2015 Winter Algebra Qual

1. For a prime p, let G be a finite p-group, and let N be a normal subgroup of G of order p. Prove that N is contained in the center of G.
2. Let \mathbb{F} be a finite field.
a. Give, with proof, the decomposition of the additive group $(\mathbb{F},+)$ into a direct sum of cyclic groups.
b. The exponent of a finite group is the least common multiple of the orders of its elements. Prove that a finite abelian group has an element of order equal to its exponent.
c. Prove that the multiplicative group $\left(\mathbb{F}^{\times}, \cdot\right)$ is cyclic.
3. Let F be a field, let V be a finite dimensional F-vector space, and let $A, B: V \rightarrow V$ be commuting F-linear maps. Suppose there is a basis \mathcal{B}_{1} with respect to which A is diagonalizable and a basis \mathcal{B}_{2} with respect to which B is diagonalizable. Prove that there is a basis \mathcal{B}_{3} with respect to which A and B are both diagonalizable.
4. Let N be a positive integer, and let G be a finite group of order N.
a. Let $\operatorname{Sym} G$ be the set of all bijections from G to G, viewed as a group under composition. Note that $\operatorname{Sym} G \cong S_{N}$. Prove that the Cayley map $C: G \rightarrow$ Sym G given by $g \mapsto(x \mapsto g x)$ is an injective homomorphism.
b. Let $\Phi: \operatorname{Sym} G \rightarrow S_{N}$ be an isomorphism. For $a \in G$, define $\epsilon(a) \in\{ \pm 1\}$ to be the sign of the permutation $\Phi(C(a))$. Suppose that a has order d. Prove that $\epsilon(a)=-1$ if and only if d is even and N / d is odd.
c. Suppose $N>2$ and $N \equiv 2(\bmod 4)$. Prove that G is not simple. (Hint: Use part b).)
5. Let $f(x)=x^{4}-5 \in \mathbb{Q}[x]$.
a. Compute the Galois group of f over \mathbb{Q}.
b. Compute the Galois group of f over $\mathbb{Q}(\sqrt{5})$.
6. Let F be a field, and let n a positive integer. Consider

$$
A=\left[\begin{array}{ccc}
1 & \ldots & 1 \\
& \ddots & \\
1 & \ldots & 1
\end{array}\right] \in M_{n}(F)
$$

Show that A has a Jordan normal form over F, and find it.
(Suggestion: treat the cases $n \cdot 1 \neq 0$ in F and $n \cdot 1=0$ in F separately.)
7. Let R be a commutative ring. Let S be a subset of R which is nonempty, does not contain 0 , and for all $x, y \in S$ we have $x y \in S$. Let \mathcal{I} be the set of all ideals I of R such that $I \cap S=\varnothing$. Show that for every ideal $I \in \mathcal{I}$, there is an ideal $J \in \mathcal{I}$ such that $I \subset J$ and J is not properly contained in any other ideal in \mathcal{I}. Prove that every such ideal J is prime.
8. Let R be a principal ideal domain, and let M be a finitely generated R-module.
a. Prove that there are R-submodules $0=M_{0} \subset M_{1} \subset \ldots \subset M_{n}=M$ of M such that for all $0 \leq i \leq n-1, M_{i+1} / M_{i}$ is cyclic (i.e., generated by a single element).
b. Is the integer n of part a) uniquely determined by M ? (Prove your answer.)

