UGA Algebra Qualifying Examination, Fall 2014

1. Let $f \in \mathbb{Q}[x]$ be an irreducible polynomial, and let L be a finite Galois extension of \mathbb{Q}. Let $f(x)=g_{1}(x) g_{2}(x) \cdots g_{r}(x)$ be a factorization of f into irreducibles in $L[x]$.
(a) Prove that each of the factors $g_{i}(x)$ has the same degree.
(b) Give an example to show that if L is not Galois over \mathbb{Q}, the conclusion of part (a) need not hold.
2. Let G be a group of order 96 .
(a) Show that G has either one or three 2-Sylow subgroups.
(b) Show that either G has a normal subgroup of order 32 or a normal subgroup of order 16.
3. Consider the polynomial $f(x)=x^{4}-7$ in $\mathbb{Q}[x]$, and let E / \mathbb{Q} be the splitting field of f.
(a) What is the structure of the Galois group of E / \mathbb{Q} ?
(b) Give an explicit description of all of the intermediate subfields $\mathbb{Q} \subset K \subset E$ in the form $K=\mathbb{Q}(\alpha), \mathbb{Q}(\alpha, \beta), \ldots$, where α, β, etc. are complex numbers. Describe the corresponding subgroups of the Galois group.
4. Let F be a field and T and $n \times n$ matrix with entries in F. Let I be the ideal consisting of all polynomials $f \in F[x]$ such that $f(T)=0$. Show that the following statements are equivalent about a polynomial $g \in I$:
(a) g is irreducible,
(b) if $k \in F[x]$ is nonzero and of degree strictly less than $g, k(T)$ is an invertible matrix.
5. Let T be a 5×5 complex matrix with characteristic polynomial $\chi(x)=(x-3)^{5}$, and minimal polynomial $m(x)=(x-3)^{2}$. Determine all possible Jordan forms of T.
6. Let G be a group, and let $H, K<G$ be subgroups of finite index. Show that $[G: H \cap K] \leq[G: H][G: K]$.
7. Give a careful proof that $\mathbb{C}[x, y]$ is not a principal ideal domain.
8. Let R be a commutative ring without unit, such that R does not contain a proper maximal ideal, and R is not the zero ring. Prove that for all $x \in R$, the ideal $x R$ is proper. You may assume the axiom of choice.
