Topology Qualification Exam, Fall 2021

Instructions:

(a) Please work on 8 out of 9 problems, and clearly mark which one you do not want us to grade.
(b) You can assume homology groups and fundamental groups of a point and wedges of spheres in all dimensions. Everything else should be computed.

1. Prove or disprove the following:
(a) If X and Y are path-connected, then $X \times Y$ is path-connected.
(b) If $A \subset X$ is path-connected, then its closure \bar{A} is path-connected.
2. Let S be a connected metric space with metric d. Given $p \in S$, show that if $S \backslash\{p\} \neq \emptyset$ then $S \backslash\{p\}$ is not compact.
3. Given an example of a continuous map $f: X \rightarrow Y$ between connected spaces that is a continuous bijection but not a homeomorphism.
4. (a) Compute fundamental groups of T^{3} and $\mathbb{R} P^{3}$ (Hint: construct their universal covers.). (b) Prove there is no covering map from T^{3} to $\mathbb{R} P^{3}$.
5. Let Σ_{g} denote the surface of genus g.
(a) Suppose there is a degree n covering map $f: \Sigma_{g} \rightarrow \Sigma_{h}$. What is the relationship between g, h and n ?
(b) Show that there is no finite covering map from Σ_{g+1} to Σ_{g} for $g>2$.
6. Let X be the topological space obtained from the Klein bottle K by removing a small open disk and identifying antipodal points of the resulting boundary circle on K as in the following figure.

(a) Use Van Kampen's theorem to find a presentation for $\pi_{1}(X)$.
(b) Compute the homology groups using cellular homology.
7. Let X be the topological space obtained by gluing the boundary of a disk to a torus along a figure eight shape curve as in the following figure. Use the Mayer-Vietoris sequence to compute the homology groups of X.

8. (a) Compute the homology groups of $X=S^{2} \times S^{4}$ and $Y=\mathbb{C} P^{2} \vee S^{6}$.
(b) Show that X and Y are not homeomorphic.
9. Consider the torus T in \mathbb{R}^{3} obtained by revolving the circle $(y-2)^{2}+z^{2}=1$ in the $y z$-plane around the z-axis. Let i be the map induced by 180°-rotation around the y-axis on this torus i.e.,

$$
i(x, y, z)=(-x, y,-z)
$$

(a) Find a cell structure on T such that i maps cells to cells.
(b) The quotient of T with the relation $x \sim i(x)$ for all $x \in T$ is an orientable surface (you do not need to show this, you can take this as given). Find the genus of this surface.

