(1) (a) (5 points) State the structure theorem for finitely generated modules over a principal ideal domain.
(b) (5 points) Find the decomposition of the \(\mathbb{Z} \)-module \(M \) generated by \(w, x, y, \) and \(z \), and satisfying the relations
\[
3w + 12y + 3x + 6z = 0 \\
6y = 0 \\
-3w - 3x + 6y = 0.
\]

(2) (10 points) Let \(R \) be a commutative ring and let \(M \) be an \(R \)-module. Recall that for \(\mu \in M \) the annihilator of \(\mu \) is the set \(\text{Ann}(\mu) = \{ r \in R : r\mu = 0 \} \). Suppose that \(I \) is an ideal in \(R \) which is maximal with respect to the property that there exists a nonzero element \(\mu \in M \), such that \(I = \text{Ann}(\mu) \). Prove that \(I \) is a prime ideal in \(R \).

(3) (a) (5 points) Give the definition that a group \(G \) must satisfy to be solvable.
(b) (10 points) Show that every group \(G \) of order 36 is solvable. \(\text{Hint: You may assume that } S_4 \text{ is solvable.} \)

(4) (15 points) Consider the matrix
\[
A = \begin{pmatrix}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{pmatrix}.
\]
(a) Find the Jordan Normal Form of \(A \) regarded as a matrix over \(\mathbb{C} \), the complex numbers.
(b) Find the Jordan Normal Form of \(A \) regarded as a matrix over \(\mathbb{F}_5 \), the field with five elements.

(5) (15 points) Let \(F \subset L \) be fields such that \(L/F \) is a Galois field extension with Galois group equal to \(D_8 = \langle \sigma, \tau : \sigma^4 = \tau^2 = 1, \sigma \tau = \tau \sigma^3 \rangle \). Show that there are fields \(F \subset E \subset K \subset L \) such that \(E/F \) and \(K/E \) are Galois extensions, but \(K/F \) is not Galois.

(6) (15 Points) Let \(C/F \) be an algebraic field extension. Prove that the following are equivalent:
(a) Every nonconstant polynomial \(f \in F[x] \) factors into linear factors in \(C[x] \).
(b) For every (not necessarily finite) algebraic extension \(E/F \) there is a ring homomorphism \(\alpha : E \to C \) that is the identity on \(F \). \(\text{Hint: Use Zorn’s lemma.} \)

(7) (10 Points) Let \(R \) be a commutative ring.
(a) Say what it means for \(R \) to be a unique factorization domain (UFD);
(b) Say what it means for \(R \) to be a principal ideal domain (PID);
(c) Give an example of a UFD that is not a PID. Prove that it is not a PID.

(8) (10 Points) Let \(p \) and \(q \) be distinct primes. Let \(k \) denote the smallest positive integer such that \(p \) divides \(q^k - 1 \). Prove that no group of order \(pq^k \) is simple.