Algebra Prelim

Fall 2004

1. How many p-Sylow subgroups does A_{5} have, where
(a) $p=2$,
(b) $p=3$,
(c) $p=5$?
2. Let P be a Sylow subgroup of a finite group G. Prove that $N(N(P))=N(P)$, where $N(\cdot)$ denotes the normalizer.
3. Let R be a commutative ring, and let $a \in R$ be an element such that for all positive integers n, $a^{n} \neq 0$. Prove that a lies in a prime ideal.
4. Give an example of each of the following phenomena:
(a) an imbedding of commutative rings, $R \subset S$, and an element $p \in R$ such that p is prime in R but not in S,
(b) an imbedding of commutative rings, $R \subset S$, and an element $p \in R$ such that p is prime in S but not in R.
5. (a) Show that $\mathbb{Q}[\sqrt{2}+\sqrt{3}+\sqrt{5}]=\mathbb{Q}[\sqrt{2}, \sqrt{3}, \sqrt{5}]$.
(b) Compute the Galois group of $\mathbb{Q}[\sqrt{2}+\sqrt{3}+\sqrt{5}] / \mathbb{Q}$.
(c) Find all intermediate fields K, that is $\mathbb{Q} \subset K \subset \mathbb{Q}[\sqrt{2}+\sqrt{3}+\sqrt{5}]$.
6. State the structure theorem for finitely generated modules over a principal ideal domain. Find the decomposition of the \mathbb{Z}-module presented by the following generators and relations.

$$
\begin{aligned}
4 w+3 x+6 z & =0 \\
3 w+12 y+3 x+6 z & =0 \\
6 y & =0 \\
-3 w-3 x+6 y & =0
\end{aligned}
$$

7. Let A be a nilpotent matrix (i.e., $A^{n}=0$ for some $n>0$), with real entries, and let $p(x)=\sum a_{i} x^{i}$ be a polynomial with $a_{0} \neq 0$. Prove that the matrix $p(A)$ is invertible.
8. Let E be a field, let H be a finite subgroup of $\operatorname{Aut}(E)$, and let $\operatorname{Fix}(H)$ denote the fixed field. Prove that E is algebraic over $\operatorname{Fix}(H)$.
9. Let

$$
A=\left(\begin{array}{lll}
1 & 0 & p \\
0 & 1 & 0 \\
q & 0 & 1
\end{array}\right)
$$

where p and q are real numbers. For each of the following conditions, determine, with proof, the values of p and q for which the condition holds.
(a) The rank of A is two.
(b) A is invertible.
(c) A is diagonalizable.

