Algebra Qualifying Examination, August 2018

Justify all the calculations and state the theorems you use in your answers. Each problem is worth 10 points. In the solution of a part of a problem, you may use any earlier part of that problem, whether or not you've correctly solved it.

1. Let G be a finite group whose order is divisible by a prime number p. Let P be a normal p-subgroup of G (so $|P|=p^{c}$ for some c).
(a) Show that P is contained in every Sylow p-subgroup of G.
(b) Let M be a maximal proper subgroup of G. Show that either $P \subseteq M$ or $|G / M|=p^{b}$ for some $b \leq c$.
2. (a) Suppose the group G acts on the set X. Show that the stabilizers of elements in the same orbit are conjugate.
(b) Let G be a finite group and let H be a proper subgroup. Show that the union of the conjugates of H is strictly smaller than G, i.e.

$$
\bigcup_{g \in G} g H g^{-1} \subsetneq G
$$

(c) Suppose G is a finite group acting transitively on a set S with at least 2 elements. Show that there is an element of G with no fixed points in S.
3. Let $F \subset K \subset L$ be finite degree field extensions. For each of the following assertions, give a proof or a counterexample.
(a) If L / F is Galois, then so is K / F.
(b) If L / F is Galois, then so is L / K.
(c) If K / F and L / K are both Galois, then so is L / F.
4. Let V be a finite dimensional vector space over a field (the field is not necessarily algebraically closed). Let $\varphi: V \rightarrow V$ be a linear transformation. Prove that there exists a decomposition of V as $V=U \oplus W$, where U and W are φ-invariant subspaces of $V,\left.\varphi\right|_{U}$ is nilpotent, and $\left.\varphi\right|_{W}$ is nonsingular.
5. Let A be an $n \times n$ matrix.
(a) Suppose that v is a column vector such that the set $\left\{v, A v, \ldots, A^{n-1} v\right\}$ is linearly independent. Show that any matrix B that commutes with A is a polynomial in A.
(b) Show that there exists a column vector v such that the set $\left\{v, A v, \ldots, A^{n-1} v\right\}$ is linearly independent if and only if the characteristic polynomial of A equals the minimal polynomial of A.
6. Let R be a commutative ring, and let M be an R-module. An R-submodule N of M is maximal if there is no R-module P with $N \subsetneq P \subsetneq M$.
(a) Show that an R-submodule N of M is maximal iff M / N is a simple R-module: i.e., M / N is nonzero and has no proper, nonzero R-submodules.
(b) Let M be a \mathbb{Z}-module. Show that a \mathbb{Z}-submodule N of M is maximal iff $\# M / N$ is a prime number.
(c) Let M be the \mathbb{Z}-module of all roots of unity in \mathbb{C} under multiplication. Show that there is no maximal \mathbb{Z}-submodule of M.
7. Let R be a commutative ring.
(a) Let $r \in R$. Show that the map $r \bullet: R \rightarrow R$ by $x \mapsto r x$ is an R-module endomorphism of R.
(b) We say that r is a zero-divisor if $r \bullet$ is not injective. Show that if r is a zero-divisor and $r \neq 0$, then the kernel and image of R each consist of zero-divisors.
(c) Let $n \geq 2$ be an integer. Show: if R has exactly n zero-divisors, then $\# R \leq n^{2}$.
(d) Show that up to isomorphism there are exactly two commutative rings R with precisely 2 zero-divisors. You may use without proof the following fact: every ring of order 4 is isomorphic to exactly one of the following: $\mathbb{Z} / 4 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z}[t] /\left(t^{2}+t+1\right), \mathbb{Z} / 2 \mathbb{Z}[t] /\left(t^{2}-t\right), \mathbb{Z} / 2 \mathbb{Z}[t] /\left(t^{2}\right)$.

