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Abstract

A brief introduction to mathematical modeling of biochemical regulatory reac-

tion networks is presented. Both deterministic and stochastic modeling techni-

ques are covered with examples from enzyme kinetics, coupled reaction

networks with oscillatory dynamics and bistability. The Yildirim–Mackey

model for lactose operon is used as an example to discuss and show how

deterministic and stochastic methods can be used to investigate various

aspects of this bacterial circuit.
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1. Introduction

Recent advancements in experimental techniques in biology and medi-
cine enable high-throughput experiments acquire data that are easier, cheaper,
and more accurate. As more data became available, the need for the right
mathematical and computational tools for analysis and interpretation became
clear. Until recently, reductionist methods and statistics were the main tools
used to study biological systems. “Simpler diseases” were understood and
treated this way, but the remaining complicated ones, such as cancer, AIDS,
sepsis, and heart diseases require new sophisticated techniques that can cope
with their complexity. Structure of biological organisms enables researchers to
use various mathematical and computational approaches for modeling, simu-
lation, and analysis. At cellular level, there are distinct biochemicalmechanisms
that are responsible for specific jobs, such as energy production, protein
synthesis, motor functions, defense, and signaling.

We present a brief introduction to deterministic and stochasticmodeling of
biochemical networks. Outline of this chapter is as follows: In Section 2, we
describe the basics of mathematical modeling of biochemical reactions, their
steady state and stability analysis using the law of mass action. Section 3

summarizes stochastic modeling techniques and describes a basic stochastic
algorithm.We focus on the Yildirim–Mackeymodel for lac operon in Section
4 and discuss how bistability arises in this network. We then simulate the lac
operon model using both the deterministic and stochastic methods with
experimentally estimated parameter values to show that this system indeed
displays bistable behavior for physiologically reasonable parameters values.The
chapter ends with Section 5 which includes conclusions and discussion.

2. Mathematical Modeling of Biochemical
Reaction Networks and Law of Mass Action

There are different approaches and methodologies to studying bio-
chemical reactions. Mass-action kinetics which results in system of differen-
tial equations are commonly used to describe the dynamics of biochemical
reaction networks. This approach is a fully deterministic and it is appropriate
when a system under consideration has large number of molecules and these
molecules are spatially homogeneous. In this section, we briefly describe
how to construct differential equation models that describe dynamics of a
reaction network under these two assumptions.

Suppose that A, B, and C are three proteins and when molecules of A
collide with molecules of B, they may react and form C. Assume that this
reaction is associated with a positive rate constant k1, quantifying how likely
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it is for such a collusion to result in a reaction. We also assume that C can
break into A and B. Let us assume that the backward positive rate constant
for reaction is k2. We use the following notation Eq. (12.1) to denote this
chemical reaction system:

Aþ BÐ
k1

k2
C: ð12:1Þ

Now suppose that there exist various amounts of these proteins in a
constantly well-stirred pot, so that its contents remain spatially homoge-
neous. Here, we are interested in the temporal evolution of the molecular
concentrations of these protein molecules. Let us denote the concentration
of a species X with [X]. We would like to construct a system of differential
equations that governs the temporal evolution of [A], [B], and [C].
Naturally, we can think of the reaction given in Eq. (12.1) as two separate
reactions: Aþ B!

k1
C and C!

k2
Aþ C.

According to mass-action kinetics, the time derivative of the concentra-
tion of protein A is equated to the difference between the sum of the gain
terms (input chemical fluxes) that cause the concentration to increase and
the sum of the loss terms (output chemical fluxes) that act to decrease the
concentration as:

d½A&

dt
¼

X
Input fluxes(

X
Output fluxes: ð12:2Þ

For the reaction given in Eq. (12.1), the mathematical model is

d

dt
A½ & ¼

d

dt
B½ & ¼ (k1 A½ & B½ & þ k2 C½ &;

d

dt
C½ & ¼ k1 A½ & B½ & ( k2 C½ &:

ð12:3Þ

This system of differential equations can be solved to simulate temporal
evolution of [A], [B], and [C] after assigning values for initial concentrations
of A, B, and C for t ¼ 0. Although mass-action kinetics is extremely useful
for modeling chemical reactions, biological systems benefit greatly from
enzymatic kinetics. Most chemical reactions in biological organisms rely on
enzymes, special molecules that enable certain reactions to occur. In
general, enzymes are fast acting molecules existing in low concentrations.
These properties enables derivation of simpler equations for enzymatic
reactions using certain approximations. In the following two sections, we
give two examples from enzyme kinetics. In the first example, the rate for
the product formation is a hyperbolic function of the substrate
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concentration. In the second example, the rate of product is a sigmoidal
function of the substrate concentration. Then we discuss importance of
these types of functional relationships.

2.1. Simple enzymatic reactions and Michaelis–Menten
equation

Consider the following enzyme catalyzed reaction given in Eq. (12.4). An
enzyme E binds to a substrate S and forms an enzyme–substrate complex ES
with a rate constant k1. We assume this reaction is fully reversible. That is to
say ES can break down into E and S, and suppose that the associated rate
constant for this backward reaction is k2. In this reaction network, we
assume that E can also release from ES and produce P and E. The rate
constant for this final step of the reaction is k3. In this simple system, there
are four time dependent variables: [E], [S], [ES], and [P].

E þ SÐ
k1

k2
ES!

k3
P þ E: ð12:4Þ

We assume that the total concentrations of the enzyme and the substrate
stay constant over time for this system. That gives us the following two
equations:

E0 ¼ E½ & þ ES½ &; ð12:5Þ

S0 ¼ S½ & þ ES½ & þ P½ &; ð12:6Þ

where E0 and S0 are the initial concentrations of the enzyme and the
substrate, respectively. These two equations reduce the number of free
variables from four to two. Now, we can write two differential equations
that describe the dynamics of the concentration of ES and P.

d½ES&

dt
¼ k1 E½ & S½ & ( k2 þ k3ð Þ ES½ &: ð12:7Þ

d½P&

dt
¼ k3 ES½ &: ð12:8Þ

These equations describe the dynamics of the single enzyme–substrate
reaction in Eq. (12.4). However, we can further simplify this model using
additional assumptions. Not all variables in a dynamic system change at same
time scale. It is often the case that some variables change significantly faster
than others. If we assume [ES] is a fast variable and reaches a steady state
much earlier than [P], then we get d[ES] /dt ) 0 and hence
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ES½ & ¼
k1

k2 þ k3
E½ & S½ &: ð12:9Þ

This is called the quasi steady state assumption on [ES]. If we substitute
[ES] given in Eq. (12.9) into Eq. (12.5) and solve the resultant equation for
[E], we get

E½ & ¼
E0

1þ k1=k2 þ k3ð Þ S½ &
: ð12:10Þ

Plugging Eq. (12.9) into Eq. (12.8) after replacing [E] in Eq. (12.9) by
Eq. (12.10) gives us

d½P&

dt
¼

Vmax S½ &

Km þ S½ &
; ð12:11Þ

where Vmax ¼ k3E0 ¼ k2 þ k3 / k1. This equation is well known as
Michaelis–Menten equation in enzyme kinetics.

In Eq. (12.11), the parameter Vmax is the maximum rate that this
reaction can occur and the parameter Km is defined as the values of [S]
that gives half of Vmax. In other words, when [S] ¼ Km, the product
formation (d[P] /dt ) ( d[S] /dt) occurs at half of its maximum rate
(Vmax). A graphical representation of Michaelis–Menten equation in
Eq. (12.11) for various values of Km is depicted in Fig. 12.1. As seen in
this graph, all the curves approach to a maximum value of Vmax as [S]
increases. For larger Km values, the curves shift toward the right. All the
curves are concave downward and the concavities of these curves do not
change as [S] increases.

2.2. Higher order kinetics and Hill equations

Consider the following reaction system given in Eq. (12.12). In this reaction
system, n-molecules of a substrate S bind to an enzyme E and form a
complex ESn with a forward rate constant k1 and a reverse rate constant
k2. Then the enzyme is released and a product P is formed with a rate
constant k3

E þ nSÐ
k1

k2
ESn; ð12:12Þ

ESn!
k3
P þ E: ð12:13Þ
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Let us also assume that at any time throughout the course of these
reactions, the first reaction (Eq. (12.12)) is much faster compared to the
second one (Eq. (12.13)). Therefore the first reaction reaches equilibrium
(forward and backward reaction rates become equal) earlier than P starts to
get produced. This allows us to write

d½ESn&

dt
¼ k1 E½ & S½ &

n ( k2 ESn½ & ¼ 0:

This is called the equilibrium assumption. Then, we can write

E½ & ¼
k2 ESn½ &

k1 S½ &
n : ð12:14Þ

Assuming that the total amount of enzyme is conserved, we can write

Etot ¼ E½ & þ ESn½ &: ð12:15Þ

Substituting Eq. (12.14) into Eq. (12.15) and then solving it for [ESn],
we obtain

ESn½ & ¼
Etot S½ &

n

Keq þ S½ &n
; Keq ¼

k2

k1
:

Vmax

[S ]

Km increases

d
t

d
[P

]

Figure 12.1 A graphical representation of Michaelis–Menten equation in Eq. (12.11)
and hyperbolic kinetics for various values of Km when the maximum rate Vmax kept
fixed. As Km increases, the curves move to the right and all curves are looking
downward.
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According to mass-action law, the dynamics of the concentration of P is
proportional to the concentration of [ESn] with proportionality constant k3.
Hence, d[P] /dt takes the following form

d½P&

dt
¼

Vmax S½ &
n

Keq þ S½ &n
; ð12:16Þ

where,Vmax ¼ k3Etot andKeq ¼ k2 / k1. A graphical representation of Hill
equation in Eq. (12.16) for various values of Keq when n ¼ 4 is shown in
Fig. 12.2. As seen in this figure, all the curves approach to a maximum value
of Vmax as [S] increases. For larger Keq values, the curves shift toward the
right. One of the important characteristics of Hill equation curves is that
they are all concave upward and then become concave downward after a
threshold value of [S] for no matter what Keq values are. This important
feature leads to bistability, ability of a system to rest in two steady states, as
will be discussed in the following sections.

2.3. Steady state and linear stability analysis in
one-dimensional models

One-dimensional mathematical model has the following general form

d½A&

dt
¼ f A½ &ð Þ: ð12:17Þ

Vmax

[S]

Keq increases

d
t

d
[P

]

Figure 12.2 A graphical representation of Hill Equation in Eq. (12.16) and sigmoidal
kinetics for various values of Keq when the maximum rate Vmax kept fixed for n ¼ 4.
Similar to the Michaelis–Menten curves, as Keq values increase, the curves move to the
right. UnlikeMichaelis–Menten curves, theHill function curves are concave upward for
smaller values of [S] and then they become concave downward for larger values of [S].
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We say a point [A*] is a steady state if time derivative at that point is zero.
The steady states can be computed by solving the equation f([A*]) ¼ 0,
since d[A] /dt ¼ 0 at [A] ¼ [A*]. When Eq. (12.17) is plotted as a function
taking [A] on x-axis and d[A] /dt on y-axis, the x-intercepts gives the steady
state values (see Fig. 12.3). Now, we can think of the equation given by
Eq. (12.17) a model that describes movement of an imaginary particle
moving along [A]-axis and d[A] /dt is the velocity of that particle. Since
d[A] /dt ¼ 0 at the steady state value, there is no change in [A] when
d[A] /dt ¼ 0. If d[A] /dt < 0 for a value of [A], the arrows point to the
left, otherwise they point to the right. As can be seen in Fig. 12.3, there are
two types of steady states. The filled dot represents the stable steady state
since the flow is toward this steady state. The open circle represent the
unstable steady state since the flow is toward away from this steady state.

We can conclude from Fig. 12.3 that a steady state is stable if d[A] /
dt < 0 at that steady state value. It is an unstable steady state if d[A] /dt > 0
holds at that steady state value.

2.4. Modeling coupled reactions and bistability

In this section, we give an example with a positive feedback loop, one of the
important regulatory mechanisms in biological systems. It is capable of
producing two stable steady states separated by an unstable steady state, so
called “bistable system.” Bistability provides a true discontinuous switching
between stable steady states. A bistable system often involves a positive
feedback loop. Positive feedback loops are ubiquitous control mechanisms
in gene networks. The lactose operon and the arabinose operon of Escher-
ichia coli are two examples of this type of regulatory control networks
(Lewin, 2008; Schleif, 2000). Consider the hypothetical system with posi-
tive feedback loop in Fig. 12.4. This reaction network has two proteins
A and B. We use the Eqs. (12.18) and (12.19) to model the dynamics of this

[A]

dt

d [A]

Figure 12.3 Graphical approach to the steady state and stability analysis of one-
dimensional model given in Eq. (12.17).
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toy reaction network with positive feedback. The dynamics of the concen-
tration of A is given by Eq. (12.18). In this network, we assume A is
produced with a constant rate a1 and degraded at a rate proportional to its
concentration with a proportionality constant b1. The second term in this
equation is for the increase in the production rate of A due to the positive
feedback and we assume that this relationship has a Hill function form with
n ¼ 2. Equation (12.19) models the dynamics of [B]. It is assumed that A is
required for the production of B and the production rate of A is propor-
tional to the concentration ofAwith a proportionality a2. We assume that B
has a decay constant b2.

d½A&

dt
¼ a1 þ

Vm B½ &2

Km þ B½ &2
( b1 A½ &: ð12:18Þ

d½B&

dt
¼ a2 A½ & ( b2 B½ &: ð12:19Þ

This system of differential equations has two time dependent variables
[A] and [B] and six positive parameters a1, a2, b1, b2, Vm, and Km.

2.4.1. Steady state and stability analysis
Suppose that the system given in Eqs. (12.18) and (12.19) has a steady state
([A*], [B*]). At this steady state ([A*], [B*]), d[A]/dt ¼ d[B]/dt ¼ 0 has to
hold simultaneously. Therefore, we can write

a1 þ
Vm B*½ &2

Km þ B*½ &2
( b1 A

*½ & ¼ 0; ð12:20Þ

a2 A
*½ & ( b2 B

*½ & ¼ 0: ð12:21Þ

After solving Eq. (12.21) for [A*] and plugging it back in Eq. (12.20), we
get a nonlinear equation in [B*] as

a1 þ
Vm B*½ &2

Km þ B*½ &2
¼ b1

b2
a2

B*½ &: ð12:22Þ

B

A

Figure 12.4 A cartoon for a reaction network with a positive feedback loop.
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When we look at the right-hand side and left-hand side of Eq. (12.22) as
two different functions of [B], we see that the right-hand side is a linear
function of [B] with a positive slopem ¼ b1(b2 / a2). The left-hand side is a
Hill function which equals a1when [B] ¼ 0, and approaches to a maximum
value of a1 þ Vm as [B] ! 1 (Fig. 12.5). When both of these functions are
plotted in the same plane choosing x-axis as [B], where these two functions
intersect each other give us the steady state value or values. It is not hard to
see that these two functions can intersect each other at only one point for
small and large values of m and but at three points for intermediate values of
m. Since the left-hand side of Eq. (12.22) is a Hill function and it is concave
upward for small values of [B] that means increase in this function is
relatively small for smaller concentration of B. Then there is a sharp increase
for intermediate concentration of B and after that the curve changes its
concavity and becomes concave downward and finally it levels off. This
feature of the curve allows possibility of having multiple steady states for
intermediate values of m. Figure 12.5 shows how one, two, or three steady
states can arise in this model for different values of m.

The local stability analysis of the model given in Eqs. (12.18) and (12.19)
can be studied mathematically by linearizing this system of differential
equations around a given steady state and looking at eigenvalues of the
jacobian matrix. For the sake of simplicity, let us assume [B] is a fast variable
in this system and d[B] /dt ¼ 0 in Eq. (12.19). After solving d[B] /dt ¼ 0
in Eq. (12.19) for [B] and putting it into Eq. (12.18), the two-dimensional
model reduces to a one-dimensional model as:

LHS

RHS

[B]

Figure 12.5 A diagrammatic representation showing how one, two, or three steady
states may arise in the model given by Eqs. (12.18) and (12.19). The solid line
represents the left-hand side of Eq. (12.22). The dash-dotted lines are for the right-
hand side of Eq. (12.22) for three different values of m ¼ b1b2 / a2. As seen in this plot,
there is only one steady state for either small or large values of m. However, there is a
range for m in which it is possible to have three coexisting steady states.
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d A½ &

dt
¼ a1 þ

Vm A½ &2

Km b2=a2ð Þ2 þ A½ &2
( b1 A½ &: ð12:23Þ

In Fig. 12.6, we plot d[A] /dt versus [A] for small, medium, and large
values of m. As seen in this figure, there is only one steady state for small and
large values of m and these steady states are always stable (A and C in
Fig. 12.6). When there exists three steady states (B in Fig. 12.6), the middle
steady state is always unstable and the lowest and the highest steady states are
always stable.

3. Stochastic Simulations

Ordinary differential equation (ODE) models are widely used to
simulate biochemical reaction systems. However, they are by no means a
perfect in capturing every aspect of molecular reactions that occur in real
life. Continuous variables used in ODEs are not appropriate to represent
dynamics of molecular species that exist in low quantities in a system.
Another major shortcoming of ODEs shows up in systems capable of
multiple steady states. The deterministic solution of the ODE representation
of such a system will always converge to a single stable steady state and stay
there. However, in real life, constant switching behavior among steady
states may be observed. Due to inherent fluctuations within the system,
the state may be “pushed” from one steady state to another. Such issues may
be accommodated by stochastic simulations, or stochastic differential equa-
tions (SDE).

d [A]

dt

d [A]

dt

d [A]

dt

A

[A] [A] [A]

B C

Figure 12.6 A diagrammatic representation of stability analysis of the bistable system
modeled by Eq. (12.23). In this plot we see that when there is only one steady state (A
and C), this steady state is stable (the flow is toward this steady state). When there are
three steady states (B), the middle one is unstable (the flow is away from this steady
state) and the other two are stable.
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3.1. Cases where stochasticity matters

Molecules in a medium move and collide with each other. When two
molecules of the same species collide, their speed and velocity changes.
However, when two molecules with the capability to react collide, they may
react with some probability p and form a new chemical species. This probabil-
ity p is somewhat analogous to the reaction rate k in mass-action kinetics. This
inherent probabilistic behaviormay not be captured by deterministic differen-
tial equations. In general, the effects of this probabilistic behavior may be
ignored withoutmuch penalty. However, in some cases, significant difference
is observed between the stochastic and deterministic equations representing
the same system. Here, we give two such example systems. For biochemical
reaction systems, an ODE solution is an approximation to a stochastic phe-
nomenon. For example, at equilibrium, the time course plot for the ODE
solution is a straight horizontal line, while a continuous “noisy” activity is
observed for the SDE solution. In reality, unlike theODE simulation suggests,
the activity in a biochemical reaction system never stops. At equilibrium,
molecules keep colliding and the reactions keep occurring, but at a balanced
rate so that the molecular species concentrations stay the same on average.

The difference between the stochastic and deterministic simulations
become significant as the number of molecules decrease, in which case,
the noise takes over the dynamics. We demonstrate this effect of probabi-
listic behavior on the following reaction network (Scott, 1991):

Aþ X!
k1
2X ;

X þ Y!
k2
2Y ;

Y!
k3
B:

ð12:24Þ

In this system, a constant supply of A is assumed. B is a product, so its
concentration does not affect the system. The only changing quantities in
the two-dimensional ODE are the concentrations of X and Y. Initial
conditions are [X](0) ¼ [Y](0) ¼ 300, and the reaction rates are
k1[A] ¼ 2, k2 ¼ 0.01, k3 ¼ 2. This reaction system is chosen because the
concentrations of X and Y oscillates, clearly demonstrating how the inher-
ent probabilistic behavior of molecular reactions may perturb the dynamics
predicted by the ODE simulation. In Fig. 12.7, we compare the ODE and
SDE simulations for this reaction system. Significant variation is observed
between the two methods. This difference is expected to be more apparent
in case of smaller systems, where there are small number of molecules
present in the medium. In extreme cases, the dynamic behavior may be
totally lost and dominated by noise.

Even if the number of molecules remains high in the environment at all
times, the ODE simulation still may convey a significantly different
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behavior than a stochastic simulation. The positive feedback mechanism
given in Fig. 12.4 demonstrates such behavior.

Although this system consists of twomolecular species, it is possible to derive
a one-dimensional ODE using the quasi steady state assumption for B as in
Eq. (12.23) under the assumption given byEq. (12.21).Note that this function is
capable of havingmultiple steady states. For the following choice of parameters:

a1 ¼ 0:42; b1 ¼ 0:004; a2 ¼ 0:36; b2 ¼ 32; Vm ¼ 0:93; Km ¼ 1:8;

the system has two stable steady states at 13, 160 and an unstable steady state
at 70. Depending on the initial condition, the ODE solution converges to
one of the stable steady states (Fig. 12.8):

lim
t!1

A½ & tð Þ ¼
13; if 0 , ½A&ð0Þ < 70;
70; if ; ½A&ð0Þ ¼ 70;
160; if ; 70 < ½A&ð0Þ:

8
<
:

Stochastic simulation of this bistable system conveys an interesting
behavior; it switches back and forth between the two stable steady states.
The switching occurs when the inherent perturbations around a steady state
are large enough to push the solution to the other side of the unstable steady

Time

C
o
n
ce

n
tr

a
ti
o
n
 o

f 
B

SDE

ODE

Figure 12.7 The difference between the ODE and SDE simulations for the same
reaction system (Eq. (12.24)) is demonstrated. The time course of the concentration of B
is shown to compare the twomethods.TheODE solution for [B] converges to a limit cycle
over time and stays there. Although the SDE solution initially shows similar behavior, it
quickly diverges and displays significant variation in both amplitude and phase.
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state. This phenomenon continues repeatedly, preventing the system to stay
at one steady state. This is the case even if A is present in abundant
concentrations. Therefore what happens here is a lot more than a stochastic
solution showing noisy behavior. If a system has multiple steady states, the
stochastic solution may show significantly different results than the ODE
solution. Stochastic methods may be a necessity for such systems.

3.2. Stochastic simulation algorithms

Like numerical ODE solutions, various methods exist for stochastic simula-
tions. Unlike numerical ODE solutions, there are many other factors to
consider in choosing the correct stochastic method. Note that it is not
possible to add some Gaussian noise to an ODE solution at each iteration
to get a stochastic solution. Result of such an approach would be noisy and
wrong. Similar but correct approaches exist, such as chemical Langevin
equation (Gillespie, 2000), where the correct noise term is computed and
added to the ODE solution. This method was used in Fig. 12.7. Computa-
tion of the correct noise term is essential, and is more complicated than
computing the deterministic part of the solution. Chemical Langevin equa-
tion is a first order method. Higher order methods exist. However, compu-
tation of the noise term get extremely complicated. Another issue with this
approach occurs when some molecular species exist in extremely low con-
centrations, in which case, the solution may go negative, indicating negative

13

70

160

Time

C
o
n
ce

n
tr

a
ti
o
n
 o

f 
A

SDE

ODE

Figure 12.8 A stochastic solution of the positive feedback system in Eq. (12.23) with
initial condition at [A](0) ¼ 70 is plotted, which conveys a “switching” behavior
between the stable steady states. Steady states are shown with dashed lines.
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concentrations. This implausible result can occur because the noise termmay
exceed an extremely small deterministic component of the solution.

A different well-known methodology is proposed by Gillespie (1977),
where each individual molecule and reaction is taken into account. There-
fore it works very well even if some molecular species exist in low con-
centrations. However, if some molecular species exist in extremely high
concentrations, then Gillespie’s stochastic algorithm may run extremely
slow. There are many recent developments aimed to eliminate the men-
tioned shortcomings of stochastic solutions. Various modifications of Gil-
lespie’s stochastic method that run faster (Gillespie, 2001; Gillespie and
Petzold, 2003), and chemical Langevin equations that preserve positivity
(Wilkie and Wong, 2008) are being developed, though such enhancements
generally come at the cost of another compromise such as accuracy, com-
plexity, or efficiency.

We will go over a basic stochastic simulation method for demonstration
purposes. Although Gillespie’s algorithm or chemical Langevin equations
are considered better performing methods in general, basic stochastic algo-
rithm is simple and intuitive. We will use the reaction system given in
Eq. (12.4) to describe the basic stochastic algorithm. The three reactions and
their associated reaction rates are as follows:

E þ S!
k1
ES k1 E½ & S½ &;

ES!
k2
E þ S k2 ES½ &;

ES!
k3
P þ E k3 ES½ &:

The method is based on the probabilities that these reactions occur over
a fixed time interval dt. The smaller this time interval, the more accurate the
simulation. We compute the probability that one of these reactions occurs
during a time interval of length dt by multiplying its reaction rate with dt.
For example, the probability that the first reaction will occur during a time
interval of length dt is k1[E][S]dt. Here, dt has to be sufficiently small, so that
this product stays less than 1. Actually, dt is supposed to be small enough that
at most one of these reactions happen during dt. The probability that none
of these reactions will occur over dt is 1 ( k1[E][S]dt ( (k2 þ k3)[ES]dt.
Then we can devise an iterative simulation algorithm where we update the
state of the system after a fixed time interval of length dt. We decide which
reaction occurs by partitioning the interval [0,1] into four subintervals with
lengths equal to the corresponding probabilities:

k1[E][S]dt k2[ES]dt k3[ES]dt

No reactionSecond reaction Third reaction

0 1−k1[E][S]dt− (k2+k3)[ES]dt
1

First reaction
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We then choose a random value p between 0 and 1, and we update the
state of the system depending on which subinterval p belongs to. For
example, if 0 < p < k1[E][S]dt, then it means that E þ S ! ES has
occurred once, therefore we update the system so that E and S loose one
molecule each and ES gains one. Or if k1[E][S]dt þ (k2 þ k3)[ES]dt < p
< 1 then it means that no reaction has occurred, so we jump to the next
iteration without changing the state. This iterative scheme can be
generalized for any chemical reaction system. At each iteration:

1. Reaction probabilities are computed.
2. Interval [0,1] is partitioned into subintervals according to these

probabilities.
3. A uniform random number p is chosen from [0,1].
4. System state is updated depending on which subinterval p belongs to.

Similar to numerical ODE solvers, the accuracy of this algorithm
increases as dt decreases. Similarly, if dt is extremely small, then simulations
will take longer computing time. For smaller dt values, system state will not
change during many iterations because the probability that no reaction
occurs converges to 1 as dt ! 0. Gillespie’s stochastic algorithm provides
a remedy for this issue by choosing an adaptive time-step dt, which is
explained in his paper (Gillespie, 1977).

4. An Example: Lactose Operon in E. coli

We use the lactose operon (the lac operon) of E. coli and a modified
version of the Yildirim–Mackey model (Mackey et al., 2004; Yildirim and
Mackey, 2003; Yildirim et al., 2004) developed for this bacterial regulatory
circuit to demonstrate the methods and analysis described in previous
sections. The lac operon is the classical example of an inducible circuit
which encodes the genes for the transport of external lactose into the cell
and its conversion to glucose and galactose. A cartoon that depicts the major
components of this circuit is shown in Fig. 12.9. The molecular mechanism
of the lac operon works as follows: The lac operon has a small promoter/
operator region (P and O) and three larger structural genes lacZ, lacY, and
lacA. There is a regulatory gene lacI preceding the lac operon. lacI is
responsible for producing a repressor (R) protein. In the presence of allo-
lactose, a binary complex is formed between allolactose and the repressor
that makes binding of the repressor to the operator region impossible.
In that case, the RNA polymerase bound to the promoter is able to initiate
transcription of the structural genes to produce mRNA(M). However, in
the absence of allolactose (A) the repressor protein R binds to the operator
regionO and prevents the RNA polymerase from transcribing the structural
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genes. Once the mRNA has been produced, the process of translation starts.
The lacZ gene encodes the portion of the mRNA that is responsible for the
production of b-galactosidase (B) and translation of the lacY gene produces
the section of mRNA that is ultimately responsible for the production of an
enzyme permease (P). The final portion of mRNA produced by transcrip-
tion of the lacA gene encodes for the production of thiogalactoside transa-
cetylase which is thought not to play a role in the regulation of the lac
operon (Beckwith, 1987). This positive control system works as follows:
When there is no glucose available for cellular metabolism but if lactose (L)
is available in a media, the lactose is transported into the cell by the
permease. This intracellular lactose is then broken down into glucose,
galactose, and allolactose by b-galactosidase. The allolactose is also con-
verted to glucose and galactose by the same enzyme b-galactosidase. The
allolactose feeds back to bind with the lactose repressor and enable the
transcription process which completes the positive feedback loop.

Yildirim et. al. (Mackey et al., 2004; Yildirim andMackey, 2003) devised
a mathematical model which takes into account the dynamics of the
permease, internal lactose, b-galactosidase, the allolactose interactions
with the lac repressor, and mRNA. The final model consists of five nonlin-
ear differential delay equations with delays due to the transcription and
translation process. We modified this model in this study and eliminated the
delay terms. This change reduced the original model to a five-dimensional
system of ODEs. The equation of this model are given in Eqs. (12.25)–

Glucose

Repressor

(R)

b-gal

b-gal

(B)

Permease

(P)

Allolactose

(A)

Lactose

(L)

Lactose

(Le)

Cell membrane

RNA (M)

I P O LacZ LacY LacA

Transcription

Translation

Figure 12.9 Schematic representation of the lactose operon regulatory system. See the
text for details.
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(12.29). The estimated values for the model parameters from the published
data are listed in Table 12.1. The details on the development of this model
and estimation of the parameters can be found in Mackey et al. (2004),
Yildirim and Mackey (2003), Yildirim et al. (2004) (Table 12.2).

We studied this model using both deterministic and stochastic
approaches. To see if the modified model captures the experimentally

Table 12.1 The model parameters estimated from experimental data (from Yildirim
and Mackey, 2003)

n 2 mmax 3.47 - 10(2 min(1

gM 0.411 min(1 gB 8.33 - 10(4 min(1

gA 0.52 min(1 G0 7.25 - 10(7 mM/min

K 7200 aM 9.97 - 10(4 mM/min

KL1
1.81 mM aA 1.76 - 104 min(1

KA 1.95 mM aB 1.66 - 10(2 min(1

gL 0.0 min(1 bA 2.15 - 104 min(1

aL 2880 min(1 KL 9.7 - 10(4 M

KLe
0.26 mM gP 0.65 min(1

bL2
1.76 - 104 min(1 aP 10.0 min(1

K1 2.52 - 10(2 (mM)(2 bL1
2.65 - 103 min(1

KL2
9.7 - 10(4 M

Table 12.2 The equations describing the evolution of the variables M, B, L, A, and P

in the Yildirim–Mackey model for the lac operon

d M½ &

dt
¼ aM

1þ K1 A½ &
n

K þ K1 A½ &
n þ G0 (egM M½ &: ð12:25Þ

d B½ &

dt
¼ aB M½ & (egB B½ &: ð12:26Þ

d½L&

dt
¼ aL

P½ & Le½ &

KLe
þ Le½ &

( bL1

P½ & L½ &

KL1
þ L½ &

( bL2

B½ & L½ &

KL2
þ L½ &

(egL L½ &: ð12:27Þ

d A½ &

dt
¼ aA

B½ & L½ &

KL þ L½ &
( bA

B½ & A½ &

KA þ A½ &
( egA A½ &: ð12:28Þ

d½P&

dt
¼ aP M½ & ( egP P½ &: ð12:29Þ

In this model egi ¼ gi þ m; i 2 M ;B;L;A;Pf g.
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observed bistable behavior (Cohn and Horibata, 1959; Novick andWiener,
1957; Ozbudak et al., 2004), we set the left-hand side of each equation in the
system Eqs. (12.25)–(12.29) to zero and solve the resultant system of five
nonlinear equation for a range of Le concentration after keeping all the other
parameters as in Table 12.1 for m ¼ 2.26 - 10(2min(1. The result is shown
in Fig. 12.10.Ourmodifiedmodel predicts that there is a physiologically range
for the external lactose concentration that corresponds to the S-shaped curve
in this figure.When the external lactose concentration falls in this range, the lac
operon can have three coexisting steady states.

Figure 12.11 shows how the bistability arises in evolution of b-galacto-
sidase concentration in the deterministic simulation of the model. In this
simulation, all the parameters are kept constant as in Table 12.1 when
m ¼ 2.26 - 10(2 min(1 and we chose [Le] as [Le] ¼ 53 - 10(3 mM.
As shown in Fig. 12.10, there are three steady states for this particular
concentration of Le. We calculate these steady state values numerically as
in Table 12.3. To produce this figure, the initial values for the concentra-
tions of all the proteins were kept constant at their steady state values on the
middle branch of the S-shaped curve when [Le] ¼ 53 - 10(3 mM except
mRNA concentration. Then three initial values of the mRNA concentra-
tion were chosen slightly below its steady value on the middle branch and
another three initials were chosen slightly above its steady state

0 0.02 0.04 0.06 0.08 0.1

B
(t
) 
(m
M

)

Le (mM)

10−5

10−4

10−3

Figure 12.10 Bistability arises in the lac operon model as the external lactose (Le)
concentration changes when m ¼ 2.26 - 10(2 min(1. Notice that the parameter
values, there exists a range of Le concentration for which there are three coexisting
steady states for b-galactosidase concentration. Our calculations estimate this range as
[0.026, 0.057] mM of [Le].
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concentration on the same branch and the model equations in Eqs. (12.25)–
(12.29) was solved numerically for [Le] ¼ 80 - 10(3 mM, which corre-
sponds to the external lactose concentration on a steady on the upper branch
of the S-shaped curve. When the simulation is started from an initial starting
point that is exactly on the middle branch of S-shape curve, the b-galacto-
sidase concentration stays constant over time (the horizontal line in
Fig. 12.11) as it is a steady state for this system. Since the middle branch is
unstable, small perturbations around the middle branch can kick the simu-
lation either to the lower or the upper stable branches of S-shape curve. All
the other runs converge to the stable steady states either on the lower branch
or on the upper branch as seen in this simulation. We observe that the ones
started initially above the steady state concentration of mRNA on the
middle branch converged to the steady state on the upper branch, the
ones started initially below the steady state concentration of mRNA on
the middle branch converged to the steady state on the lower branch.

In Fig. 12.12, the deterministic and stochastic simulation of the
Yildirim–Mackey lac operon model is shown. To produce this plot, we
run six simulations by choosing the steady state value on the lower branch of
the S-shaped curve as the initial starting point when [Le] ¼ 53 - 10(3mM
and m ¼ 2.26 - 10(2min(1while all other parameters are kept constant as
in Table 12.1. As seen in this simulation, the average of the stochastic
simulations are about the same as the solution of differential equations.
Since we pick the initial concentrations from the bistable region, there is a
slow transition before reaching to the steady state in both simulations.

0 200 400 600 800 1000

[time]

[B
] 
(×

1
0

−
5
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M

)

100

101

10–1
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Figure 12.11 Semilog plot of b-galactosidase concentration over time showing effects
of the initial values of concentration mRNA around the middle branch of S-shape curve
in Fig. 12.10 in the numerical simulation.
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Table 12.3 The steady state values calculated from Eqs. (12.25)–(12.29) by setting the time derivatives zero

[M*] [B*] [A*] [L*] [P*]

Lower branch 2.80 - 10(6 1.98 - 10(6 1.00 - 10(2 1.88 - 10(1 4.17 - 10(5

Middle branch 5.33 - 10(6 3.78 - 10(6 2.04 - 10(2 2.11 - 10(1 7.93 - 10(5

Upper branch 6.56 - 10(4 4.65 - 10(4 3.37 - 10(1 2.46 - 10(1 9.75 - 10(3

All the parameters are kept constant as in Table 12.1, when m ¼ 2.26 - 10(2min(1 and [Le] ¼ 53 - 10(3mM for which there exist three steady states (see Fig. 12.10).



The deterministic model estimates this transition period about 120 min.
The stochastic simulations predicts a significant variance in this transition
period and estimate that this period may take up to 500 min for individual
cells.

We investigate the effects of stochasticity in the bistable region. To this
end, we run the stochastic simulation eight times starting from the stable
steady state on the lower branch of the S-shaped curve and another eight runs
starting from the stable steady state on the upper branch of the S-shaped curve
for [Le] ¼ 53 - 10(3mM. The results are shown in Fig. 12.13. In a bistable
system, the random fluctuations can push the system from one stable steady
state to the other one. The frequency of this transition is higher for systems
with higher noise levels. We observe that all simulations starting from the
lower branch of the S-shaped curve ended up converging to the stable steady
state on the upper branch. However, simulations initialized at the upper
branch never switch to the lower steady state and stay on the upper branch.
This indicates that the steady state on the upper branch is more robust, and is
resistive against fluctuations in the protein concentrations compared to the
steady state on the lower branch. As seen in this simulation, the time required
to shift from the lower steady state to the upper steady state can change
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Figure 12.12 Deterministic and stochastic simulation of the Yildirim–Mackey lac

operon model given by Eqs. (12.25)–(12.29). In this simulation, the solid lines show
the ODE solutions and the broken lines represent the results of the stochastic simula-
tions. To produce this plot, we chose the steady state value on the lower branch of the
S-shaped curve as the initial value when [Le] ¼ 53 - 10(3 mM and
m ¼ 2.26 - 10(2 min(1 while all the other parameters are kept constant as in
Table 12.1 and run six stochastic simulations for the external lactose concentration
[Le] ¼ 80 - 10(3 mM which corresponds to a steady state value on the upper branch
of the S-shaped curve in Fig. 12.10.
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significantly from one run to another. This transition can happen as early as in
60 min and as late as 600 min. Another surprising result is the variance at
steady levels of b-galactosidase and lactose. When [Le] ¼ 53 - 10(3 mM,
the steady state concentrations of b-galactosidase and lactose concentration
are around 50 and 23,000 mM, respectively. In general, we expected to see
less variation when concentration of a molecular species is high. In other
words, relative noise is less for high concentrations. However, our stochastic
simulation results indicate that relative noise appears to be about the same for
both of these proteins (results are not shown). One conclusion we can derive
from this simulation result is about the sensitivity of concentration of b-
galactosidase, that significant changes in the concentration of b-galactosidase
is not likely to have an impact on the entire system, because it will most likely
be dominated by noise anyway.

5. Conclusions and Discussion

Here, we present a brief introduction to mathematical modeling of
regulatory biochemical reaction networks with some examples from enzyme
kinetics and the couple systems that are capable of displaying oscillatory
dynamics and bistable behaviors.We cover both deterministic and stochastic
approaches and discuss the bistability and its origin from amathematical point
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Figure 12.13 Sixteen stochastic simulations of the Yildirim–Mackey lac operon model
is shown, with the same parameters used for Fig. 12.12. Eight simulations use the lower
steady state value as the initial condition, while the others use the upper steady state as
the initial condition.We observe that all the simulations starting from the lower branch
converge to the upper steady state and the simulations initialized from the upper
branched stay on that steady state (only one of the simulations is plotted here).
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of view in Section 2. We give the lac operon as a real-life example and show
that this system is capable of bistable behavior for physiologically meaningful
parameters ranges. We compare the stochastic and deterministic simulation
results on the lac operon. All numerical computations in this study were
performed in MatLab. There are software packages freely available to per-
form deterministic and stochastic simulation of biological and ecological
networks (Adalsteinsson et al., 2004; KazancI, 2007).

We study the Yildirim–Mackey lac operon model using both determin-
istic and stochastic approaches and show that the model is capable of
producing three coexisting steady states that correspond to the S-shaped
curve in Fig. 12.10. The external lactose concentration for the bistability is
estimated as [0.026, 0.057] mM of [Le] which agrees well with the recent
experimental result in (Ozbudak et al., 2004).

In the bistable region, our stochastic simulation results indicate that the
stable steady state on the lower branch of the S-shaped curve is less stable
against noise than the steady state on the upper branch of the S-shaped
curve. Furthermore, the fluctuations in the protein concentrations on the
lower branch of the S-shaped curve are strong enough to shift the lac operon
to the stable steady state on the upper branch (Fig. 12.13). Both the
deterministic and stochastic simulations predicts that there is a significant
transition period from bistable region ([Le] ¼ 53 - 10(3 mM) to fully the
induced state ([Le] ¼ 80 - 10(3 mM ). The deterministic model estimates
this period about 2 h and the stochastic simulations predicts this period may
take as long as 500 min for individual cells (Fig. 12.12).

To close, wewould like tomention that both deterministic and stochastic
methods have certain advantages and shortcomings. Deterministic simula-
tions describe the average behavior, and are appropriate when the number of
molecules in a system is large enough and molecules are spatially homoge-
neous. When the number of molecules is small, the stochastic methods
simulate system behavior much better. Another major shortcoming of the
deterministic simulation shows up in systems capable of multiple steady
states. The deterministic solution of such a system always converges to a
single stable steady state and stays there forever. However, in real life,
constant switching behavior among steady states may happen due to inherent
fluctuations within the system, as shown in Fig. 12.8. Dynamics such as this
can only be captured by stochastic methods. On the other hand, the deter-
ministic methods are often computationally more efficient and easier to
implement.

In Section 3, we went over two systems that display significantly
different behavior when simulated by deterministic and stochastic methods.
Stochasticity may play crucial role in regulation of a dynamical system.
There are many other biological systems observed with such properties,
systems that display noise-induced stability (D’Odorico et al., 2005) or
stochastic resonance (Gammaitoni et al., 1998).
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