Qualifying Examination Problems for Numerical Analysis

Spring, 2022

Numerical Linear Systems

[1] Let A be an invertible matrix and \tilde{A} be a perturbation of A satisfying $\left\|A^{-1}\right\|\|A-\tilde{A}\|<1$. Suppose that x and \tilde{x} are the exact solutions of $A x=b$ and $\tilde{A} \tilde{x}=\tilde{b}$, respectively. Show that

$$
\frac{\|x-\tilde{x}\|}{\|x\|} \leq \frac{\operatorname{cond}(A)}{1-\operatorname{cond}(A) \frac{\|A-\tilde{A}\|}{\|A\|}}\left[\frac{\|A-\tilde{A}\|}{\|A\|}+\frac{\|b-\tilde{b}\|}{\|b\|}\right]
$$

[2] Define the singular value decomposition (SVD) for a rectangular matrix A of size $m \times n$. (3 points) Explain how to use SVD for solving a linear least squares problem (7 points)
[3] Explain how to use the power method to find the leading eigenvalue of a symmetric matrix A. (3 points) Furthermore, explain how to use the power method to find all other eigenvalues of A. (7 points)

Polynomial Interpolation and Approximation

[4] (10 points) Prove that for any polynomial q of degree $\leq n-1$

$$
\sum_{i=0}^{n} q\left(x_{i}\right) \prod_{\substack{j=0 \\ j \neq i}}^{n}\left(x_{i}-x_{j}\right)^{-1}=0
$$

where $x_{0}, x_{1}, \cdots, x_{n}$ are distinct.
[5] (10 points) Let $x_{0}, x_{1}, \cdots, x_{n}$ be given points in $[a, b]$ and f be a continuous function over $[a, b]$. What is the Lagrange interpolatory polynomial p_{n} of degree n satisfying

$$
p_{n}\left(x_{i}\right)=f\left(x_{i}\right), i=0, \cdots, n ?(3 p o i n t s)
$$

Suppose that $f \in C^{n+1}(a, b)$. What is the error $f(x)-p_{n}(x)$? (3 points). Furthermore, using $p_{n}^{\prime}(x)$ to approximate $f^{\prime}(x)$ based on $\left(x_{i}, f_{i}\right), i=0, \cdots, n$, what is the error term $p_{n}^{\prime}(x)-f^{\prime}(x)$ if f is $(n+1)$ times differentiable? (4 points)

Numerical Integration

[6] (10 points) Define Gauss Quadrature formula for $\int_{-1}^{1} f(x) d x$, i.e.

$$
\sum_{i=0}^{n} c_{i} f\left(x_{i}\right) \approx \int_{-1}^{1} f(x) d x
$$

using polynomials of degree $n \geq 1$. (5 points). Show that the coefficients c_{i} are nonnegative. (5 points)

Spline Approximation

[7] Find the smoothness conditions to ensure that a spline function $s(x)$ defined on $[a, b] \cup[b, c]$ by

$$
s(x)= \begin{cases}\sum_{i=0}^{n} c_{i} B_{i, n-i}(x, a, b) & \text { if } x \in[a, b) \\ \sum_{i=0}^{n} d_{i} B_{i, n-i}(x, b, c), & \text { if } x \in[b, c]\end{cases}
$$

is $C^{1}[a, c]$, where $B_{i, n-i}(x, a, b)=\binom{n}{i}(x-a)^{i}(b-x)^{n-i} /(b-a)^{n}, i=0, \cdots, n$ are Bernstein polynomials of degree n and similar for $\left.B_{i, n-i} x, b, c\right)$.

Numerical Solution of ODE

[8] (10 points) Explain a method to solve a second order ODE (IVP) numerically:

$$
\left\{\begin{array}{l}
\frac{d^{2} y}{d^{2} x}=f\left(x, y, y^{\prime}\right), x \in[a, b] \tag{1}\\
y(a)=\alpha \text { and } y^{\prime}(a)=\beta .
\end{array}\right.
$$

Be sure to explain its convergence of your method.

