ALGEBRA QUALIFYING EXAM, FALL 2022

Directions: Each part of each problem is worth $\frac{12}{n}$ points, where $n \in \{2, 3, 4\}$ is the number of parts of the problem. You may use the result of any part of a problem in your solution to any subsequent part, whether you solved the previous part correctly or not.

1. Suppose G is a finite group acting on a set X.

- (a) Let $x \in X$. Define the *G*-orbit of x, $\operatorname{Orb}_G(x)$, and the *G*-stabilizer of x, $\operatorname{Stab}_G(x)$.
- (b) Prove that every orbit is a finite set and its cardinality divides the order |G| of the group.
- (c) Let $g \in G$. Prove that the set of distinct conjugates of g has cardinality that divides the order |G| of the group.
- (d) Prove Cauchy's Theorem: Suppose G is finite and p | |G| for some prime p ∈ Z. Then G has an element of order p.
 (Suggested outline: Define and study an action of the cyclic group of order p on the set X = {(g₁, g₂, ..., g_p ∈ G^p | g₁g₂ ··· g_p = 1} \ {(1, 1, ..., 1)}.)

2. Let $m \in \mathbb{R} \setminus \{0\}$, let τ_1 be the isometry of \mathbb{R}^2 given by reflection through the line y = 0, let τ_2 be the isometry of \mathbb{R}^2 given by reflection through the line y = mx, and let $G := \langle \tau_1, \tau_2 \rangle$ by the subgroup of isometries of \mathbb{R}^2 generated by τ_1 and τ_2 .

- (a) Find necessary and sufficient conditions on m for G to be finite.
- (b) When G is finite, show that it is isomorphic to a dihedral group D_n of order 2n (and explain what n is in terms of m).

3. Let R be a commutative ring with 1.

- (a) Let S be a subset of R that contains 1 and that is closed under multiplication. Show that if I is an ideal of R that is maximal with respect to the exclusion of S (i.e., such that $I \cap S = \emptyset$), then I is a prime ideal.
- (b) Let S be as above, and suppose moreover that for all $x, y, z \in R$, if x = zy and $x \in S$ then also $y \in S$. Show that $R \setminus S$ is a union of prime ideals.

4. If F is a field, V is an F-vector space, and $T: V \to V$ is an F-linear endomorphism, then a **T-invariant subspace** is an F-subspace $\{0\} \subsetneq W \subsetneq V$ such that $T(W) \subseteq W$.

- (a) Let R be a commutative ring with 1, and let M be a simple R-module. Show: there is a maximal ideal \mathfrak{m} of R such that $M \cong R/\mathfrak{m}$.
- (b) Let F be a field of characteristic 0, and let $n \ge 2$ be an integer. Show that the following are equivalent:
 - (i) There is a linear map $T: F^n \to F^n$ that has no *T*-invariant subspace. (ii) There is a field extension K/F of degree n.
- (c) Show that if $n \geq 3$, every linear map $T : \mathbb{R}^n \to \mathbb{R}^n$ has a *T*-invariant subspace.

5. Let $n \in \mathbb{Z}^+$, and put $\zeta_n \coloneqq e^{2\pi i/n}$.

- (a) Show that Q(ζ_n)/Q is a Galois extension.
 (b) Let σ ∈ Aut(Q(ζ_n)/Q). Show that σ(ζ_n) = ζ_n^a for some integer a that is coprime to n. Deduce that there is an injective group homomorphism

$$\operatorname{Aut}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \hookrightarrow (\mathbb{Z}/n\mathbb{Z})^{\times}$$

(c) Show: $2^{1/3} \notin \mathbb{Q}(\zeta_n)$.

6. Let

$$A = \begin{bmatrix} 4 & 0 & -2 \\ 1 & 2 & -1 \\ 2 & 0 & 0 \end{bmatrix} \in M_3(\mathbb{C}).$$

- (a) Find the Jordan canonical form J of A.
- (b) Find an invertible matrix P such that $P^{-1}AP = J$. (You should not need to compute P^{-1} .)
- (c) What is the minimal polynomial of A?

 $\mathbf{2}$