Algebra qualifying exam, Fall 2007

Work 8 problems including #1, which counts double. Please indicate which two problems should not be graded.

#1. a) State:

- i) the first Sylow theorem,
- ii) the fundamental theorem of Galois theory, and
- iii) the decomposition theorem for finitely generated modules over a principal ideal domain.
- b) For one of these theorems, outline the proof and give details for one significant step.
- #2. Define solvability for groups, and prove every group of order p^n is solvable, where p is a prime integer.
- #3. Prove every group of order 48 has a normal subgroup of index either 2 or 3.
- #4. Let f be a quintic polynomial over the rational field \mathbb{Q} , and let E be its splitting field inside the complex numbers. If the Galois group G(E/Q) is isomorphic to the symmetric group S(5), prove f is irreducible over \mathbb{Q} .
- #5. Compute the Galois group G of the splitting field L of X^6-7 over $\mathbb Q$. [Hint: Consider the subfields $E=\mathbb Q(a)$ and $F=\mathbb Q(b)$ where a is a primitive 6th root of 1, and b is a real 6th root of 7. Show that $L=\mathbb Q(a,b)$ and that $G=Aut(L/\mathbb Q)$ is the unique non abelian semidirect product of Aut(L/E) and Aut(L/F). What familiar name does the group G have?]
- #6. Exhibit one group in each isomorphism class of abelian groups of orders 30, 12, and 8, and explain your reasoning.
- #7. Write down one matrix in each conjugacy class of those 3×3 matrices over $\mathbb{Z}/2$ with characteristic polynomial equal to each of these: $1 + X + X^2 + X^3, X + X^3$, and $1 + X^3$, and explain your reasoning.
- #8. Explain why the following matrix has a Jordan form over \mathbb{Q} , and find a basis that puts it in Jordan form.

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & -1 & 2 & 0 \\ 1 & -1 & 1 & 2 \end{bmatrix}$$

- #9. i) Prove that a principal ideal domain satisfies the ascending chain condition for ideals (every strictly increasing chain of ideals is finite), and
- ii) deduce that every non unit in a principal ideal domain has an irreducible factor.
- #10. Prove that any two algebraic closures of $\mathbb Q$ are isomorphic.