Probability Theory, Ph.D Qualifying, Spring 2020

Completely solve any five problems.

1. If $\{A_n\}$ are events satisfying $\lim_{n\to\infty} P(A_n) = 0$ and $\sum_{n=1}^{\infty} P(A_n A_{n+1}^c) < \infty$, show that

 $P(A_n, \text{ infinitely often}) = 0.$

- 2. (a) If $\{X_n, n \ge 1\}$ are r.v.s with $\sup_{n\ge 1} E|X_n|^{\beta} < \infty$ for some $\beta > 0$, then $\{|X_n|^{\alpha}, n \ge 1\}$ is uniformly integrable for $0 < \alpha < \beta$.
 - (b) Prove that for any r.v. X

$$E|X| = \int_0^\infty P(|X| \ge t)dt.$$

- 3. Prove for nondegenerate i.i.d. r.v.s $\{X_n\}$ that $P(X_n \text{ converges}) = 0$.
- 4. Let X_1, \ldots, X_n be a random sample from a distribution with $E(X_i) = 0$ and $Var(X_i) = 1$. Show that as $n \to \infty$,

$$Y_n = \frac{\sqrt{n}S_n}{\sum_{i=1}^n X_i^2} \to N(0,1),$$

and

$$Z_n = \frac{S_n}{\sqrt{\sum_{i=1}^n X_i^2}} \to N(0, 1),$$

where $S_n = X_1 + \dots + X_n$.

5. If the independent L^1 random variables X_1, \ldots, X_n, \ldots satisfy the condition

$$Var(X_i) \leq c < \infty, \ i = 1, 2, \dots,$$

then the SLLN holds, i.e.,

$$\frac{1}{n}\sum_{i=1}^{n} (X_i - EX_i) \to 0, \text{a.s.}$$

- 6. If $\{X_n\}$ are iid \mathcal{L}^1 random variables, then $\sum_{n=1}^{\infty} \frac{X_n}{n}$ converges a.s. if either (i) X_1 is symmetric or (ii) $E|X_1|\log^+|X_1| < \infty$ and $EX_1 = 0$.
- 7. Let $\{\xi_n, n \ge 1\}$ be independent random variables such that for some $0 , <math>P(\xi_n = 1) = p$, $P(\xi_n = -1) = 1 p = q$. For $n \ge 1$, let $\eta_n = \sum_{k=1}^n \xi_k$ and $\zeta_n = (q/p)^{\eta_n}$. Show that $\{\zeta_n, n \ge 1\}$ is a martingale.