Instructions: Work as many as you can out of 9 problems, counted equally.

1. a) Let \(p \) and \(q \) be primes with \(p < q \). Let \(G \) be a group of order \(pq \). Prove that if \(p \) does not divide \(q - 1 \), then \(G \) is abelian.
b) Sketch a construction of a non-abelian group of order 39. Give a presentation for this group.

2. a) Let \(G \) be a group with a subgroup \(H \) of finite index, say \(n \). Let \(N = \bigcap_{x \in G} xHx^{-1} \). Prove that \(N \) is a normal subgroup of \(G \), and that \(G/N \) is isomorphic to a subgroup of the symmetric group \(S_n \).
b) Prove that there is no simple group of order 48.

3. Let \(M \) be a finitely generated module over a P.I.D. \(R \), and let \(M_t \) denote the submodule of torsion elements in \(M \). Prove that \(M \) is the direct sum of \(M_t \) and a free module. (You may assume the theorem that a finitely generated torsion-free module over a P.I.D. is free.)

4. Let \(GF(q) \) denote the finite field with \(q \) elements. Let \(f(x) = x^q - x \).
a) Factor \(f(x) \) into a product of irreducible polynomials over \(GF(3) \).
b) Which of the roots of \(f(x) \) generate the multiplicative group of non-zero elements of \(GF(9) \), considered as a splitting field of \(f(x) \) over \(GF(3) \).
c) What is the Galois group of \(f(x) \) over \(GF(3) \)?

5. Let \(A = A(a, b) \) be the matrix \(\begin{pmatrix} a + b & b & b \\ a - b & a & a \\ a + b & b + 1 & b \end{pmatrix} \), where \(a \) and \(b \) are elements of a field \(F \).
a) What are the possibilities for the rank of \(A \)?
b) Let \(F = GF(9) \). Let \(V \) be the subset of \(F^3 \) consisting of pairs \((a, b)\) such that the matrix \(A(a, b) \) has less than maximal rank. Describe \(V \). How many elements does it have?

6. Let \(F_n \) denote a cyclotomic extension of the rationals of order \(n \) (i.e. a splitting field of \(x^n - 1 \) over the rationals).
a) Determine the Galois group of \(F_8 \) over the rationals, and find all intermediate fields.
b) Do the same for \(F_7 \). If \(\zeta \) is a primitive 7th root of unity, determine the minimal polynomial over the rationals of \(\zeta + \zeta^{-1} \).

7. Let \(A \) be the matrix \(\begin{pmatrix} 1 & 0 & 0 & -3 \\ -1 & 0 & 1 & 0 \\ -1 & 2 & 2 & -3 \\ -1 & 0 & 0 & 1 \end{pmatrix} \), and let \(B \) be the matrix \(\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -4 & -8 & 0 & 4 \end{pmatrix} \). Find the elementary divisors, invariant factors, characteristic polynomials, and minimal polynomials for each of \(A \) and \(B \). Are \(A \) and \(B \) similar? Why or why not?

8. Give precise statements of the following results.
a) The classification of finitely generated modules over a P.I.D. (One classification system is sufficient.)
b) The Cayley-Hamilton theorem.
c) The spectral theorem (finite-dimensional, real or complex, case).

9. a) Define the dimension of a (finite-dimensional) real vector space \(V \), and then indicate (with brief justification) the dimensions of the real vector spaces \(\mathbb{R}^m \oplus \mathbb{R}^n \) (direct sum) and \(\mathbb{R}^m \otimes \mathbb{R}^n \) (tensor product).
b) Define what it means for a module \(M \) over a commutative ring \(R \) to be noetherian, and then give an equivalent condition.
c) Define an elementary Jordan matrix (a single Jordan block) over a field \(F \).