Complex Analysis Qualifying Exam - Fall 2022

Show work and carefully justify/prove your assertions. For example, if you use a theorem that has a name, mention the name. Arrange your solutions in numerical order even if you do not solve them in that order.

1. (10 points) Consider the $n-1$ diagonals of a regular n-gon inscribed in a unit circle obtained by connecting one vertex with all the others. Use complex numbers to show that the product of their lengths is n. [Hint: Let $z_{k} \neq 1$ be roots of $z^{n}-1=0$, $k \leq n-1$. Then $\left|z_{k}-1\right|$ is the length of a diagonal.]
2. (10 points) Use complex analysis to compute

$$
I=\int_{0}^{\infty} \frac{x^{\alpha}}{1+x^{2}} d x, \text { where }-1<\alpha<1 .
$$

3. (10 points) Let $f(z)$ be a complex valued function. Show that if both $f(z)$ and $z f(z)$ are harmonic in a domain Ω, then f is holomorphic in Ω.
4. (10 points) Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ have the radius of convergence r and assume the function $f(z)$ have exactly a simple pole at z_{0} with $\left|z_{0}\right|=r$. Prove that (i) $a_{n} \neq 0$ for all large enough n 's, and (ii) $\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=z_{0}$.
Hint: Write $f(z)=\frac{A}{z-z_{0}}+g(z)$, where A is the residue of $f(z)$ at z_{0} and $g(z)$ is a power series in z.
5. $\left(7+13\right.$ points) Let $f(z)=\frac{\pi^{2}}{\sin ^{2} \pi z}-\sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^{2}}$.
(i) Show that $f(z)$ has only removable singularities on the complex plane (therefore it can be viewed as an entire function).
(ii) Show that $f(z)=0$ if $0 \leq \operatorname{Re}(z) \leq 1$, and conclude that the following identity hold on the complex plane

$$
\frac{\pi^{2}}{\sin ^{2} \pi z}=\sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^{2}}
$$

6. ($10+10$ points) (i) Show that if f is a one-to-one holomorphic map from the unit disc \mathbb{D} onto the upper half plane \mathbb{H}, then f is a fractional linear transformation.
(ii) Find the most general form of all f in part (1) as explicitly as possible.
