1. Let \(f \in \mathbb{Q}[x] \) be an irreducible polynomial, and let \(L \) be a finite Galois extension of \(\mathbb{Q} \). Let \(f(x) = g_1(x)g_2(x) \cdots g_r(x) \) be a factorization of \(f \) into irreducibles in \(L[x] \).
 (a) Prove that each of the factors \(g_i(x) \) has the same degree.
 (b) Give an example to show that if \(L \) is not Galois over \(\mathbb{Q} \), the conclusion of part (a) need not hold.

2. Let \(G \) be a group of order 96.
 (a) Show that \(G \) has either one or three 2-Sylow subgroups.
 (b) Show that either \(G \) has a normal subgroup of order 32 or a normal subgroup of order 16.

3. Consider the polynomial \(f(x) = x^4 - 7 \) in \(\mathbb{Q}[x] \), and let \(E/\mathbb{Q} \) be the splitting field of \(f \).
 (a) What is the structure of the Galois group of \(E/\mathbb{Q} \)?
 (b) Give an explicit description of all of the intermediate subfields \(\mathbb{Q} \subset K \subset E \) in the form \(K = \mathbb{Q}(\alpha), \mathbb{Q}(\alpha, \beta), \ldots \), where \(\alpha, \beta \), etc. are complex numbers. Describe the corresponding subgroups of the Galois group.

4. Let \(F \) be a field and \(T \) and \(n \times n \) matrix with entries in \(F \). Let \(I \) be the ideal consisting of all polynomials \(f \in F[x] \) such that \(f(T) = 0 \). Show that the following statements are equivalent about a polynomial \(g \in I \):
 (a) \(g \) is irreducible,
 (b) if \(k \in F[x] \) is nonzero and of degree strictly less than \(g \), \(k(T) \) is an invertible matrix.

5. Let \(T \) be a \(5 \times 5 \) complex matrix with characteristic polynomial \(\chi(x) = (x - 3)^5 \), and minimal polynomial \(m(x) = (x - 3)^2 \). Determine all possible Jordan forms of \(T \).

6. Let \(G \) be a group, and let \(H, K < G \) be subgroups of finite index. Show that \([G : H \cap K] \leq [G : H][G : K] \).

7. Give a careful proof that \(\mathbb{C}[x, y] \) is not a principal ideal domain.

8. Let \(R \) be a commutative ring without unit, such that \(R \) does not contain a proper maximal ideal, and \(R \) is not the zero ring. Prove that for all \(x \in R \), the ideal \(xR \) is proper. You may assume the axiom of choice.