ALGEBRA QUALIFYING EXAM, SPRING 2013

Instructions: Complete all 8 problems. In multi-part problems, you may assume the result of any part (even if you have not been able to do it) in working on subsequent parts.
(1) Let R be a commutative ring.
(a) Define a maximal ideal, and prove that R has a maximal ideal.
(b) Show that an element $r \in R$ is not invertible if and only if it is contained in a maximal ideal.
(c) Let M be an R-module. Recall that for $\mu \in M, \mu \neq 0$, the annihilator of μ is the set $\operatorname{Ann}(\mu)=\{r \in R: r \mu=0\}$. Suppose that I is an ideal in R which is maximal with respect to the property that there exists an element $\mu \in M$, such that $I=\operatorname{Ann}(\mu)$, for some $\mu \in M$. (In other words, $I=\operatorname{Ann}(\mu)$ but there does not exist $\nu \in M$ with $J=\operatorname{Ann}(\nu) \subsetneq R$ such that $I \subsetneq J$.) Prove that I is a prime ideal in R
(2) (a) Define a Euclidean Domain.
(b) Define a Unique Factorization Domain.
(c) Is a Euclidean Domain also a Unique Factorization Domain? Give either a proof or a counter example (with justification).
(d) Is a Unique Factorization Domain also a Euclidean Domain? Give either a proof or a counter example (with justification).
(3) Let P be a finite p-group. Prove that every nontrivial normal subgroup of P intersects the center of P nontrivially.
(4) Define simple group. Prove that a group of order 56 can not be simple.
(5) Let $T: V \rightarrow V$ be a linear map from a 5 -dimensional complex vector space to itself, and suppose that $f(T)=0$ where f is the polynomial $f(x)=x^{2}+2 x+1$.
(a) Show that there does not exist any vector $v \in V$ such that $T v=v$, but that there does exist a vector $w \in V$ such that $T^{2} w=w$.
(b) Give all the possible Jordan canonical forms of a linear transformation T which satisfies the above relation $f(T)=0$.
(6) Let V be a finite dimensional vector space over the field F and let $T: V \rightarrow V$ be a linear operator with characteristic polynomial $f(x) \in F[x]$.
(a) Show that $f(x)$ is irreducible in $F[x] \Leftrightarrow$ there are no proper nonzero subspaces W of V with $T(W) \subseteq W$.
(b) If $f(x)$ is irreducible in $F[x]$ and the characteristic of F is 0 , show that T is diagonalizable when we extend the field to its algebraic closure.
(7) Let $f(x)=g(x) h(x) \in \mathbb{Q}[x]$. Let $E / \mathbb{Q}, B / \mathbb{Q}$, and C / \mathbb{Q} be splitting fields of $f(x), g(x)$ and $h(x)$, respectively.
(a) Prove that $\operatorname{Gal}(E / B)$ and $\operatorname{Gal}(E / C)$ are normal subgroups of $\operatorname{Gal}(E / \mathbb{Q})$.
(b) Prove that $\operatorname{Gal}(E / B) \cap \operatorname{Gal}(E / C)=\{1\}$.
(c) If $B \cap C=\mathbb{Q}$ show that $\operatorname{Gal}(E / B) \operatorname{Gal}(E / C)=\operatorname{Gal}(E / \mathbb{Q})$.
(d) Under the hypothesis of (c) show that $\operatorname{Gal}(E / \mathbb{Q}) \cong \operatorname{Gal}(E / B) \times \operatorname{Gal}(E / C)$.
(e) Use (d) to describe $\operatorname{Gal}(\mathbb{Q}[\alpha] / \mathbb{Q})$ where $\alpha=\sqrt{2}+\sqrt{3}$.
(8) Let F be the field of 2 elements and K a splitting field of $f(x)=x^{6}+x^{3}+1$ over F. This polynomial is known to be irreducible (you may assume this).
(a) Show that if r is a root of f in K, then $r^{9}=1$ but $r^{3} \neq 1$.
(b) Find $\operatorname{Gal}(K / F)$ and express each intermediate field between F and K as $F(b)$ for appropriate b in K.

