2015 Winter Algebra Qual

- 1. For a prime p, let G be a finite p-group, and let N be a normal subgroup of G of order p. Prove that N is contained in the center of G.
- 2. Let \mathbb{F} be a finite field.
 - a. Give, with proof, the decomposition of the additive group $(\mathbb{F}, +)$ into a direct sum of cyclic groups.
 - b. The exponent of a finite group is the least common multiple of the orders of its elements. Prove that a finite abelian group has an element of order equal to its exponent.
 - c. Prove that the multiplicative group $(\mathbb{F}^{\times}, \cdot)$ is cyclic.
- 3. Let F be a field, let V be a finite dimensional F-vector space, and let $A, B: V \to V$ be commuting F-linear maps. Suppose there is a basis \mathcal{B}_1 with respect to which A is diagonalizable and a basis \mathcal{B}_2 with respect to which B is diagonalizable. Prove that there is a basis \mathcal{B}_3 with respect to which A and B are both diagonalizable.
- 4. Let N be a positive integer, and let G be a finite group of order N.
 - a. Let Sym G be the set of all bijections from G to G, viewed as a group under composition. Note that Sym $G \cong S_N$. Prove that the Cayley map $C : G \to \text{Sym } G$ given by $g \mapsto (x \mapsto gx)$ is an injective homomorphism.
 - b. Let Φ : Sym $G \to S_N$ be an isomorphism. For $a \in G$, define $\epsilon(a) \in \{\pm 1\}$ to be the sign of the permutation $\Phi(C(a))$. Suppose that a has order d. Prove that $\epsilon(a) = -1$ if and only if d is even and N/d is odd.
 - c. Suppose N > 2 and $N \equiv 2 \pmod{4}$. Prove that G is not simple. (Hint: Use part b).)
- 5. Let $f(x) = x^4 5 \in \mathbb{Q}[x]$.
 - a. Compute the Galois group of f over \mathbb{Q} .
 - b. Compute the Galois group of f over $\mathbb{Q}(\sqrt{5})$.
- 6. Let F be a field, and let n a positive integer. Consider

$$A = \begin{bmatrix} 1 & \dots & 1 \\ & \ddots & \\ 1 & \dots & 1 \end{bmatrix} \in M_n(F).$$

Show that A has a Jordan normal form over F, and find it. (Suggestion: treat the cases $n \cdot 1 \neq 0$ in F and $n \cdot 1 = 0$ in F separately.)

- 7. Let R be a commutative ring. Let S be a subset of R which is nonempty, does not contain 0, and for all $x, y \in S$ we have $xy \in S$. Let \mathcal{I} be the set of all ideals I of R such that $I \cap S = \emptyset$. Show that for every ideal $I \in \mathcal{I}$, there is an ideal $J \in \mathcal{I}$ such that $I \subset J$ and J is not properly contained in any other ideal in \mathcal{I} . Prove that every such ideal J is prime.
- 8. Let R be a principal ideal domain, and let M be a finitely generated R-module.
 a. Prove that there are R-submodules 0 = M₀ ⊂ M₁ ⊂ ... ⊂ M_n = M of M such that for all 0 ≤ i ≤ n − 1, M_{i+1}/M_i is cyclic (i.e., generated by a single element).
 - b. Is the integer n of part a) uniquely determined by M? (Prove your answer.)