1. Let \(\chi_{[0,\infty)} \) denote the characteristic function of \([0,\infty)\). Show that there is no everywhere continuous function \(f \) on \(\mathbb{R} \) such that \(f(x) = \chi_{[0,\infty)}(x) \) for almost every \(x \in \mathbb{R} \) (with respect to Lebesgue measure).

2. Let \(\{E_n\}_{n \in \mathbb{N}} \) be a countable family of Lebesgue measurable subsets of \(\mathbb{R}^d \) with
\[
\sum_{n=1}^{\infty} m(E_n) < \infty
\]
where \(m \) denotes Lebesgue measure on \(\mathbb{R}^d \) and let
\(E = \{ x \in \mathbb{R}^d : x \in E_n \text{ for infinitely many } n \in \mathbb{N} \} \).
(a) Show that \(E = \bigcap_{n=1}^{\infty} \bigcup_{n \geq N} E_n \) and deduce that \(E \) is Lebesgue measurable with \(m(E) = 0 \).
(b) Show that
\[
\chi_E(x) = \limsup_{n \to \infty} \chi_{E_n}(x)
\]
for all \(x \in \mathbb{R}^d \) where, for any subset \(A \) of \(\mathbb{R}^d \), \(\chi_A \) denote the characteristic function of \(A \).

3. Prove that if \(g \) is continuous with compact support on \(\mathbb{R}^d \), then
\[
\lim_{n \to \infty} \int |g(n^{1/n}x) - g(x)| \, dx = 0
\]
and deduce from this that if \(f \in L^1(\mathbb{R}^d) \), then
\[
\lim_{n \to \infty} \int |f(n^{1/n}x) - f(x)| \, dx = 0.
\]

4. Let \(f \) be the function defined over \(\mathbb{R} \) by
\[
f(x) = \begin{cases}
x^{-1/2} & \text{if } 0 < x < 1, \\
0 & \text{otherwise}.
\end{cases}
\]
For a given enumeration \(\{q_n\}_{n=1}^{\infty} \) of the rationals \(\mathbb{Q} \), let
\[
F(x) = \sum_{n=1}^{\infty} \frac{1}{2^n} f(x + q_n).
\]
(a) Prove that \(F \) is a Lebesgue integrable function on \(\mathbb{R} \) and hence that the series defining \(F \) converges for almost every \(x \in \mathbb{R} \).
(b) Show, however, that this series is unbounded on every open interval, and in fact, any function \(G \) that agrees with \(F \) almost everywhere must be unbounded on every open interval.

5. Let \(\{u_j\}_{j=1}^{\infty} \) be an orthonormal basis for \(L^2(\mathbb{R}^d) \). Prove that the collection \(\{u_{j,k}\}_{j,k=1}^{\infty} \) with
\[
u_{j,k}(x,y) := u_j(x)u_k(y)
\]
forms an orthonormal basis for \(L^2(\mathbb{R}^d \times \mathbb{R}^d) \).

6. Let \((X, \mathcal{B}, \mu) \) be a measure space with \(\mu(X) = 1 \). Prove that for any integrable function \(f : X \to \mathbb{C} \)
\[
\mu\left(\{ x \in X : |f(x)| \geq \frac{1}{2} \|f\|_1 \} \right) \geq \max \left\{ \frac{\|f\|_1}{2\|f\|_\infty}, \frac{\|f\|^2_1}{4\|f\|^2_2} \right\}.
\]