  If D = (w) 
is the divisor of zeroes of a non zero holomorphic differential, then since the quotient of two 
holomorphic differentials is a meromorphic function with poles only where the denominator has 
zeroes, we see that dim(L(D)) = dim(K-0) = g, and dim(K-D) = dim(L(0)) = 1. 
 
 Then we recover an analytic antecedent of Hopf's theorem in smooth topology equating 
the index of a covector field with minus the euler characteristic, i.e. d = degree(w) = 2g-2.  Thus a 
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non zero holomorphic differential w has exactly 2g-2 zeroes counted with multiplicities.  This 
implies whenever we have a divisor D with deg(D) = d > 2g-2, then dim(K-D) = 0, since L(E) = 
{0} whenever deg(E) < 0.  Thus for all divisors D with deg(D) > deg(K), we have completely 
solved the problem of computing dimL(D), since for these divisors we have dim(L(D)) = d + 1 - 
g.  (The Kodaira vanishing theorem stated in section 2 below is a generalization of this result to 
higher dimensions.  I.e. if a divisor is "bigger" than the divisor of a differential in some sense, then 
all higher cohomology groups vanish.) 
 
 Now we can prove the branched covering result stated above for curves of genus 2.  I.e. if 
K = p1+...+pd is the divisor of zeroes of a non trivial holomorphic differential, then d = deg(K) = 
2g-2 = 2, and dimL(K) = d+1-g + dimL(K-K) = 2+1-2+dimL(0) = 2.  Thus the space L(K) 
contains a non constant meromorphic function on the curve having only two poles, i.e. a 
branched cover of P1 of degree two.   The difference between this argument and the one above 
using only Riemann's inequality, is that almost any three points can be the fiber of a 3 to 1 cover 
of P1 by a genus 2 curve, but only a very special pair of points can be a fiber of a 2 to 1 cover of 
P1.  I.e. only a positive "canonical divisor" (the divisor of zeroes of a holomorphic differential) 
can be a fiber of a 2 to 1 cover, but any triple of points not containing a canonical divisor is a 
fiber of a 3 to 1 cover. 
 
 If g = 3, and D = K is a divisor of a holomorphic differential, then dimL(K) = 3 and we get 
a map f:C-->P2 whose image X spans P2 and such that the inverse image of the line at infinity is 
the divisor K of degree 4.  Hence deg(f).deg(X) = 4, so X is either a smooth conic and f is a 
branched double cover, or else X is a plane quartic curve and f has degree one.  Since a conic is 
isomorphic to P1, this shows that curves of genus 3 come in two varieties, those which are 
branched double covers of P1, and those which are degree one covers of plane quartics.  Since a 
plane quartic has genus 3 if and only if it is smooth, the second case is actually an embedding 
onto a smooth plane quartic. 
 
 If we still assume the fact that any smooth plane quartic X has genus 3, it follows that the 
divisor D cut on it by a line L, has deg(D) = 4, and dimL(D) ≥ 3.  Thus by Riemann Roch 
dimL(K-D) ≥ 1.  Thus K ≥ D, and since both K and D have degree 4, then K = D.  If z0,z1,z2 are 
coordinates on P2, and {z0=0} defines the line L, then the two meromorphic functions z1/z0 and 
z2/z0 that define the embedding of X in the plane belong to L(K).  Thus the plane embedding is 
the one defined by the canonical divisor K. 
I.e. all smooth plane quartics are canonically embedded Riemann surfaces of genus 3.   
 Now if there were also double cover f:C-->P1, where C is a smooth plane quartic, then a 
fiber E = p+q = f-1(y) over a point would satisfy deg(E) = 2, and dimL(E) ≥ 2, (since both 1 and 
f belong to L(E)), hence we would have dimL(E) = d+1- g+dimL(K-E) = dimL(K-E).  Since 
dimL(E) ≥ 2, then also dimL(K-E) ≥ 2, so there exist 2 independent holomorphic differentials w1, 
w2 both vanishing on the points p and q. 
   
 Then since there are altogether 3 independent holomorphic differentials on a curve of 
genus 3, let w0 be a holomorphic differential not vanishing on p+q. Then the meromorphic 
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functions 1 = w0/w0, f = w1/w0, and g = w2/w0 form a basis of L(K), hence define the map of X 
into the plane assocated to the canonical divisor K = {w0 = 0}.  But this contradicts the fact that 
this map is an embedding, since that map takes p and q to the same point (1,0,0).  Thus no 
smooth plane quartic can be a double cover of P1. 
 
 Thus every curve of genus 3 is either a double cover of P1 or a smooth plane quartic, and 
only one case can occur.  Moreover a genus 3 curve can only be a double cover of P1 in at most 
one way (up to automorphisms of P1), since the pairs of points which can be fibers of such a 
double cover are determined as the fibers of the canonical map onto a conic in P2. 
 
 This is only the beginning of the beautiful story of the geometric applications of RRT, for 
more of which see ACGH.  Riemann deduced immediately from his proof of his theorem, that the 
smallest degree d such that every curve of genus g occurs as a branched cover of P1 of degree d, is 
the smallest d ≥ (g/2) + 1.  We will recall how he derived this below.  For now note that for g = 
1,2, this gives d = 2, as we have seen above is true.  For g = 3,4 we get d = 3, which can be 
realized for a plane quartic by projecting from a point of the curve, onto a line.  A curve X of 
genus 4 which is not a double cover of P1 embeds canonically as a curve of degree 6 in P3, and so 
as to lie on a quadric surface.  The quadric surface (at least if smooth) then projects along lines 
onto a plane conic, and this projection restricts to a degree 3 covering of P1 by X. 
 
The concept of an index 
 For the purpose of generalization, it is useful to regard the RR formula as an equality of 
"indices" as follows: 
 
 (*) dim(L(D)) - dim(K(-D)) = d + 1 - g.  
 
 In the formula above, the alternating sum on the left side, dimL(D) - dimK(-D) is the 
holomorphic Euler characteristic associated to the divisor D. The RR theorem then says the 
holomorphic Euler characteristic of any divisor is a certain explicit topological invariant. 
  
 Notice that the integer on the right side of (*), the topological index, does not depend on 
the complex structure of the surface S at all, but only on its topology, and that of the divisor.  So 
although our real interest is in the integer dim(L(D)), the formula identifies a related integer, 
namely dim(L(D)) - dim(K(-D)), the analytical index, which is defined in terms of the complex 
structure, but which in fact does not depend on that structure.  Since this latter integer is 
deformation invariant, it is much more computable than dim(L(D)), and essentially equates the 
problem of computing dimL(D) with that of computing dim(K(-D)). 
 
 There is a good analogy here with the problem of computing the number of vertices of a 
polyhedron.  That number is not a topological invariant, but the alternating sum:  vertices - edges 
+ faces, i.e. V- E + F, is a topological invariant, namely the (topological) Euler characteristic.   
For a dodecahedron, this helps count the vertices as follows:  the Euler characteristic is the same 
as for a tetrahedron, hence equals 4 - 6 + 4 = 2.  There are 12 faces on a dodecahedron by 
definition, all pentagons, and each edge is shared by two faces, hence there are (5)(12)/2 = 30 
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edges, and thus we get v = e-f+2 = 30-12+2 = 20 vertices for a dodecahedron. 
  
 There is a cohomological interpretation in which L(D) and a cohomology space 
isomorphic to K(-D)* occur as kernel and cokernel of the same operator on an infinite 
dimensional space.  Then the analytical index above is the index of this operator in the sense of 
functional analysis.  A general theorem in functional analysis says the index of a Fredholm 
operator (a bounded operator with finite dimensional kernel and cokernel) is always deformation 
invariant, in the sense of being constant on connected components of the space of Fredholm 
operators.  So RR is a precursor of such index theorems in analysis. 
   
 
Chapter II. Statement and applications of RR for surfaces 
  
For an algebraic surface S, we may analyze the RR problem along the same lines as described 
above for curves, by defining chi(D) in terms of cohomology groups, chi(D) = dim(L(D)) - h1(D) 
+ h2(D), and ignoring for the moment the meaning of the numbers h1 and h2.  This time D 
denotes a divisor on the surface S, i.e. a linear combination of irreducible curves on the surface. 
 
1) Hirzebruch Riemann Roch: a topological formula for chi(D). 
chi(D) = (1/12)(K2 + e(S)) + (1/2)(D.[D-K]), where e(S) is the topological euler characteristic of 
S, and K2 is the self intersection number of a "canonical" divisor K (the divisor of some 
meromorphic 2 form on S), and a "dot" means intersection number of divisors. 
 
Steps of proof: 
 (i) (intersection numbers)  A first step is to prove that chi(D) - chi(O) = (1/2)(D.[D-
K]), a topological invariant where K is the divisor of any meromorphic 2 form.  This is the easier 
part, and amounts to the “adjunction formula” relating the divisor of a differential on the curve D 
with the intersection of D with the divisor of a differential on the surface S.  Unfortunately the 
numbers in the definition of the chis on the left hand side almost all remain mysterious.  At least 
this shows the difference of any two chis is a simple topological invariant, an intersection 
number.  This focuses attention next on understanding chi(O). 
 
 (ii) (Noether's formula) The second step is proving that chi(0) = (1/12)(K2 + e(S)), 
where e(S) is the topological euler characteristic and K2 is the self intersection of K, a 
"topological" invariant (of the analytic structure of S).  The classical proof, i.e. Max Noether's 
own proof, uses a birational model of the surface S in P3 where one can explicitly calculate both 
sides of the equation.  This is harder than part (i), but it renders the mysterious integer chi(O) 
computable in terms of intersection numbers and the topological euler characteristic of the 
surface.  In conjunction with part (i), this shows that chi(D) is always a topological invariant.  
I.e. not only is the difference of two chis topologically invariant, but in fact each chi is 
individually a topological invariant.  We give an easy argument of this type below for a smooth 
complex surface in P3. 
 
Remark:  Steps 1 and 2 together constitute what is called the Hirzebruch Riemann Roch 
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theorem, a topological formula for chi(D).  The key step is (ii): finding a topological formula for 
chi(O), the "arithmetic genus".   To go further, given D we need to analyze the difference between 
the topologically computable invariant chi(D) and the truly analytic invariant dimL(D).  There 
are two important results for doing this, i.e. for dealing with the extra terms h1(D) and h2(D). 
 
2) Serre duality:  This equates the mysterious integer h2(D) with the geometrically meaningful 
integer dim(K-D) = the number of holomorphic 2 forms on X which vanish on the curve D 
(assuming D ≥ 0).  Although we know nothing of h1 except h1 ≥ 0, this already implies the 
following:  
 
Classical RR inequality for a complex surface: 
dimL(D) + dim(K-D) ≥ (1/2)(D.[D-K]) + (1/12)(K2 + e(S)),  
where K is the divisor of a meromorphic 2 form and e(S) is the topological euler characteristic of 
S.   
 
 As before, this interpretation of h2 yields a criterion for it to vanish. 
If D is linearly equivalent to K+E where E >0 is a non zero effective divisor, then dim(K-D) = 
dim(-E) = 0, and hence: 
 
Corollary:  dimL(D) ≥ (1/2)(D.[D-K]) + (1/12)(K2 + e(S)), for divisors of form D = K+E, 
where E > 0. 
 
 For example on a smooth quartic surface in P3, K = 0, so this inequality holds for every 
non zero effective divisor D > 0.  It also simplifies in that case (since intersecting with 0 gives 
zero), to the following:  dimL(D) ≥ (1/2)(D.D) + (1/12)(e(S)) = (1/2)(D.D) + 2, by the 
computation of e(S) given below.  Note however that D.D might be negative, even when D > 0! 
 
 Even when D is an arbitrary effective divisor on an arbitrary surface, where dim(K-D) 
may be non zero, Serre duality gives some information about the value of h2(D) = dim(K-D), 
since elements of (K-D) are holomorphic 2 - forms that vanish on D, and we may be able to find 
such forms, or bound their dimension in a given example. 
 
 Serre duality also equates the terms h1(D) = h1(K-D), but does little for understanding 
them, since both are equally mysterious.  Thus it helps to have criteria for h1(D) to be zero, and 
the next result is often useful. 
 
3)  (strengthened) "Kodaira vanishing"  This says dim(L(D)) = chi(D) when D = K+E, and E 
is not just effective but E2> 0, and E.C ≥ 0 for all irreducible curves C on S.  In this case both 
h2(D) and h1(D) are zero. 
    
 In higher dimensions, on a smooth projective variety X of dimension n over the complex 
numbers, h1(D), ..., hn(D) are all zero if D = K+E where En > 0, and E.C ≥ 0 for all irreducible 
curves C on X, e.g. E a hyperplane section or the inverse image of one under a generically finite 
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morphism.   
 
Remark: Kodaira's original version assumed E is the inverse image of a hyperplane section under 
a finite morphism, equivalently En > 0, and E.C > 0 for all curves C, instead of only E.C ≥ 0.  
This slight weakening of the hypothesis, due apparently to Ramanujam, Mumford, Kawamata, 
Viehweg,..., seems to make the result significantly stronger. 
 
Summary of RR for surfaces:   
(a) (weak RR inequality for all divisors) 
For any divisor D on a smooth projective complex surface S, we have: dimL(D) + dimK(-D) ≥ 
(1/2)(D.[D-K]) + (1/12)(K2 + e(S). 
 
(b) (strong RR inequality for divisors larger than K) 
For a divisor D larger than a canonical divisor in the sense that D-K = E is effective, we have 
vanishing in the top degree  H2(D) = K(-D)* = 0, and hence: dimL(D) ≥ (1/2)(D.[D-K]) + 
(1/12)(K2 + e(S)). 
 
(c) (precise RR equality for divisors much larger than K) 
If D is much larger than K in the sense that D-K = E is "big" and “numerically effective” or “nef”, 
in the sense that E.E > 0 and E.C ≥ 0 for all irreducible curves C on S, e.g. if E is a hyperplane 
section, we have H1(D) = {0} = H2(D), hence: dimL(D) = (1/2)(D.[D-K]) + (1/12)(K2 + e(S)). 
 
Applications of HRR for surfaces:   
 Over the complex numbers, using Dolbeault cohomology and Hodge theory we can get 
more out of Noether's formula, since we can express chi(O) in terms of differential forms.  I.e. 
h1(O) =  dim(space of holo. 1- forms), and h2(O) = dim(space of holo. 2- forms), which 
interprets not only h2(O), but also h1(O) geometrically.  Then 
chi(O) = 1 - dim(space of holo. 1- forms) + dim(space of holo. 2- forms),  
which is Hirzebruch's definition of chi(O). 
   
 As with compact curves, global holomorphic functions are constant, so the only exact 
holomorphic 1 form on a compact (connected) surface S is zero.  Thus if S is also simply 
connected, e.g. any smooth surface in P3, there are no non zero holomorphic 1 forms, so h1(O) =  
dim(space of holo 1- forms) = 0. This gives the formula for simply connected S: dim(2-forms) = 
dimL(K) = chi(O) - 1 = (1/12)(K2+e(S)) - 1, a useful special case of RR.   
 
 We have used the fact that the complex topological cohomology H1(S,C) = H1,0·H0,1 is a 
direct sum of two mutually isomorphic subspaces, where H1,0  = holomorphic one - forms, and 
H0,1 is isomorphic to H1(O).  Hence h1(O) = h0,1 = 0 if and only if h1,0 = 0, if and only if 
H1(S,C) = 0, as happens when S is simply connected. 
 
 
Betti numbers of surfaces in P3 
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 On a smooth surface S of degree d ≥1 in P3, a canonical divisor K is cut out by a 
hypersurface of degree d-4, and there are exactly as many independent 2 forms as homogeneous 
polynomials of degree d-4, i.e.  
dim(K) = (1/6)(d-1)(d-2)(d-3).  This also gives K2 = d(d-4)2. Thus: 
 
chi(O) = 1 + dim(K) = 1 + (1/6)(d-1)(d-2)(d-3) = (d/6)(d2-6d+11). 
Since by Noether chi(O) = (1/12)(K2 +e(S)), and K2 = d(d-4)2, we get 
e(S) = 12(1+dim(K)) - K2 =  (2d)(d2-6d+11) - d(d-4)2 = d(d2-4d + 6) 
= 2 + b2. 
 
 E.g. on a smooth quartic surface in P3,  dim(K) = 1, and b2 = 22.  Thus there is 
essentially one 2-form, and twenty - two 2-cycles.  I believe the vector of integrals of this form 
over an appropriate basis of these cycles determines the isomorphism class of the surface. 
 
Line geometry on cubic surfaces 
 For a smooth cubic surface in P3, we have K = - H, where H is a hyperplane section, so 
there are no 2 forms and no 1 forms, and Noether's formula says chi(0) = 1 = (1/12)(K2 + 
chitop(S)).  Since -K is cut by a hyperplane, K2 is the intersection number of S with a general 
line, i.e. K2 = deg(S) = 3, so chitop(S) = 9, and the second betti number b2 = 7.  We can draw 
some interesting geometric conclusions from topology as follows. 
 
 We know a general cubic surface contains a finite number of lines, and we choose one line 
m and project from it to P1, sending each point p of S to the plane spanned by m and the point 
p, (if p lies on m, we map it to the tangent plane to S at p).  This fibers S over P1 with fibers 
which are plane sections of S residual to m, i.e. conics in S incident to m.  If all these residual 
conics were non singular, i.e. if m did not meet any other lines on S, then by topology the Euler 
characteristic of S would be the product of the euler characteristics of the target P1 and of the 
common fiber of the projection, a smooth conic also isomorphic to P1.  This would imply e(S) = 
4.  Since in fact e(S) = 9, there must be some singular conic fibers, i.e. either pairs of distinct lines, 
or doubled lines.  If we assume that all singular conic fibers consist of pairs of distinct lines 
(which have Euler characteristic 3 instead of 2 for a smooth conic), it follows that each singular 
fiber contributes 3-2 = 1 more to e(S), than the product calculation of 4.   
 Since we need an excess contribution of 5 to get the right euler characteristic of S, there are 
exactly 9-4  = 5 pairs of lines meeting the line m on S.  Thus every line on a cubic surface meets 
10 other lines, in 5 pairs.  In particular there is some line n on S not meeting m.  Then the map  
f:S-->P1 x P1 given by the two projections from two given disjoint lines m, n sends a general 
point q of S to the pair of planes it spans, A = <q,m>, and B = <q,n> respectively.  Given a pair 
of planes A,B, with A containing m, and B containing n, their line of intersection meets S at a 
point x of m, a point y of n, and another point q.  The inverse image of such a pair of planes A,B 
under f, is the third intersection point q of S with the line A.B.   
 Hence the map f is an isomorphism except when the line A.B joining x and y, lies wholly 
in S.  Since b2(S) = 7, and b2(P1 x P1) = 2, and each line is a sphere generating a 2 - cycle, there 
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are 5 such lines meeting both m and n on S.  The morphism f collapses each of the 5 disjoint lines 
meeting both m and n on S to a different point of the smooth quadric Q = P1 x P1, and is an 
isomorphism otherwise.  Thus we can regard a smooth cubic surface as obtained by "blowing up" 
5 distinct points on a quadric surface, replacing each point by a line.   
 If r is one of the 5 lines meeting both m and n, then there are two more lines s,t meeting 
respectively r and m, and r and n.  It can be shown that if we project the smooth quadric Q to the 
plane P2, by the rational map projecting from the point of Q to which r is collapsed, then the 
composition f:S-->P1 x P1-->P2 is a morphism which collapses s and t instead of r, and is an 
isomorphism except for collapsing each of 6 disjoint lines on S to a different point of P2.  Thus S 
can also be considered as the result of blowing up 6 distinct points of P2 to form lines of S.  The 
resulting 6 lines on S, together with a single cubic curve on S cut by a plane section, can be taken 
as generators of the second homology group Z7 of S.  This also determines the intersection 
pairing on the group H2(Z).   
 One can enumerate all the lines on S, to show there are exactly 27 lines on a smooth cubic 
surface, and describe their configuration.  This is explained nicely in Miles Reid's article in the 
Park City (PCMI) volume on complex algebraic geometry. 
 
 
 
Chapter III. The classical proof of RRT for curves 
 
Acknowledgments and references:  Riemann's and Roch's arguments have been worked out in 
detail and clarified in more recent works, notably Weyl and Siegel, and they are also followed 
closely in the presentation by Griffiths and Harris.   In fact, if one merely reads Riemann's 
division of differentials (or integrals) into first, second, and third kinds, and his mention of 
periods of integrals, it is not difficult to construct the argument below for Riemann's inequality.  
Roch's transition from Riemann’s inequality to the full Riemann -Roch equation is then only a 
matter of using residue calculus to express Riemann’s period map W(D)-->Cg for meromorphic 
diferentials in terms of values of holomorphic differentials. 
 This argument of Roch follows directly from the reciprocity relations for meromorphic 
differentials, analogous to those proved by Riemann for holomorphic differentials.  Roch’s 
original paper is in Journal fur Math. (64),(1865), pp. 372-376.  Riemann’s proof is in his paper 
Theory of abelian functions, J. reine ang. Math. (54), (1857), in translation in: Bernhard Riemann,  
Collected Papers, Kendrick Press, 2004, tr. by R. Baker, C. Christenson and H. Orde, pages 94-
99, especially page 99.   
 After discussing the existence of various standard meromorphic differentials, Riemann 
proves his part of the theorem in a few lines on page 99, followed by a brief derivation of what is 
now called the “Brill Noether” number for pencils on the same page, and begins the proof that 
every finite cover of the projective line is an algebraic plane curve, finishing on the next page.  
This amazing paragraph, section 5, of Abelian functions, appears on pages 102-109, of 
Riemann’s reprinted Collected works in the Dover edition, 1953; and on pages 94-100 of the 
translation from Kendrick Press.  I recommend very strongly reading at least page 99 of the 
Kendrick Press translation, as well as Roch's paper.  Then one can follow up by reading pages 
240-245, and 260-261 of [GH], for a fuller explanation of the arguments. 
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 For expositions in the classical style, compare H. Weyl, The concept of a Rieman surface, 
3rd edition, tr. by Gerald Maclane, 1955, pp. 135-137; and C.L. Siegel, Topics in Complex 
Analysis, vol. 2, Wiley - Interscience, 1971, pp.134-137. 
 
Differentials on a Riemann surface 
 Riemann's approach to meromorphic functions on a Riemann surface was to analyze the 
differentials first (or rather their multivalued integrals), and use them to understand the (single 
valued) functions.  The reason for this may be that the Mittag Leffler problem for differentials 
has a simpler answer than for functions.  I.e. there is exactly one obstruction to the existence of a 
meromorphic differential with given principal parts: namely, each rational differential, regular on 
a punctured nbhd of a point q, has a well defined residue at q.  A given configuration of principal 
parts at a finite set of points of a compact connected Riemann surface, i.e. a finite family of local 
rational differentials, occurs as the principal parts of a global meromorphic differential if and only 
if the residues add up to zero.  Then to solve the ML problem for functions we just have to 
analyze which differentials are "exact", i.e. are of form df.  This leads to the study of "periods" of 
differentials.  
 
Natural operations on differential one forms: 
1) The product of a meromorphic function f by a meromorphic differential w, is a meromorphic 
differential fw, and the quotient w/u of two non zero meromorphic differentials is a non zero 
meromorphic function. 
 
2) The derivative df of a meromorphic function is a meromorphic differential with zero residue at 
every pole, and zero period around every loop.   
 
3) The path integral of an arbitrary meromorphic differential is a meromorphic function which 
may be multiple valued (path dependent). 
 
Remark:  Given a configuration of principal parts for a meromorphic function, if we multiply 
these by a global differential w, we get a corresponding configuration of principal parts for a 
meromorphic differential.  The resulting configuration arises from a global meromorphic 
differential v if and only if the original configuration arises from the global meromorphic function 
v/w.  Since there are g independent global holomorphic differentials, they give in this way the g 
linear conditions which must be satisfied in order for a collection of principal parts to arise from a 
global meromorphic function.  This explains the term (-g) on the right side of the RRT:  dimL(D) 
- dimK(-D) = d+1-g. 
 
 From 2) above, we expect there are "more" differentials than (single valued) functions on a 
compact Riemann surface, and Riemann's point of view was to classify meromorphic differentials 
into three categories, and distinguish them for their different behavior with respect to 
differentiation and integration.  He classified differentials (actually their integrals) as of1st kind, 
2nd kind, and 3rd kind.   
 
Differentials of first kind 
 A differential is of 1st kind if and only if it is holomorphic everywhere.  Since two 
differentials with the same polar behavior differ by a holomorphic differential, understanding 
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these is essential to the uniqueness part of the ML problem for differentials.  Riemann proved 
the vector space of differentials of first kind has dimension g = the topological genus of the 
surface.  Since there are no non constant holomorphic functions on a compact surface, if we 
integrate a non zero differential of first kind we get a holomorphic function which is never single 
valued. 
 
Differentials of second kind 
 A meromorphic differential is of 2nd kind if it has zero residue at every singularity.  The 
differential df of a meromorphic function f is always of this type.  The converse is not true 
however, since differentials of 1st kind are also of 2nd kind, and as noted above the integral of 
such a differential may not be a single valued function.  (Riemann himself considered only 
elementary differentials of second kind, with a double pole at one point.  The present definition 
is that of Weyl.) 
 
Differentials of third kind 
 A differential of 3rd kind is a meromorphic differential with at worst simple poles.  As 
noted above, these never have single valued integrals, even locally around a pole.  (Riemann 
considered the elementary examples having exactly two simple poles, with residues 1 and -1.) 
 
With these definitions, a differential is of first kind if and only if it is of both second and third 
kind. 
 
Existence of standard differentials 
 For each symplectic homology basis, [i.e. loops A1,...,Ag, B1,...,Bg with all intersections 
trivial except for Aj.Bj = 1 = -Bj.Aj], Riemann's bilinear relations show that a holomorphic 
differential is determined by its A-periods, hence there can be at most a g dimensional space of 
them.  He then argued, using the Dirichlet principle, that in fact the space of such differentials has 
dimension g.  One can then construct standard differentials of first kind w1,...,wg, with integral of 
wj equal to zero over every A loop except Aj, and integral = 1 over Aj. 
 There are also standard differentials of 2nd kind associated to each point as follows:  for 
each point p on S, and any integer n ≥ 2, there is a meromorphic differential on S of 2nd kind 
with pole only at p, of degree n, and with principal part of form dz/zn.  Using these standard 
ones, one obtains differentials of second kind with any desired polar behavior.  Any two such 
with the same principal part at every pole must differ by a differential of 1st kind.   
 Riemann also constructed for each pair of points p,q, a standard differential of third kind 
with poles only at p, q, both simple, and with residues 1 and -1.   
 
Converse of the residue theorem for differentials 
 Using these standard differentials of second and third kinds, one can deduce that given 
any finite set of poles and any set of principal parts at these points in terms of some local 
coordinates, a meromorphic differential exists having exactly these poles and these principal parts 
if and only if the residues at these poles add up to zero.  Since any two meromorphic differentials 
with the same poles and principal parts differ by a holomorphic differential, by subtracting 
standard differentials of first kind, there is a unique meromorphic differential with given poles 
and principal parts (with zero total residue) which also has period zero around the A - cycles of a 
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given symplectic homology basis. 
 
Meromorphic functions as integrals of exact differentials 
 The differential df of a meromorphic function f is a meromorphic differential of second 
kind, and the principal parts of df faithfully reflect those of f, except the coefficient of z-n in the 
principal part of f, occurs (after multiplication by -n) as the coefficient of z-n-1 in the principal 
part of df.  In particular the coefficient of z-1 in df is always zero.  Since a differential of second 
kind always exists with any desired principal parts at all, subject only to the requirement defining 
“second kind” that z-1 has coefficient zero, the existence question for meromorphic functions 
with given principal parts becomes the question of which differentials of 2nd kind are exact, i.e. 
which have form df.   
 A differential w of 2nd kind equals df for some single valued meromorphic function f, if 
and only if w can be integrated to give a single valued function, if and only if the path integrals of 
w are all path independent, if and only if w has integral zero around each closed loop on the 
Riemann surface.  Since path integration of meromorphic differentials of second kind is a 
homology invariant, it is sufficient to check this on a basis of 2g independent homology cycles.  
Thus there are 2g linear conditions on the space of differentials of 2nd kind, and the kernel of this 
map is the space of "exact differentials", i.e. the space of all differentials of form df for global 
meromorphic functions f.   
 Thus, Riemann's approach to the analysis of global meromorphic functions on S is via the 
space of differentials of 2nd kind, and the analysis of their "periods".  This leads immediately to 
Riemann's inequality as follows. 
 
Riemann's proof of his theorem. 
 We restrict as Riemann did, to the case of a generic effective divisor consisting of distinct 
points.  Let D = {p1,.....,pn}  be any finite collection of distinct points on S, and let L(D) be the 
vector space of meromorphic functions on S with poles at most supported in D and of order at 
most 1 at each point.  We want to estimate the dimension of L(D) using Riemann's point of view.  
 Consider the space W(D) of meromorphic differentials with poles supported in D, of 
order at most 2 at each point, and of zero residue at each point and having zero periods around 
each A cycle for some fixed symplectic homology basis.  (This normalization is the one used by 
Roch).  Then W(D) has as basis, one of Riemann's standard differentials of 2nd kind for each of 
the n points pi, so dim(W(D)) = n. 
 Differentiation is a linear map d:L(D)-->W(D), with one dimensional kernel, and image 
isomorphic to L(D)/C, so we would like to estimate the dimension of its image, the subspace of 
exact differentials in W(D).  Consider the linear map W(D)-->Cg, given by integration over the B 
- cycles of our symplectic homology basis, with values (the "B-periods") in the space Cg.  The 
exact differentials are precisely the kernel of this map, i.e. those with zero periods.  Thus we 
have an exact sequence:    
0-->C-->L(D)-->W(D)-->Cg.   
 The kernel L(D)/C of W(D)-->Cg thus has dimension ≥ n - g.  On the other hand, 
dim(L(D)/C) ≤ dim(W(D)) = n.  Since dim(L(D)/C) = dimL(D) - 1, this gives the inequality  n-g ≤ 
dim(L(D))-1 ≤ n. 
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Riemann's inequality: deg(D)+1-g ≤ dim(L(D)) ≤ deg(D)+1, if D is effective.  (Our argument 
assumed that D consists of distinct points, but this is inessential.) 
 
Remarks: (i) We do not need to make the A periods of the differentials zero for this argument, 
since if we remove that requirement in the definition of W(D), then dimW(D) = n+g, and the 
period map goes into C2g, so the kernel L(D)/C still has dimension at least  n+g -(2g) = n-g.  
Moreover the only exact holomorphic differential is zero as we said, so the kernel L(D)/C misses 
the g dimensional subspace of holomorphic differentials, so dim(V) ≤ n as before.  This is 
Riemann's original argument.. 
 
(ii) As observed above, the upper bound in Riemann’s inequality is only reached for the surface 
P1.  I.e. if deg(D) = n, then n+1 independent functions in L(D) give an embedding of S 
isomorphically onto a rational normal curve of degree n in Pn, which implies S is isomorphic to 
P1.   Thus we have dimL(D) = n+1 if and only if g = 0, so if g ≥ 1, D>0, deg(D)+1 - g  ≤  
dim(L(D)) ≤  deg(D).  This is precise for g = 1. 
 
Cor: Riemann Roch for effective divisors on elliptic curves: 
dim(L(D)) = deg(D), when D > 0, and g = 1. 
 
(iii) Torelli’s theorem says that given any symplectic homology basis, A1,...,Ag, B1,...,Bg on a 
curve X, if the standard differentials of first kind w1,...,wg, have integral of wj equal to zero over 
every A loop except Aj, and integral 1 over Aj, then the (g by g) matrix of integrals of the w’s 
over the B periods uniquely determines the curve X up to isomorphism. 
 
Remarks on the existence of differentials 
 From this perspective, the whole burden of proof of Riemann's result is on existence of 
differentials of 1st and 2nd kinds.  For this, he used the Dirichlet principle (justified later by 
Neumann and Hilbert), Griffiths - Harris apply the Kodaira vanishing theorem for complex 
manifolds, and for plane curves one can just write down differential forms using adjoint 
polynomials, as Riemann himself observed.   
 For example on the plane cubic curve E: {y2 = (x-a)(x-b)(x-c) = f(x)}, where a,b,c are 
distinct, by taking d of both sides we have 2ydy = f'(x)dx, so dx/y = 2dy/f'(x).  If we note that at 
every point either y or f'(x) is non zero, we see that dx/y is a holomorphic differential, and this 
can also be checked at infinity.   
 On a smooth projective plane curve X of degree d, with affine equation F(x,y) = 0, the 
differential dx/(∂F/∂y) is holomorphic on X and remains so when multiplied by any polynomial 
of degree ≤ d-3.  It follows that the number of independent holomorphic differentials on X is at 
least equal to the number of independent such polynomials, i.e. at least (1/2)(d-1)(d-2).   
 This number (1/2)(d-1)(d-2) is shown below to equal the topological genus g of the 
projective plane curve X, so this exhibits at least g independent holomorphic differentials.   There 
cannot be more than g holomorphic differentials on X, since the direct sum of the holomorphic 
plus antiholomorphic differentials injects (via path integration) into the dual of the first singular 
homology space of the curve, which has dimension 2g.  This map is injective because no 
harmonic form can be exact, by the maximum principle for harmonic functions.  Thus the number 
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of independent holomorphic differentials on a smooth plane curve X of degree d, is exactly g  = 
(1/2)(d-1)(d-2). 
 Riemann gives this description of the holomorphic differentials on a plane curve and 
remarks that one could also write down the meromorphic differentials equally well, but he 
declines to do so explicitly, since he says the principle is clear.  Note that if these two types of 
differentials are available, then the Riemann Roch theorem is completely proved for plane curves.  
Hence in spite of questions about Riemann's use of the so called Dirichlet principle to produce 
such differenrials in general, his proof of his theorem in the case of plane curves seems not to 
suffer from such doubts.  Thus the work of Brill and Noether, giving a purely algebraic proof of 
RRT, while valuable as a way of rendering the theorem into algebra, and thus generalizing the 
coefficient field, seems unnecessary as a way of bolstering the foundations of the result over the 
complex numbers. 
 
Riemann Roch on P1 
 On the Riemann sphere, the surface of genus zero, there are no restrictions for principal 
parts of functions.  Given any finite set of points and Laurent polynomials centered at them, the 
sum of these polynomials is itself a meromorphic function with the desired behavior. 
 
Riemann Roch on a complex curve of genus one 
 Recall that the universal covering space of a compact Riemann surface must be a simply 
connected Riemann surface, hence by Riemann's classification theorem, must be either the sphere, 
the unit disc, or the plane.  The sphere cannot map as a covering space of a surface of genus one 
since such a map cannot raise genus by Hurwitz' theorem.  Since the disc has a metric of constant 
negative curvature, it cannot cover a surface of euler characteristic zero by the Gauss Bonnet 
theorem, which leaves only the complex plane.  Thus a Riemann surface of genus one is a 
quotient of the complex plane by a discrete group of automorphisms isomorphic to Z2, which 
one can no doubt show without great difficulty. is a lattice, i.e. generated by two real independent 
translations.  If we show how to construct standard differentials of first and second kind on the 
quotient X of the complex plane by a lattice, we thus prove the RR theorem in genus one.   
  The differential dz is a global holomorphic differential of the first kind on X.  It is usual 
to represent meromorphic functions on X as doubly periodic functions in the plane with respect 
to the lattice, and if P(z) is the famous Weierstrass P function, with a double pole and zero 
residue at every lattice point, and otherwise holomorphic, then P(z)dz is a standard differential of 
second kind corresponding to the point 0.  Translating this construction to other points, yields all 
standard differentials of second kind and thus proves the RRT for our genus one surface X, i.e. 
dimL(D) = deg(D), at least in the case where D is a positive divisor consisting of distinct points. 
 
Remark: 
 To try to prove RR this way for Riemann surfaces of higher genus, we could represent 
them as quotients of the unit disc by the action of discrete groups of automorphisms, and try to 
write down Eisenstein series for the various differential forms we need. 
 
Roch's part of the RRT for curves of genus g 
 Next we want to derive the full RRT theorem, i.e. the formula  
dimL(D) = deg(D) +1 - g + dimK(-D), at least for a positive divisor D consisting of distinct 
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points, and assuming the existence of standard differentials of first and second kinds.   
 We extend the previous discussion as in [Griffiths - Harris' Principles..., pages 244-245; 
C.L. Siegel, Topics in complex analysis, vol. 2 chap 4, and H. Weyl, The idea of a Riemann 
surface], using the classical bilinear relations for periods of integrals [pages 240-241 in G-H].  
The discussion in G-H is very clear, but having learned intersection theory from Weyl, I prefer to 
do the proofs without dissecting the Riemann surface.  This reciprocity argument is Roch’s 
original one, but he omits the details, citing the similarity to Riemann's argument in the 
holomorphic case. 
 One uses Green's theorem to give relations among the path integrals of differential forms 
of first and second kinds.  In a nutshell, we construct the Poincare duality isomorphism directly 
for a smooth compact Riemann surface X, constructing smooth differential forms associated to 
loops on S, so that if !  and !  are Poincare dual to loops A and B, respectively, then A.B = !

B"  

= ! "
A#  = ! " #

X$$ . 
 Briefly one does it for a symplectic basis of oriented loops on X.  Given a loop Ai, one 
forms a narrow collar around it diffeomorphic to  
S1x I, and constructs a smooth function f that is constant on circles and grows along I from 0 to 
1, then smooths it out to be constantly 0 at one end and constantly 1 at the other.  Then df is a 
smooth form which can be extended by zero to all of X, and whose integral equals one over any 
path passing simply from the boundary S1 x {0} of the collar to the other boundary S1 x {1}.   
 In particular, integration of df over Bi equals 1, but any other basic cycle has a 
representative not meeting the support of the form, hence those integrals are zero.  Thus 
integration of a loop !  against df equals intersection of !  with Ai, since that is true when tested 
on every basic homology cycle ! .  Taking linear combinations of the forms associated to the 
basic cycles, defines a form !  associated to any cycle A, and such that A.B = !

B"  for every 
cycle B.   
 If !  is the form associated to B, then the equation !

B"  = ! " #
X$$  follows from Green’s 

theorem.  We need only prove it for the two basic cycles associated to Ai and Bi, since these are 
the only ones whose forms have supports with non empty intersection.  Their supports, i.e. the 
small collars around the cycles, meet in a small rectangle where one applies Green’s theorem as in 
[p. 361ff., Lectures on Riemann Surfaces, World Scientific Publishing, 1989, ed. Cornalba, 
Gomez Mont, Verjovsky]. 
 
Riemann’s bilinear relations for holomorphic forms 
 Since the intersection pairing on H1(X,C) is symplectic, if Ai, Bj is a symplectic 
homology basis, and !  = ∑ aiAi + ∑bjBj, and  
!  = ∑ a’iAi + ∑b’jBj, are two oriented loops, then ! .!  = ∑ aib’i - ∑ a’ibi. 
If these loops !  and !  are dual to the forms !  and !  (in the sense above that integrating against 
the form is the same as intersecting with the dual loop) , it follows from the equations above that 
! .!  =∑ aib’i - ∑ a’ibi = ! " #

X$$ .  If the forms !  and !  are both holomorphic, then their 
wedge product is zero.  This expression shows in that case their coefficient vectors in terms of 
the symplectic homology basis are orthogonal, i.e. then  ∑ aib’i - ∑ a’ibi = 0.  To find the 
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coefficients of a loop in terms of the given basis we integrate against the dual form, so !  = ∑ 
aiAi + ∑bjBj, where !  is dual to !  if and only if ai = !

Bi"  and bj = - !
Aj
" .   To see this, note that 

!  = ∑ aiAi + ∑bjBj yields !
Bk"  = ! .Bk = ∑ aiAi.Bk + ∑bjBj.Bk = ak.  The other one is similar. 

 
In this notation, this says if !  and !  are both holomorphic then  
∑ !

Bi"  !
Ai"  - ∑ !

Ai" !
Bi"  = 0.  This is sometimes called Riemann’s 1st bilinear relation for one - 

forms of first kind. 
 
Observe next if !  is holomorphic, then !

_
 ^!  has positive imaginary part, as does its integral, 

unless !  = 0.  A calculation similar to that above shows ∑ !
Bi"  !

_

Ai"  > 0, unless !  is zero.  This 

is sometimes called Riemann’s second bilinear relation for forms of first kind.  This implies that 
forms of first kind can be normalized over the A periods as follows. 
 
Corollary: Given a symplectic homology basis Ai, Bj for a Riemann surface X, there is a unique 
sequence of holomorphic 1 forms !1,...,!g , such that ! jAi"  is zero unless i = j, and then it is 1. 

proof:  The second bilinear relation implies that the A periods of a holomorphic differential are 
all zero if and only if the differential is zero.  Hence the map from the g dimensional space of 
holomorphic differentials into the dual of the g dimensional complex subspace of H1(X,C) 
spanned by the A-cycles, is injective, hence isomorphic.  qed. 
 
The bilinear relations for forms of 1st and 2nd kind 
 Now we look at relations for forms of first kind paired with forms of second kind.  We 
keep fixed a particular symplectic homology basis of simple loops Ai, Bj as before, and we note 
that, given any finite set of points of X, we can arrange for these loops and also the collars 
around them to be disjoint from the given points. 
 Let ! i  be a smooth form Poincare dual to Ai, and let ! j  be dual to Bj, again in the sense 

that integration against the form equals intersection with the dual loop, i.e.  !
(  )"  = A.( ), and 

!
(  )"  = B.( ), as operators on H1(X,C).  Note that all forms of (first and) second kind are locally 

exact, i.e. their integrals are locally path independent, so they define cohomology classes and can 
be expressed in cohomology in terms of the basic forms ! i , ! j .   
 Of course one cannot integrate a differential of second kind over a path that passes 
through a pole, but one can deform the path slightly so as not to pass through the pole.  The fact 
that the residue at the pole is zero implies that the integral of the deformed curve is independent 
of the deformation.  I.e. the integral is not defined over all paths, but every homology class of 
paths contains paths such that the integral is defined, and the integral is the same over all 
homologous paths for which it is defined.   
 Thus if !  is any form of second kind, we can express !  = ∑i ai ! i  + bi!i , with i 
summed from 1 to g as usual.  Integrating both sides against Bj gives !

Bj
"  = ∑ ai ! iB j

"  + bi ! iB j
"  
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= ∑i ai Ai.Bj + bi Bi.Bj = aj.  Similarly, !
Aj
"  = -bj.  Thus the coefficients used to express !  in 

terms of the basis dual to the symplectic basis Ai, Bj are the same as those used to express the 
loop dual to !  in terms of Ai, Bj. 
 Now let !  be of first kind and ! '  be of second kind with poles at the points p1,...,pd, 
and write these forms in cohomology as above with !  = ∑i ai ! i  + bi!i , !

'  = ∑i a’i ! i  + b’i!i .  
Then since !  - ∑i ai ! i  + bi!i  is a smooth form in X with no A or B periods, it is globally exact.  
Also  
! '  - ∑i a’i ! i  + b’i!i  has no A or B periods, but it is not globally exact in X since it has poles at 
the points {pk}.  Nonetheless ! ' - ∑i a’i ! i  + b’i!i  = dg, is exact in the complement of the 
poles, and since the basic differentials are zero near the poles we have dg = ! '  near the poles.   
 If we remove small open disks around the poles we obtain a Riemann surface S with 
boundary a disjoint union of circles oriented clockwise around the poles {pk}.  Then g is a 
smooth function in S.  Since !  and ! '  are holomorphic in S, we have !  ^! '  = 0 in S and thus 
the integral  ! "! '

S##  = 0.  Now this integral does not equal the intersection pairing of the loops 

dual to the forms !  and ! '  , because the integral is taken only over S, and the form ! '  is not 
holomorphic in all of X.  But we can relate the integral over the surface with boundary to the 
intersection number of those cycles as follows. 
 
 Recall that ! '  = ∑i a’i ! i  + b’i!i  + dg, in S, so we can decompose the previous integral 
as 0 = ! "! '

S##  = ! " ( ai
'

i
#S$$ %i  +  bi

'&i )  + ! "
S## dg .  Now the forms ! i  and !i  are zero near 

the poles so we can extend the first integral on the right over X, i.e. ! " ( ai
'

i
#S$$ %i  +  bi

'&i )  = 

! " ( ai
'

i
#X$$ % i  +  bi

'&i ) .  Then the earlier calculations apply to give us ! " ( ai
'

i
#X$$ % i  +  bi

'&i )  

=  
∑i aib’i - a’ibi, as before.   
 Thus we have 0 = ! "! '

S##  = ∑i aib’i - a’ibi + ! "
S## dg .   But we also have ! "

S## dg  = 

- dg! "
S##  = - d(g! )

S""  = - g!
"S# , by Stokes’ theorem. 

 Then since g and thus g!  is meromorphic on a punctured neighborhood of the poles, the 
residue theorem gives for this last quantity, - g!

"S#  = (2πi)∑k resk(g! ), summed over the poles 

{pk} of ! ' .  (The minus sign goes away since the orientation of S is opposite to that of the disks 
surrounding the poles.) 
 This gives 0 = ! "! '

S##  = ∑i aib’i - a’ibi  + (2πi)∑k resk(g! ), so  

∑i aib’i - a’ibi  = - (2πi)∑k resk(g! ).  Now if ! ' = (ck z-2 +holo)dz near the pole pk, then g = -
ckz-1 near pk, and so g!  = (-ckek z-1 + holo)dz near pk, where ek = the value of !  at pk in 
terms of the local coordinate z.  I.e. ek = (! /dz)(pk), or by abusing notation simply ek = ! (pk).   
Hence assuming ! ' = (ck z-2 +holo)dz near the pole pk, we have  
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(*) ∑i (aib’i - a’ibi)  =  (2πi)∑k ck! (pk). 
 
 This formula appears explicitly in [GH], p. 241, (give or take a minus sign), and is formula (1) in 
the original paper of Roch, [Crelle, 1865].   [Unfortunately the translation in: A source book of 
classical analysis, p.202, Harvard Univ. Press, ed. Garrett Birkhoff, not only contains misprints 
which render the formula incorrect, but also omits arguments which might enable the reader to 
catch the errors.  Hence the original version is preferable even for readers with minimal German.] 
 
 Now apply (*) to the case of a standard differential ! ' of second kind at pk with all A 
periods zero, and let !  = ! j = the standard differential of first kind with all A periods zero 
except over Aj where the period is 1.  Then we have all bi = 0 except bj = 1, and all b’i = 0.  This 
gives - ! '

Bj
"  = -a’j = (2πi)∑k ck! j(pk),  where ! j(pk) is the value of ! j at pk in terms of the 

local coordinate z at pk. 
 Now we re - examine the integration map W(D)-->Cg in Riemann’s proof above of his 
inequality, by computing its matrix in the standard basis for W(D) given by ! '

k = ( z-2 
+holo.)dz near the pole pk, and holo. elsewhere.  Then the map takes ! '

k to !k
'

Bj
"  = -2πi 

! j(pk) = the (j,k) entry of the matrix.  We will compute the rank of this matrix M two ways. 
 A relation among the rows would be a coordinate vector (t1,...,tg) orthogonal to all the 
columns, i.e. such that for all k, we have ∑j tj ! j(pk) = 0.  This is precisely a holomorphic 1 
form ∑j tj ! j that vanishes at all the points pk.  Thus if we denote the space of such forms by 
L(K-D) where D is the divisor D = ∑k pk, then rank(M) = g - dimL(K-D).  It follows that 
dimker(M) = dim(domain(M)) - rank(M) = d - g + dimL(K-D). 
 If we recall that this kernel is precisely the space of differentials df for all f in L(D), we 
have dimL(D) -1 = d - g + dimL(K-D).  Rewriting gives  
 
RRT: dimL(D) = d+1 - g + dimL(K-D). 
 
 It is enlightening also to compute the number of relations among the columns, i.e. the 
vectors orthogonal to the rows.  If (ck) is such a vector, then we have for all j = 1,...,g, that ∑k ck 
! j(pk) = 0.  We interpret this as follows:  if the vector (ck) corresponds to the unique 
differential ! '  of second kind having form  (ckz-2 + holo)dz near pk for every k, and having zero 
A periods, then ! '  is exact if and only if for all j = 1,...,g, the Bj periods ! '

Bj
" are also zero.  But 

we have computed ! '

Bj
" =  (-2πi) ∑k ck ! j(pk).  Thus a relation ∑k ck ! j(pk) = 0 among the 

columns, is equivalent to a differential in W(D) which is exact, i.e. to a differential df, for f in 
L(D).  Thus we see that the row rank, is d - (dim(L(D)-1).  Since this equals the column rank we 
have g - dimL(K-D) = d+1 - dimL(D), so again dimL(D) = d+1-g+dimL(K-D). 
 
 
Summary of the classical proof by Riemann and Roch 
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 Let D = p1 + ....+pd be a divisor of distinct points on a compact connected Riemann 
surface X of genus g, and let L(D) be the space of meromorphic functions on X with at worst 
simple poles contained in the set {p1,...,pd}.  For each point pj let µj be a meromorphic 
differential with exactly one pole, a double pole at pj, and hence residue zero at pj.  Let w1,...,wg 
be basis for the holomorphic differentials on X.  Then for every function f in L(D), the 
differential df belongs to the linear space V(D) of differentials with basis {µ1,...,µd,w1,...wg}.  
Indeed the subspace of differentials of form df in V(D) consist exactly of those differentials in 
V(D) with zero period, i.e. zero integral, around all loops {A1,...,Ag,B1,...,Bg} in a homology 
basis for X.  Thus the period matrix defines a linear map  
V(D)--->C2g whose kernel is isomorphic to L(D)/C.  Since dimV(D) = d+g, the fundamental 
theorem of linear algebra implies  
d+g -(2g) = d-g ≤ dimL(D)/C ≤ d+g.   
 
 Since the period map is injective on holomorphic differentials, in fact the kernel L(D)/C 
does not meet the g dimensional subspace of V(D) spanned by w1,...,wg.  Hence we get a better 
upper bound, dimL(D)/C ≤ d,  
i.e. d-g ≤ dimL(D)-1 ≤ d.  This is Riemann's part of the theorem. 
 
 Roch then analyzed the period matrix defining the map V(D)--->C2g to compute its 
cokernel.  First of all he normalized the meromorphic differentials µ1,...,µd to have all A-periods 
equal to zero by subtracting suitable linear combinations of the wj, and defined W(D) to be the d 
dimensional space of meromorphic differentials with basis {µ1,...µd}.  Then differentiation maps 
L(D) into W(D) and the image, isomorphic to L(D)/C, equals those differentials in W(D) whose 
B periods are also zero.  Thus the B-period map S(D):W(D)--->Cg, again has kernel isomorphic 
to L(D)/C.  Since dimW(D) = d, again we get d-g ≤ dimL(D)-1 ≤ d. 
 
 Next Roch computes explicitly the rank of the B-period matrix S(D).  For this he 
normalized also each holomorphic differentials wj to have all A-periods zero except over Aj 
where the period is 1.  Then he observed that by residue calculus Riemann's bilinear relations as 
above show that the integral of µk over Bj equals -2πi wj(pk).  Hence Riemann's matrix S(D) = 
[ µ kBj
!  ] of periods of meromorphic differentials, is proportional to Roch's matrix T(D) = 

[wj(pk)] of values of holomorphic differentials, (which has come to be called the "Brill Noether" 
matrix, apparently just because they displayed it in a larger format).  It is then elementary that 
the rank of Roch's matrix equals g - dim(K(-D)), where K(-D) is the space of holomorphic 
differentials vanishing at every point p1,...,pd of D.  I.e. the kernel L(D)/C has dimension d - (g- 
dim(K(-D))) = d-g + dim(K(-D)), so dim(L(D)/C) = d-g + dim(K(-D)), i.e. dimL(D) = d+1-g + 
dim(K(-D)).  This is the full classical Riemann Roch theorem.   
 
 After discussing sheaf cohomology below, we will give the sheaf theoretic translations of 
the matrices of Riemann and Roch. 
 
 
Riemann's  derivation of the "Brill Noether" number 
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 Riemann's argument already shows that, in the symmetric product Xd = Xd/Sym(d) 
parametrizing effective (i.e. positive) divisors of degree d, the subvariety X(r,d) of divisors D of 
degree d and dimL(D) > r on a given curve X, has a local determinantal structure.  I.e. his 
calculation says that dimL(D) - 1 = dim ker[S(D)], where S(D) is a (2g) by (g+d) “period matrix” 
for differentials of second kind, parametrized by the divisor D.  Thus X(r,d) is the locus of 
divisors D such that rank(S(D)) ≤ (d-r+g). 
 
 When r = 1, Riemann himself explicitly says this, and immediately concludes that a 
generic curve X of genus g, is expected to have a non constant meromorphic function with at 
most d poles only if d ≥ (g/2) + 1, which he deduces from the inequality (d-1) ≥ (g+1-d) (= 
codimension of the rank (d-1+g) locus, in the space of (2g) by (g+d) matrices).  The similar 
estimate (d-r) ≥ r(g+r-d) gives the “Brill - Noether” estimate for X(r,d) to be non empty for all 
curves of genus g. 
 
 The point here is that Riemann's matrix S(D) defines a map from the divisor variety Xd 
into matrix space Mat(2g, g+d), and we want a condition implying that the image meets the locus 
where rankS(D) ≤ d-r+g.  Since this rank locus has codimension r(g+r-d), Xd has dimension d, 
and the intersection will have dimension r when it is non empty, we expect this to occur when (d-
r) ≥ r(g+r-d).  Equivalently we have g ≥ (r+1)(g-d+r), the so called "Brill - Noether" criterion 
predicting the existence of a divisor D of degree d with dimL(D) > r, on all curves X of genus g. 
 
 
Interpreting Roch's map as a residue pairing 
 It is interesting to notice the following interpretation of the row rank of Roch's matrix.  
Given any vector (ck) in Cd, we may consider it as corresponding to a “principal part” P for the 
divisor D = ∑k pk, where near each point pk we take the principal part Pk = ckz-1 in the local 
coordinate z near pk.  Then we see how to state the criterion for existence of a meromorphic 
function having the principal parts P purely in terms of P and the holomorphic differentials. 
This rewrites Riemann’s exact sequence as follows: 
 

0-->C-->L(D)-->PrinD-->K*,  
 
where the map L(D)-->PrinD takes a meromorphic function to its principal part, supported on 
D.  The map PrinD-->K*, which replaces Riemann’s period map W(D)-->Cg, takes a family of 
principal parts {Pi} supported in D, to the linear functional on holomorphic differentials sending   
 
!    to   ! i resi(Pi ! ).   
 
This interprets the map W(D)-->Cg as a residue pairing  PD-->K*.  
 
The residue condition for existence of a meromorphic function   
 We have seen that a meromorphic function exists with principal parts P if and only if the 
unique standard differential ! '  of second kind associated to P is exact, if and only if for all j the 
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Bj period ! '

Bj
"  = 0, if and only if for all j,  ∑k ck! j(pk) = 0, if and only if for all j the sum of 

the residues at the points {pk} of the family of local differential forms Pk! j  is zero.    
 This just says ∑k res(Pk! j) = 0 for all j,  and since the ! j are a basis for the space of 
global holomorphic differentials, this holds if and only for every holomorphic differential !  we 
have ∑k res(Pk! ) = 0. 
 Thus the vanishing condition on the sum of the residues both characterizes existence of a 
meromorphic differential, and is necessary and sufficient for the existence of a meromorphic 
function.  Given a finite collection {Pk} of principal parts at a finite set of points {pk} of X, 
there is a meromorphic function having precisely those poles and those principal parts if and 
only if for every holomorphic differential !  on X, we have  
∑k res(Pk! ) = 0. 
 
 With a little more reasoning, mostly formal, one can remove the restriction to effective 
divisors.  I.e. if D is any divisor at all, and L(D) is the space of meromorphic functions such that 
div(f) + D ≥ 0, (or f = 0), and L(K-D) is the space of meromorphic differentials !  such that  
div(! )-D ≥ 0, or equivalently the space of meromorphic functions f such that div(f)+K-D ≥ 0, 
where now K denotes the divisor of some fixed differential, then again we have dimL(D) = 
1+deg(D) -g + dimL(K-D). 
 When D is not effective, we no longer have Riemann’s inequalities, since then deg(D)≤ g-
1, so the lower bound dimL(D) ≥ 0 ≥ 1+deg(D) -g is trivial, and the upper bounds dimL(K-D) ≤ g 
and dimL(D) ≤ 1+deg(D) can be false, e.g. if deg(D) < 0. 
 
 
The residue form of the Riemann Roch exact sequence 
 Let k(X) denote the infinite dimensional complex vector space of all rational functions on 
X, and let Prin(X) denote the infinite dimensional space of all finite vectors of principal parts on 
X.  I.e. Prin(X) is the direct sum over all points p of X of the quotient spaces k(X)/Op(X), where 
Op(X) is the subspace of k(X) consisting of rational functions which are regular at p.  Define the 
map Prin(X)-->H0(K)*, where H0(K) is the space of all holomorphic differentials on X, and the 
star denotes dual space, which takes a vector of principal parts {Pk} to the functional whose 
value on !  is the sum of the residues ∑k res(Pk! ).  Let k(X)-->Prin(X) be the natural map 
taking a rational function to its vector of principal parts.  Then we have just shown that the 
Riemann Roch theorem (and the residue theorem) implies this sequence is exact: 
 
 0-->C-->k(X)-->Prin(X)-->H0(K)*-->0,  
where the last map is given by the residue pairing Prin(X) x H0(K)-->C. 
 
 Thus there are exactly g linear conditions that must be satisfied before a given vector of 
principal parts will arise from a global meromorphic function.  Roch’s part of the theorem 
determines to what extent those conditions are independent for a given divisor.  An effective 
divisor D defines a finite dimensional subspace Prin(D) of Prin(X) consisting of principal parts 
whose divisors are bounded below by -D, and then the induced sequence is exact:  0-->C-->L(D)-
->Prin(D)-->H0(K)*.   
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 There is no zero on the right since the equations in H0(K) may not be independent on the 
finite dimensional subspace Prin(D).  By Roch, a holomorphic differential !  defines a trivial 
equation on Prin(D) if and only if !  vanishes at all points of D (assuming D consists of distinct 
points), so we see more precisely the following sequence is exact: 
 
Riemann Roch theorem: 
0-->C-->L(D)-->Prin(D)-->(H0(K-D))! -->0, is exact, 
where (H0(K-D)) is the subspace of H0(K) consisting of holomorphic differentials which vanish 
on D, and (H0(K-D))!  is the subspace of  H0(K)* orthogonal to that subspace. 
   
 This is the full RRT for effective D.  Thus dimL(D) + dim(H0(K-D))!  = dim(C) + 
dimPrin(D), which gives dimL(D) + g - dimL(K-D) = 1 + deg(D), 
i.e. dimL(D) = 1+deg(D) -g + dimL(K-D), as before. 
 
I.e. Riemann’s original exact sequence: 
0-->C-->L(D)-->W(D)-->Cg, where the last map is the B -period map, 
becomes by the reciprocity relations the sequence: 
0-->C-->L(D)-->Prin(D)-->H0(K)*. 
 
Then the cokernel of this sequence is computed by: 
0-->C-->L(D)-->Prin(D)-->H0(K)*-->[H0(K-D)]*-->0. 
The exactness of this sequence is one statement of the classical RRT. 
 
Remark: The sequence 0-->C-->k(X)-->Prin(X)-->H0(K)*-->0 is just the exact cohomology 
sequence 0-->C-->k(X)-->Prin(X)-->H1(O)-->0 of the sheaf sequence 0-->O-->k(X)-->Prin(X)-
->0 which defines the cohomology of O (cohomology is reviewed below) plus the residue 
isomorphism  
H1(O) = H0(K)*. 
 
 
Chapter IV. The general RR problem, the modern approach 
  
part (1): computing the "index" chi(D).  (Hirzebruch RR) 
 As observed above, one can view the problem of computing dim(L(D)) as falling into 
separate parts, first (HRR) find an integer chi(D) closely related to dim(L(D)) but which is a 
deformation invariant, and find a topological formula for this invariant.  Historically I believe 
Serre proved chi(D) is a topological invariant before Hirzebruch found the explicit formula for 
chi(D) in terms of chern cohomology classes.  Then (by Serre or Kodaira vanishing) find 
conditions under which chi(D) = dim(L(D)), i.e. when the extra terms involved in chi(D) are all 
zero.   
   
 The relative difficulty of the steps depends on the definition of chi.  In the case of curves, 
if we define chi(D) = dimL(D) - dim(K(-D)) as Hirzebruch does, then topological invariance is 
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difficult, but since deg(K) = 2g-2 by Hopf’s theorem equating the number of zeroes of a general 
smooth vector field with the euler characteristic, a vanishing condition on  K(-D) is easy,  since a 
holomorphic differential can never have more than 2g-2 zeroes, so chi(D) = dimL(D) when d > 
2g-2. 
 
 On the other hand, if we define chi(D) in terms of sheaf cohomology (discussed briefly 
below) as h0(D) - h1(D), then the proof that the difference chi(D) - chi(O) = d, hence is a 
topological invariant, is easy.  I.e. sheaf theory implies immediately that the difference chi(D) - 
chi(O) increases by 1 for each point added to D.  Since the formula is clearly true when D = 0, we 
are done by induction.  Then the proof that just chi(O) is a topological invariant equal to 1-g, can 
also be done by induction.  We will give this argument below.   
 
  In the cohomological approach, the deep content of RRT for curves is in the proof of 
"Serre duality", which implies h1(D) = dim(K(-D)), and gives both the topological meaning of g, 
and a criterion for chi(D) to equal dimL(D), i.e. for the vanishing of h1(D).  The more limited 
result (HRR) that chi(O) = 1-g, given below, is inspired by the axiomatic proofs of the general 
HRR theorem of Washnitzer and Fulton.   
  
 The usefulness of RRT is that it tells you that for a given divisor D, you should usually 
be able to compute chi(D) fairly easily by HRR, and in some cases, i.e. when D is "large", that 
number will be equal to dimL(D) by Kodaira vanishing.  In the cases of curves and surfaces, 
“Serre duality” which interprets the top cohomology group of D as dual to L(K-D) gives more 
precise information on dimL(D) for arbitrary D. 
   
 We will not say much more about proofs of “vanishing” results, but will discuss some of 
the modern proofs for computing chi(D), i.e. HRR. 
That is, we prove a few things using sheaf cohomology, instead of integrals or Riemann’s results 
on existence of differentials.  We concentrate on results that follow easily from formal properties. 
 
HRR for curves, including a topological computation of chi(O).   
 
 We will use the theory of cohomology for sheaves on curves, e.g. for line bundles 
associated to divisors which we recall next. 
 
Review of cohomology of a line bundle on a curve.   
 Briefly, if M is any line bundle on X, then there is an exact sequence like the one above:  
0-->H0(M)-->Rat(M)-->Prin(M), where Rat(M) is the space of rational sections of M, and 
Prin(M) is the direct sum over all points p in X of the quotients Rat(M)/{rational sections 
regular at p}.  If M = O(D) where D is a divisor, then H0(M) is isomorphic to L(D).  The 
cokernel of the map Rat(M)-->Prin(M) is finite dimensional and denoted H1(M) or H1(D), so  
0-->H0(M)-->Rat(M)-->Prin(M)-->H1(M)-->0 is exact.   
 If D≥0, this agrees with the definition above where H1(O) and H1(D) are the groups 
making the sequences 0-->C->k(X)-->Prin(X)-->H1(O)-->0 and 0-->C->L(D)-->Prin(D)--
>H1(O)-->H1(D)-->0 exact.  Cohomology spaces can also be defined for other sheaves as well, 



31 

e.g. for the quotient of a map of line bundles.  
 
 For example if M = O = the sheaf of regular functions corresponding to the trivial divisor 
0, then we have the exact sequence  
0-->H0(O)-->Rat(O)-->Prin(O)-->H1(O)-->0.  But the only globally regular functions are 
constants, and Rat(O) = k(X), and Prin(O) = Prin(X), so we have 0-->C-->k(X)-->Prin(X)--
>H1(O)-->0.  If we assume RRT, i.e. the exactness of the sequence 0-->C-->k(X)-->Prin(X)--
>H0(K)*-->0, we could deduce that H1(O)is isomorphic to H0(K)* which by RRT has 
dimension g.  However we will give a topological computation that dimH1(O) = g below, without 
assuming RRT. 
 
The long exact sequence property for sheaf cohomology 
 For any short exact sequence 0-->M-->N-->R-->0, of sheaves on a curve X, there is a 
long exact sequence of cohomology groups: 
0-->H0(M)-->H0(N)-->H0(R)-->H1(M)-->H1(N)-->H1(R)-->0.  It follows from the rank - 
nullity theorem that the alternating sum of the dimensions of these spaces is zero, i.e. that chi(M) 
+ chi(R) = chi(N).  
 The most fundamental short exact sequence of sheaves on a curve arises from an effective 
divisor D by letting O(-D) = ID be the ideal sheaf of regular functions vanishing at points of D.  
Then we have the exact sequence 0-->O(-D)-->O-->O|D-->0, where O|D is the sheaf of regular 
functions defined only on the points of D, hence its space of global sections is isomorphic to Cd 
where d = deg(D).  The two non trivial maps in the sequence are inclusion and restriction. 
 
(weak RR) Proposition: chi(D) - chi(O) = deg(D), for any effective divisor D on a curve.   
proof:  This follows from the basic sequence and the additivity of chi.  We have 0-->ID-->OC--
>OD-->0, where ID is the ideal sheaf of the subscheme D in C.  Then we know that ID is 
isomorphic to OC(-D) so we have exact sequences: 0-->OC(-D)-->OC-->OD-->0, which 
becomes  
0-->OC-->OC(D)-->OD|D-->0 after tensoring by OC(D). 
 
 There is no twisting for a line bundle on a finite set, i.e. no obstruction to the existence of 
sections, so the global sections of OD|D have dimension equal to deg(D).  There are also no 
higher cohomology groups for such a zero dimensional scheme so chi(OD|D) = deg(D).  Thus by 
additivity of chi we have chi(OC(D)) - chi(OC) = deg(D).  qed. 
 
 Note this is an inductive argument, on dimension.  I.e. the computation of chi(D)-chi(O) 
reduces to a computation on a finite set, which is trivial.  In a similar way, the analogous 
computation on a surface reduces to the case of RRT for a curve, modulo the adjunction formula 
relating differentials on the surface to those on the curve. 
 
 After the easy proposition above, HRR on a curve consists in completing the 
computation of chi(D) by computing chi(O) as 1-g, where g is the topological genus of the curve.  
One way to do that is inductive, i.e. show that both formulas chi(O) and (1-g) agree for curves of 



32 

lower genus, and then show for a curve of higher genus that: 
 (i) both formulas stay constant under degeneration to a union of curves of lower genus, and  
(ii) both formulas are additive in the same way over lower genus components. 
 
We will state this more precisely in properties A, B below. 
Proposition:  If we define chi(O) = h0(O) - h1(O), then for any smooth complex plane curve X 
of degree d, we have chi(O) = 1 - (d-1)(d-2)/2 =  
1-g, where g is the topological genus of X.  Thus h1(O) = g. 
 
Remark:  We will prove this formula for smooth plane curves, and then use that case as a tool to 
prove it for all smooth curves, planar or not, by projecting them into the plane, and then taking 
into account any nodes acquired by the projection and their effect on both sides of the formula. 
 
proof of proposition.  To show that chi(O) = 1 - (d-1)(d-2)/2 = 1-g, we will compute how chi(O) 
varies as a curve moves in a linear series. 
 
lemma A:  If X,Y are two curves on a smooth surface S, and if X,Y are linearly equivalent as 
divisors on S, then chi(OX) = chi(OY). 
Remark:  This says in some sense chi(O) is a deformation invariant, at least for linear 
deformations. 
proof:  Since the line bundles OS(-X) and OS(-Y) are isomorphic on S, the invariants chi(OS(-X)) 
and chi(OS(-Y)) are equal.  By the usual exact sheaf sequence 0--> OS(-X)--->OS--->OX--->0, 
and the analogous one for Y, plus the additivity of chi, we get that chi(OX) = chi(OS) - chi(OS(-
X) = chi(OS) - chi(OS(-Y)) = chi(OY).  qed. 
 
lemma B:  Now suppose that Y, Y' are curves on a smooth surface S, and that Y and Y' meet 
transversely at precisely n points.  Then we claim chi(OY+Y') = chi(OY) + chi(OY') - n. 
proof:  Consider the sequence 0-->OY+Y'-->OY + OY'-->OY.Y'-->0, induced by the map from 
the disjoint union of Y,Y', to their union Y+Y' on S, and where the map to OY.Y' is the difference 
of the two restrictions, from Y and from Y', to the intersection of Y and Y'.  The additivity of chi 
then implies the desired relation, i.e. chi(OY) + chi(OY') = chi(OY + OY') = chi(OY+Y') + 
chi(OY.Y') = chi(OY+Y') + n.  Thus chi(OY+Y') = chi(OY) + chi(OY') - n.  qed. 
 
 Now that we know how the function chi(O) behaves under linear degeneration, all we 
need is to find a formula that behaves this way, and it must be the formula for chi(O).  Since we 
secretly know also that chi(O) = 1-g, it will suffice to have a formula for the genus of a plane 
curve.  
 
Lemma:  A smooth plane curve X of degree d has genus (d-1)(d-2)/2. 
proof: Note that if d = 1 or 2, then X is isomorphic to P1 which is a sphere of genus zero.  Now 
let a smooth curve of degree d ≥ 3 degenerate into a smooth curve Y of degree d-1 plus a 
transverse line L meeting Y in d-1 distinct points.  Then Y has genus (d-2)(d-3)/2 by induction, 
and L is a sphere which meets Y in exactly d-1 points transversely.  A nbhd of each intersection 
point on Y+L looks topologically like the union of two discs, i.e. like a real quadratic cone x2+y2 
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= z2.   
 We assume the plausible fact that as Y+L moves in a linear system back to become the 
smooth curve X of degree d, that topologically this replaces the cone x2+y2 = z2 by the 
hyperboloid  x2+y2 = z2 + a, for a > 0.  (I.e. acquiring a node occurs by letting a-->0 in x2+y2 = 
z2 + a.) This surgery adds d-2 handles to Y, so that g(X) = g(Y) + d-2.  Thus g(X) =  
(d-2)(d-3)/2 + (d-2) = (d2-5d+6)/2 + (2d-4)/2 = (d2-3d+2)/2 = 
(d-1)(d-2)/2, as claimed.  qed. 
 
This motivates the statement of the next result. 
Corollary:  If X is a smooth plane curve of degree d, then  
chi(OX) = 1 - (d-1)(d-2)/2. 
proof:  Induction on d.  If d = 2, then the smooth conic X moves in a linear series also containing 
a union Y of two lines Y1 + Y2, where each line is isomorphic to X.  Then by lemmas A,B above, 
we have chi(X) = chi(Y1)+chi(Y2) - 1 = chi(X)+chi(X)-1, hence chi(X) = 1.  This proves the case 
d = 2, and since a smooth curve of degree d = 1 is isomorphic to one of degree 2, we also obtain 
the formula for degree d=1. 
 
 Now assume d ≥ 3 and that we have proved the formula for smooth curves of degree < d.  
A smooth degree d curve X moves in a linear series that also contains a curve of form Y = 
Y1+Y2, where Y1 is smooth of degree d-1, and Y2 is a line meeting Y1 transversely in d-1 
distinct points.  Then lemmas A, B and induction give us that chi(OX) = chi(OY) = 
chi(OY1)+chi(OY2)-(d-1) = 1-(d-2)(d-3)/2 + 1 - (d-1) = 1-(d-1)(d-2)/2, as desired.  qed. 
 
Corollary:  If Y is an irreducible plane curve of degree d, with n nodes and no other singularities, 
and X is the normalization of Y, then  
chi(OX) = n+1 - (d-1)(d-2)/2. 
proof:  Blow up the plane at the nodes of Y, obtaining a smooth surface S, on which the total 
transform of Y is the union of the smooth curves X and X', meeting transversely at 2n points, 
where X' is a disjoint union of n lines.  Let E be a smooth plane curve of degree d which does not 
pass through the n points, so that E also lies on S and is linearly equivalent to X+X' there.  Then 
by the formulas above, applied to the blown up plane S, (and which do not use connectivity of 
X'), we have 1 - (d-1)(d-2)/2 = chi(E) = chi(X+X') = chi(X) + chi(X') - 2n = chi(X) + n -2n = 
chi(X) - n.  So chi(X)  =   
n+1 - (d-1)(d-2)/2, as claimed.  qed. 
 
Cor:  For a smooth compact connected curve X of genus g, chi(OX) = 1-g. 
proof:  It is known that X is isomorphic to the normalization of an irreducible plane curve of 
some degree d with n nodes where g(X) =  
(d-1)(d-2)/2 - n.  I.e. a smooth curve of degree d has genus (d-1)(d-2)/2 and each node lowers the 
genus by one.  Thus for such a curve X we have chi(OX) = n+1 -(d-1)(d-2)/2 = 1 - g(C).  qed. 
 
 
Sheaf theoretic versions of the original Riemann and Roch maps 
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 I claim the argument above essentially recaptures just Riemann's part of the original RR 
theorem.  Recall Riemann's (g by d) "B-period" map  
S(D):W(D)--->Cg with kernel isomorphic to L(D)/C, where the only omission was he did not 
calculate the cokernel.  The sheaf version of this period matrix is essentially the coboundary map 
H0(X,O(D)|D)-->H1(X,O), induced from the sheaf sequence 0-->O-->O(D)-->O(D)|D-->0, used 
above to compute chi(D) - chi(O), while Roch's evaluation map is the transpose of the restriction 
map H0(X,O(K))-->H0(X,O(K)|D), induced from the sequence  
0-->O(K-D)-->O(K)-->O(K)|D-->0.  This is fairly clear for Roch’s map. 
   
 For the period map (in Roch’s normalization), the source is the space of meromorphic 
differentials with poles only at the points of D, of order at most 2 and with all residues zero, 
modulo holomorphic differentials.  By the converse of the residue theorem, this is equivalent to 
the space of possible principal parts of such differentials at the points of D, i.e. the sections of a 
skyscaper sheaf supported on D.  Now the sections   H0(X,O(D)|D) of the skyscraper sheaf 
O(D)|D, is the space of possible principal parts for meromorphic functions with pole divisor 
supported in D, and differentiation takes this space by the converse of the residue theorem to 
one isomorphic to the source space for the period map S(D). 
   
 The target for Riemann’s map is the orthogonal complement (HA)perp in H1(X,C) of the 
span HA of the of A - cycles in H1(X,C).  Since the subspaces (HA)perp and H0(K) are 
complementary in H1(X,C), we may regard (HA)perp as naturally isomorphic to the quotient 
H1(X,C)/H0(K) = H1(X,O).  I.e. the period map on meromorphic differentials goes into 
H1(X,C), so the period map on meromorphic differentials modulo holomorphic ones (i.e. 
normalized meromorphic differentials), goes into H1(X,C)/H0(K) = H1(X,O). 
 
 So the coboundary map H0(X,O(D)|D)-->H1(X,O) may be thought of as the 
composition taking a principal part in H0(X,O(D)|D) by differentiation to a principal part for a 
meromorphic differential of second kind, then to a unique such differential (modulo holomorphic 
ones), then to a cohomology class in  H1(X,C)/H0(K) = H1(X,O). 
 
 As we have seen, Riemann knew the kernel of this map was isomorphic to L(D)/C, and 
that the target space has dimension g, but did not compute the cokernel H1(D).  To be honest we 
should admit that calling the cokernel H1(D) is not computing it but merely giving it a name, so 
with this sequence we are in the same situation as Riemann. 
 
 However what Roch essentially showed is that the exact cohomology sequences coming 
from the two sheaf sequences  
0-->O-->O(D)-->O(D)|D-->0, and 0-->O(K-D)-->O(K)-->O(K)|D-->0, are "dual" to each other, 
i.e. the sequence of maps: 
 
(1)  



35 

0-->H0(O)-->H0(O(D))-->H0(O(D)|D)-->H1(O)-->H1(O(D))-->0, 
 
is dual to the following sequence: 
(2) 0-->H0(O(K-D))-->H0(O(K))-->H0(O(K)|D)-->H1(O(K-D))-->H1(O(K))-->0. 
 
I.e. Roch showed the cokernel H1(D) of the coboundary  
H0(O(D)|D)-->H1(O), is dual to the kernel H0(O(K-D)) of the evaluation H0(O(K))--
>H0(O(K)|D).  Since this duality result is all we need to enhance the argument above for the 
equation chi(D) = d +1-g, to obtain the full RR equation, we sketch next an algebraic sheaf 
version of that duality, taken from Serre, and using an idea of Weil.  
 
 
Serre's and Weil's algebraic approach to duality via residues 
 The fact that the sequence 0-->C-->k(X)-->Prin(X)-->H0(K)*-->0 is exact, via the 
residue pairing is the appropriate point of view in trying to prove the RRT algebraically.  In one 
approach, Serre recovers the theory of residues purely algebraically, by pulling back direct 
calculations from P1 to branched covers of P1, and verifies again that they give necessary and 
sufficient conditions for a vector of principal parts to come from a  meromorphic function.  This 
point of view seems to have been introduced by Andre Weil who used a universal space 
parametrizing principal parts called “adeles”, or “repartitions” by Serre. 
 
 I will briefly review the proof as presented by Serre in Groupes algebriques et corps de 
classes, (and I recommend reading Serre).  Let k(X) be the field of rational functions on the curve 
X, and let Prin(X) be the space of principal parts, i.e. Prin(X) is the direct sum over all points p 
of X of the quotients k(K)/Op(X), where Op(X) is the local ring of rational functions regular at 
p.  An element of k(K)/Op(X) should be thought of as a principal part at p for a rational 
function.  Then there is an exact sequence  0-->C->k(X)-->Prin(X), where C is the complex 
numbers and k(X)-->Prin(X) takes a function f to its principal part at each point.  Then the 
cokernel of this map is called H1(O), the obstruction group measuring which principal parts 
occur from global rational functions.  So we have an exact sequence:  0-->C->k(X)-->Prin(X)--
>H1(O)-->0.  A basic result says H1(O) is finite dimensional over the algebraically closed base 
field k. 
 
 If D is any effective divisor, define L(D) the finite dimensional subspace of k(X) of 
rational functions with pole divisors bounded below by -D, and Prin(D) to be the finite 
dimensional subspace of Prin(X) of principal parts bounded below by -D.  Then the sequence 
above restricts to 0-->C->L(D)-->Prin(D)-->H1(O).  Then H1(D) is by definition the cokernel of 
the last map, i.e. the quotient H1(O)/ImPrin(D). 
 
 Now define the space R of repartitions, where an element of R is an assignment to each 
point of an element of k(X), and where all but a finite number of points p are assigned elements 
in Op(X).  Note that the space Prin(X) is a subspace of the product of all quotients k(K)/Op(X).  
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The product of k(X) over all points maps to the product of all quotients k(K)/Op(X), and R is 
the inverse image of Prin(X) under this map.  There are canonical maps k(X)-->R-->Prin(X). 
 
 For any divisor D, let R(D) be the subspace of R such that at every point the order of the 
function there is bounded below by the order of -D at that point.  Then we have R/[R(D)+k(X)] 
= H1(D).  For example note that the natural map R-->Prin(X) has kernel R(0), that Prin(X) = 
R/R(0), and hence H1(O) = Prin(X)/k(X) = R/[R(0)+k(X)]. 
 
 We want to show for all D that H1(D)* = H0(K-D).  The advantage of this approach is 
that all the groups H1(D) are quotients of the same space R/k(X).  Hence their duals are all 
subspaces of the dual of R/k(X).  In fact one shows that the union for all divisors D, not just 
effective ones, of the dual spaces H1(D)* is the dual space of R/k(X).  Then one considers 
Rat(K) the space of all rational differentials on X, isomorphic to k(X). 
   
 The key step is the residue pairing  R x Rat(K)-->k, taking a repartition P and a 
differential w to the sum of the residues of Pw.  After proving the residue theorem algebraically, 
one has that the kernel of this pairing on the left contains k(X).  Then there is an induced pairing 
of 
R/k(X) x Rat(K) -- >k, and an induced map Rat(K)-->(R/k(X))*. 
 
 Then Serre shows that (R/k(X))* is a vector space over not just k, but over k(X), and in 
fact, it has dimension ≤ 1 over k(X), the same dimension as Rat(K).  Then to show the map 
Rat(K)-->(R/k(X))* is an isomorphism it suffices to show it is not zero.  Then one checks the 
isomorphism restricts to isomorphisms of the various subspaces     
H0(K-D)-->H1(D)*. 
 
 
Proof of Hirzebruch Riemann Roch for smooth surfaces Sd in P3. 
 We follow the same approach as for curves.  I.e. we define cohomology groups for 
sheaves on surfaces, in particular for divisors and line bundles.  This time for a sheaf M there are 
groups H0(M), H1(M), H2(M), and we define chi(S,M) = dimH0(M) - dimH1(M) + dimH2(M) 
= h0(M)-h1(M)+h0(M).  In particular chi(S) = chi(S,O) = h0(O)-h1(O)+h0(O).  
 Then the same exact sequences prove that chi of a union of transverse surfaces in P3 is 
additive in the same way as for curves.  If a smooth surface of degree d moves in a linear series to 
become a transverse union of a smooth surface of degree d-1 and a plane, we get chi(Sd) = chi(Sd-
1) + chi(P2) - chi(Cd-1) where Cd-1 is a smooth plane curve of degree d-1.  A direct computation 
with Cech cohomology shows chi(P2) = 1, so this determines chi(Sd) recursively for all d. 
 
Topological euler characteristic of a smooth surface in P3 
 Now by taking a Lefschetz pencil of planes through a general fixed line L in P3, it is 
known we fiber a smooth surface S of degree d by plane curves which are generically smooth of 
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degree d, but with exactly d(d-1)2 singular curve fibers each having exactly one node.  If we blow 
up the surface S at its d intersection points with L, to obtain a new surface T, we get a morphism 
T-->P1 with those same plane curves as fibers.  Then by “multiplicativity” of e as in the cubic 
surface example above, the euler characteristic e(T) = 2(2 -2g) + d(d-1)2 = 2(2- (d-1)(d-2))  + d(d-
1)2, where g = (d-1)(d-2)/2 is the genus of a generic fiber of T.  Since blowing up a surface adds 
one homology 2 cycle at each point blown up, we have  
 
e(S) = e(T) - d = 2(2 - (d-1)(d-2)) + d(d-1)2 - d  =  d(d2-4d + 6). 
 
This direct computation agrees, happily, with the one we derived earlier from Noether’s formula 
and completeness of the adjunction series.  
 
Canonical class of a smooth surface in P3 
 Now we are going to assume we know the algebraic computation of regular differentials 
on an embedded surface, i.e. the adjunction formula, that a canonical class on Sd is cut out by 
surfaces of degree d-4, hence the self intersection of the canonical class K on S is K2 = d(d-4)2.  
Thus we have (1/12)(e(Sd) + K2) = d(d2-6d+11)/6 = f(d). 
 
Noether's formula for a smooth surface Sd in P3 
 It is easily proved by induction that the formula d(d2-6d+11)/6 = f(d) satisfies the same 
recursive relations as did the formula for chi(O).  I.e., f(1) = f(2) = f(3) = 1, and f(d) - f(d-1) = 
chi(Sd) - chi(Sd-1) =  
(d-2)(d-3)/2.  Since these relations determine the values of the formula for all d, all these formulas 
must be equal.  Thus f(d) = d(d2-6d+11)/6 = (1/12)(e(Sd) + K2) = chi(OSd), for all smooth 
surfaces Sd of degree d in P3.  Thus we not only have Noether's formula for chi(O), but we also 
have an explicit polynomial for chi(OSd) as a function of d. 
 
Topological implications of Hodge theory 
 We deduced Noether’s formula and the equation chi(O) =  
d(d2-6d+11)/6, assuming only elementary adjunction as proved in Shafarevich, vol 1, and some 
elementary topology.  If we assume also Hodge/Dolbeault theory, chi(O) = 1 -h1,0 + h2,0, where 
hi,0 = dimension of space of holomorphic i - forms.  Since adjunction gives a formula for h2,0, 
comparing these formulas shows that chi(O) = 1+h2,0, hence  
h1,0 = 0 for every smooth surface S in P3. Then again by Hodge theory, the topological 
cohomology group H1(S,C) = 0, and by universal coefficients H1(S,Z) = 0, which is one of the 
facts also deducible from Lefschetz theory. 
 
Extending the argument:   
 We could prove Noether's formula for any smooth surface S by this method, projecting S 
into P3 and computing chi, the Euler characteristic, and canonical divisor, for a non singular 
blowup, taking into account how these invariants change under blowup.  This is harder than for 
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curves, since a surface projected to P3 acquires a node curve having also cusps and triple points, 
so the nonsingular surface differs more from its projected model than does a curve.  This is 
carried out in Griffiths and Harris’  book, and in Ragni Piene's paper. 
 
The inductive argument for chi(D)-chi(O) on a surface 
 To obtain the full HRR for smooth surfaces, we need to show that  
chi(D)-chi(O) = (1/2)(D.[D-K]).  From the exact sequence 
0-->O-->O(D)-->O(D)|D-->0 where D is a smooth curve on a smooth surface S, and the 
additivity of chi, we have chi(D)-chi(O) = chi(O(D)|D).  Since on D, the restriction of D has 
degree D.D, the RRT on D gives us  chi(O(D)|D) = 1-g + D.D, where g = g(D).  Since KD = 
(KS+D)|D also implies that 1-g = -(1/2)(KS+D).D, we get  chi(D) -chi(O) = D.D - (1/2)D.(K+D) 
= (1/2)[D.(D-K)].  Then from Bertini’s’s theorem that every divisor is equivalent to a difference 
of smooth curves, one can deduce the theorem for a general divisor D. 
 
Cor:  HRR for a smooth surface S in P3: 
chi(D) = (1/2)[D.(D-K)] + (1/12)(K2 + e(S)). 
 
 As we said, this formula is true for all smooth projective algebraic surfaces, and all 
divisors, but we have proved it, assuming the adjunction formula for hypersurfaces, only for 
smooth surfaces in P3 and a divisor D equivalent to a smooth curve on S. 
 
 
 
V. Statement of the general HRR theorem in dimension n 
 
Computing chi(O) in terms of the Todd class. 
 The proofs above of Noether's formula for curves and surfaces required knowing the 
answer for Noether's formula in advance, i.e. the formulas chi(O) = 1-g, for curves, and chi(O) = 
(1/12)(e(S) + K2) for surfaces, and then finding polynomials for these expressions.  We did not 
say where the formulas for chi(O) came from, although we did show how to compute the 
polynomial expressions for it.  We knew Noether's formula for curves and surfaces, but what is it 
in general?  Hirzebruch developed a useful formalism for expressing them all.    
 To prove such formulas in all dimensions one has to note some kind of pattern.  One 
characteristic of chi(O) is multiplicativity, i.e. chi(OXxY) = chi(OX).chi(OY).  If one has enough 
such properties to characterize the formula chi(O), one can look for a sequence of polynomials 
with these properties, and these must be formulas for chi(O). 
 
Chern roots of X 
 The following computation turns out to work.  Let X be a smooth projective variety of 
dimension n and let ! 1,...,! n  be the chern roots of X, i.e. formal symbols such that the chern 
classes of TX are the elementary symmetric functions in the gammas.  E.g. if TX is a direct sum 
of line bundles, the gammas are the first chern classes of those line bundles.  It does not matter in 
the following discussion if you know what chern classes mean, but it is nice to know the simplest 
case c1.  If M is a line bundle on X, and s is a meromorphic section of M, then the first chern 
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class of M, c1(M), is the cohomology class Poincare dual to the divisor of s, i.e. to the divisor (s) 
= (s)zero - (s)pole.  It is also basic that a vector bundle E of rank r on X, has r+1 chern classes c0 
= 1, c1,...,cr, where ci lies in H2i(X,Z).  The total chern class c(E) is the sum c(E) = 1+c1+...+cr 
in the graded ring H*(X,Z). The Whitney product formula for a direct sum of bundles says that 
c(E+F) = c(E)c(F).  This is useful for calculating one of these when the other two are known.  
The chern class of X is the chern class of its tangent bundle c(TX).  
 
Todd class of X 
 The Todd class of X is a certain polynomial in its chern classes.  We will define it as a 
power series in the chern classes which of course terminates since the ring H*(X,Z) is zero in 
degrees above 2dimC(X).  Since we want a polynomial with certain multiplicative properties, it is 
not entirely shocking that the exponential series appears in this context.  We will also need to 
invert certain power series formally.  Recall the geometric series formula  1/(1-x) = 1+x+x2+..... 
tells how to invert any power series 1- xf(x) with constant term 1, as  
1/[1-xf(x)] = 1 + xf(x) + [xf(x)]2 + ...... 
 The power series 1-e-x has zero constant term, and linear term equal to x, so is not 
invertible, hence we cannot define x/(1-e-x) to be  
x(1-e-x)-1.  But  (1-e-x)/x has constant term equal to 1, hence is invertible.  So we define x/(1-e-x) 
= [(1 - e-x)/x ]-1 = Q(x).  Then let ! (x) =  [Q(! 1).....Q(! n )] = the "Todd class" of X, where the 
gammas are the chern roots of X.  This expression is symmetric in the gammas, hence can be 
expressed as a function of the chern classes.  This lives in the cohomology ring H*(X,Q), where 
Q is the rational numbers, since we needed to use denominators to invert the power series. 
 
General Noether formula 
 Hirzebruch proved the formula of Todd (who assumed an unproved lemma of Severi), 
that chi(O) equals the homogeneous part of degree n of the Todd class, i.e. for a smooth 
projective variety of dimension n, 
chi(OX) = [ ! (x) ]n = [Q(! 1).....Q(! n )]n.  This is a symmetric function in the chern roots, hence 
expressible in terms of chern classes.  This tedious algebraic task is made easier by formulas in 
chapter 1 of Hirzebruch. 
 
HRR in dimension n:  If D is a divisor with chern class d, on the smooth projective n 
dimensional variety X, i.e. c1(O(D)) = d, then  
chi(O(D)) = [ed. ! (x)]n = the homogeneous part of degree n of the product [ed.! (x)], in the 
cohomology ring H*(X,Q), (evaluated on the fundamental class of X to give a rational number, 
which by this theorem is always an integer). 
 
These power series can be calculated by hand for low dimensions: 
arithmetic genera:  
chi(O) = (1/2)c1 = 1-g for a curve, 
chi(O) = (1/12)(c12+c2) = (1/12)(K2+e) for a surface,  
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chi(O) = (1/24)(c1c2) for a threefold. 
 
euler characteristics of general divisors: 
chi(D) = d+(1/2)c1 = d+1-g, for curves, 
chi(D) = (1/2)(d2 + dc1) + (1/12)(c12+c2)  
     = (1/2)(D.[D - K]) + (1/12)(K2 +e), for surfaces, and 
chi(D) =  (1/12)(2d3 + 3d2c1 + d[c12+c2]) + (1/24)c1c2, for threefolds. 
 
Chern classes of smooth projective hypersurfaces   
 These invariants are computable for a smooth hypersurface Xn in projective space by the 
Whitney product formula.  We define the total chern class c(E) of a rank k bundle E in the graded 
ring H*(X) as the sum 1+c1+...+ck, and then c(E+F) = c(E)c(F).  If X is a hypersurface in Pr, 
then T(Pr) = T(X)+N, where T denotes tangent bundle, and N is the normal bundle of X in Pr.  
Since one can compute the total chern class of T(Pr) is (1+h)r where h = c1(O(1)) is the class in 
H2(Pr,Z) dual to a hyperplane, and the normal bundle N of Xn is O(n)|X, we can solve for 
c(TX).  Thus c(X) = (1+c1+...+cn-1) = c(Pr).(c(O(n)))-1 = (1+h)r.(1+nh)-1, where (1+nh)-1 = 1-
nh +n2h2-n3h3+ -..... 
 
Invariants of smooth threefolds in P4   
 For a smooth threefold Xn of degree n in P4,  
c1 = (5-n)h,  
c2 = (10-5n+n2)h2,  
c3 = (10-10n+5n2-n3)h3 = e(X), and  
chi(OX) = (1/24)c1c2 = (1/24)n(5-n)(10-5n+n2),  
since h3 acts on X as intersection with a line, hence has value n. 
   
Intermediate Jacobians of Cubic threefolds in P4 
 It follows from arguments below that chi(O) is a birational invariant over C, but chi(O) = 
1 for a cubic threefold X3, so the arithmetic genus does not distinguish X3 birationally from P3.  
It was long believed that X3 was not birational to P3, but a correct proof eluded everyone for 
years.  Then it was noticed that since P3 has no 3rd cohomology, if X3 were birational to P3 it 
would place a subtle geometric restriction on H3(X3) as follows.  Hironaka observed that if X3 
were birational to P3 blownup say along a curve C, then the structure of H3(X) would parallel 
that of H1(C).   Since the topological euler characteristic of a cubic threefold is c3(X3) = -6, 
and the other betti numbers agree with those for P4, we get b0 = b2 = b4 = b6 = 1, and b1 = b5 = 
0.   Thus b3 = 6+4 = 10, and since b3 = h0,3 + h1,2 + h2,1 + h3,0 by Hodge theory where h0,3 = 
h3,0 = dim(K) = dimH0(O(-2)) = 0, we see that h2,1 = 5.  Then H3(X3,Z) is a lattice with a 
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symplectic intersection pairing, in the 5 dimensional complex vector space H2,1(X)*. 
  
 
Non rationality of a smooth cubic threefold  
 By Hironaka’s argument, if X3 were birational to P3, there would exist a genus 5 curve C, 
and a complex isomorphism of H2,1(X)* with H0(C,K)*sending the lattice H3(X3,Z) to the 
lattice H1(C,Z), and preserving the intersection pairings.  Griffiths and Clemens showed no such 
isomorphism is possible as follows.  Taking the quotient of the complex vector space by the 
lattice gives a compact complex torus, (the Jacobian of C, or intermediate Jacobian of X), and the 
symplectic pairing defines a cohomology class on the torus which determines up to translation a 
unique "theta" divisor !  on the torus.  An isomorphism as above preserving the symplectic 
pairings on lattices would induce an isomorphism of tori preserving the theta divisors, up to 
translation, hence preserving the Gauss maps of the theta divisors.   
 C-G computed the Gauss map on the theta divisor for the threefold X3 and showed it had 
a different branch locus from that computed by Andreotti in the case of the theta divisor for a 
curve.  Amazingly, the branch locus of the Gauss map for ! (X) was the “dual variety” of 
tangent hyperplanes to X, just as the branch locus of the Gauss map for ! (C) was the dual 
variety for the canonical model of C.  In particular, since a complex projective variety is 
determined by its dual variety, the varieties X and C are completely determined by their 
Jacobians, i.e. by the periods of integrals of their middle dimensional differential forms, so 
Torelli’s theorem holds for cubic threefolds as well as curves. 
 This illustrates the fact of life that, useful as they are, integer valued invariants like chi(O) 
usually suffice to distinguish only radically different varieties.  Varieties which are very similar, 
such as hypersurfaces of degree ≤ n+1 in Pn, may require extremely subtle measures to 
distinguish them.  According to Kolla’r, it is thought that probably no smooth projective 
hypersurface of degree ≥ 4 is ever birational to a projective space, but there is apparently very 
little evidence either way.  
 
Birational invariance of the arithmetic genus in characteristic 0 
 We have seen that chi(O) is a linear deformation invariant, i.e. constant for hypersurfaces 
in the same linear series on some ambient variety, and (by Noether’s formula) even a 
diffeomorphism invariant.  One can show  over the complex numbers, and more generally in 
characteristic zero, chi(O) is also a birational invariant.  The analytic argument is as follows. 
chi(O) = h0(O) - h1(O) + h2(O) - +.........hn(O), which by Dolbeault theory =  h0,0 -h0,1+h0,2 - 
+......h0,n,  which by Hodge duality 
= h0,0 -h1,0+h2,0 - +......hn,0,  which by Dolbeault theory 
= h0(O) - h0(Ω1) + h0(Ω2) - + ......h0(Ωn). 
 The dimensions h0(Ωi) of the spaces of i-forms, for 0 ≤ i ≤ n, are birational invariants 
even in positive characteristic (using the Hartogs principle, as in Shafarevich BAG), but we have 
Hodge theory to equate them with the numbers hi(O) only over the complex numbers.  For 
smooth complex projective varieties the hi(O) are birational invariants, as is chi(O).  I.e. hi(O) = 
h0,i = hi,0 = h0(Ωi) for all i, 0 ≤ i ≤ dim(X). 
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 Using birational invariance, we could compute chi(P2) in section IV above without Cech 
cohomology, since P2 is birational to a smooth quadric surface Q in P3.  Since Q is linearly 
equivalent in P3 to the transverse union of two copies of P2, and since chi(P1) = 1, it follows 
from chi(P2) = chi(Q) = chi(P2)+chi(P2)- chi(P1), that chi(P2) = chi(P1) = 1.  This is the analog 
of the argument we gave for the plane curve P1.  The same argument shows that chi(Pn) = 1 for 
all n, since every smooth quadric is birational to projective space. 
 
Exercises using RRT for curves 
Assume these facts: 
 If D is a divisor on a curve C and L(D) the space of meromorphic functions f with 
div(f)+D ≥ 0, then the projective space P(L(D)) is isomorphic to the space |D| of effective 
divisors of form E = D+div(f) for f in L(D), by the map taking [f] to div(f)+D.   
 The map f:C-->|D|* taking a point p to the hyperplane of divisor E with p contained in E, 
is everywhere defined on C if and only if no point of C is contained in all divisors of |D|, if and 
only if for all p, dimL(D-p) < dimL(D).  In this case the image curve spans |D|* and 
degf(C).deg(f) = deg(D). 
 If well defined, the map C-->|D| is injective if for all p ≠ q there is a divisor in |D| 
containing p but not q, iff dimL(D-p-q) < dimL(D-p).  A well defined map is an embedding if it is 
injective and for all p, some divisor contains p but not 2p, i.e. if and only if for all p, dimL(D-2p) 
< dimL(D-p). 
Prove:  
 (i) The map f:C-->|D|* is an embedding iff for all points p,q of C,  
dimL(D-p-q) = dimL(D)-2. 
 (ii) C is isomorphic to P1 iff there is a one point divisor p on C such that dimL(p) = 2. 
 (iii) For g ≥ 1, the map associated to a canonical divisor K is always well defined, and 
fails to be an embedding iff there exists a divisor of degree 2 on C, D = p+q, such that dimL(p+q) 
= 2. 
 (iv) For g ≥ 2, if there is a divisor p+q with dimL(p+q) = 2, then any other such divisor 
belongs to |p+q|.  (Hint: the map defined by K factors through the map defined by |p+q| and by 
the Veronese map P1-->Pg-1.) 
 (v) If C is embedded as a spanning curve of degree 2g-2 in Pg-1 then any hyperplane cuts 
on C a canonical divisor. 
 (vi) If C is a smooth plane quartic curve, then C has no divisor p+q with dimL(p+q) = 2. 
 (vii) If C has genus 1, then any divisor D of degree 3 defines an embedding of C as a 
smooth plane cubic. 
 (viii) If C is a smooth curve of genus 4 and degree 6 spanning P3, show C lies on a 
quadric surface Q, and on a cubic surface F not containing Q. 
 (ix) Show any divisor of degree ≥ 2g+1 on C gives an embedding. 
 (x) If there exists a 3 to 1 branched cover f:C-->P1, but no such 2 to 1 cover, then prove 
the 3 points of every fiber f-1(y) over a point y of P1, lie on a trisecant of the “canonical model” 
of C defined in (iii). 
 
An exercise using RRT for a surface.  Let S be a smooth cubic surface in P3, let m be a line on 
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it, and let C be a conic such that m+C is a plane section of S.  Assume that (- m - C) = K is a 
canonical divisor on S.  Considering any other plane section through m, cutting m+D, where D is 
another conic, argue that C.D = 0 = C.C.  Using the fact that chitop(S) = 9, compute chi(OS(C)) 
= 2.  Try to check the hypothesis of the vanishing theorem for C to show in fact chi(C) = h0(C) 
= dimL(C).  This proves there is a map from S to P1 having C as a fiber.  We have seen such a 
map above, namely projection from m.  This also proves more, i.e. that this projection map uses 
all the functions in L(C).  Thus any meromorphic function on S with zero divisor equal to one of 
the conics incident to m must have as pole divisor some other one of those conics.  I.e. the pencil 
of conics occurring as fibers of this map is a maximal linear family of curves on S. 


