ALGEBRA QUALIFYING EXAM, AUGUST 2009

(1) List all groups of order 14 up to isomorphism. Carefully justify your answer.
(2) Please show that S_{4} is a solvable non-abelian group.
(3) Please identify all the conjugacy classes of elements in the group S_{5}. Provide an explicit representative for each class, and justify that your list is complete.
(4) Determine the group of units in each of the following rings:

$$
\mathbb{Z}[i], \quad \mathbb{F}_{3}[x] /\left(x^{2}+1\right), \quad \mathbb{F}_{5}[x] /\left(x^{2}+1\right), \quad \mathbb{F}_{81}, \quad \mathbb{Z} / 81 \mathbb{Z}
$$

(5) Let R be any principal ideal domain. Let $n>0$ and $A \in M_{n}(R)$ denote a square $(n \times n)$-matrix with coefficients in R. Consider the R-module $M:=R^{n} / \operatorname{Im}(A)$.
(a) Give a necessary and sufficient condition for M to be a torsion module (i.e., every non-zero element of M is torsion). Justify your answer.
(b) Let F be a field, and let now $R:=F[x]$, the ring of polynomials in one variable with coefficients in F. Given an example of an integer $n>0$ and a $(n \times n)$-square matrix $A \in M_{n}(R)$ such that $M:=R^{n} / \operatorname{Im}(A)$ is isomorphic as R-module to $R \times F$.
(6) Let R and S be two commutative rings (with multiplicative identity).
(a) Prove that when R is a field, every non-zero ring homomorphism $\phi: R \rightarrow S$ is injective.
(b) Does (a) still hold if we only assume that R is a domain? If yes, prove it, and if not, provide a counter-example.
(7) (a) Let K be a field. State the main theorem of Galois theory for a finite field extension L / K.
(b) Let $\zeta_{43}:=\exp (2 \pi i / 43)$. Describe the group of all field automorphisms $\sigma: \mathbb{Q}\left(\zeta_{43}\right) \rightarrow$ $\mathbb{Q}\left(\zeta_{43}\right)$.
(c) How many proper subfields are there in the field $\mathbb{Q}\left(\zeta_{43}\right)$?
(8) Suppose that α is a root in \mathbb{C} of $P(x):=x^{17}-2$. How many field homomorphisms are there from $\mathbb{Q}(\alpha)$ to
(a) \mathbb{C},
(b) \mathbb{R},
(c) $\overline{\mathbb{Q}}$, an algebraic closure of \mathbb{Q} ?
(Justify your answers.)
(9) Let $V \neq(0)$ be a finite dimensional vector space over an algebraically closed field k. Please prove that every linear map $L: V \rightarrow V$ must have an eigenvector $v \in V$ (please provide a simple proof, without using the Cayley-Hamilton theorem, for instance.)

Does this statement remain true if k is not algebraically closed? If yes, prove it, and if not, provide a counter-example.
(10) Let $M \in M_{5}(\mathbb{R})$ be a square (5×5)-matrix with real coefficients, defining a linear map $L: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$. Assume that when considered as an element of $M_{5}(\mathbb{C})$, then the scalars 0 , $1+i$, and $1+2 i$, are eigenvalues of M.
(a) Show that the associated linear map L is neither injective nor surjective.
(b) Compute the characteristic polynomial and the minimal polynomial of M.
(c) How many fixed points can L have (that is, how many solutions to the equation $L(v)=v$ with $v \in \mathbb{R}^{5}$)? (Justify.)

