The Prime Number Theorem and Its History

Yidi Chen

Department of Mathematics University of Georgia

Directed Reading Program, 2017 With Kübra Benli

Yidi Chen (University of Georgia)

The Prime Number Theorem

DRP 2017 1/12

A b

2 How many primes are there?

3 The Prime Number Theorem

< 6 b

3 The Prime Number Theorem

Yidi Chen (University of Georgia)

The Prime Number Theorem

DRP 2017 2/12

Yidi Chen (University of Georgia)

The Prime Number Theorem

DRP 2017 2 / 12

An integer p > 1 is called a prime number in case there is no divisor d of p satisfying 1 < d < p.

A prime number only has two positive factors: 1 and itself.

Example

2, 3, 5, 7, 11, 13, 17, 19, 23, 29,...,2⁷⁴²⁰⁷²⁸¹-1 (22,338,618 digits),...

Prime numbers are important because they are building blocks for the integers:

Theorem (Fundamental Theorem of Arithmetic)

Every integer n > 1 can be expressed as a product of primes, and this factorization is unique apart from the order of the prime factors.

< □ > < 同 > < 回 > < 回

An integer p > 1 is called a prime number in case there is no divisor d of p satisfying 1 < d < p.

A prime number only has two positive factors: 1 and itself.

Example

2, 3, 5, 7, 11, 13, 17, 19, 23, 29,...,2⁷⁴²⁰⁷²⁸¹-1 (22,338,618 digits),...

Prime numbers are important because they are building blocks for the integers:

Theorem (Fundamental Theorem of Arithmetic)

Every integer n > 1 can be expressed as a product of primes, and this factorization is unique apart from the order of the prime factors.

An integer p > 1 is called a prime number in case there is no divisor d of p satisfying 1 < d < p.

A prime number only has two positive factors: 1 and itself.

Example

2, 3, 5, 7, 11, 13, 17, 19, 23, 29,...,2⁷⁴²⁰⁷²⁸¹-1 (22,338,618 digits),...

Prime numbers are important because they are building blocks for the integers:

Theorem (Fundamental Theorem of Arithmetic)

Every integer n > 1 can be expressed as a product of primes, and this factorization is unique apart from the order of the prime factors.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Is there a largest prime?

-Euclid proved the following theorem.

Theorem

There are infinitely many primes.

Proof.

Suppose there are *n* primes and name them $p_1, p_2, p_3, ..., p_n$. Then let $M = p_1 p_2 ... p_n + 1$. Since *M* is not divisible by $p_1, p_2, ..., p_n$, *M* should have a prime factor different from these listed primes. So we obtain a new prime number other than the given ones. Therefore, there are infinitely many primes.

Is there a largest prime?

-Euclid proved the following theorem.

Theorem

There are infinitely many primes.

Proof.

Suppose there are *n* primes and name them $p_1, p_2, p_3, ..., p_n$. Then let $M = p_1 p_2 ... p_n + 1$. Since *M* is not divisible by $p_1, p_2, ..., p_n$, *M* should have a prime factor different from these listed primes. So we obtain a new prime number other than the given ones. Therefore, there are infinitely many primes.

How infinite primes are?

Call the number of primes less than or equal to a positive number x, $\pi(x)$, that is, $\pi(x) = \#\{p: \text{ prime} | p \le x\}$ for a positive real number x. Euclid's proof can be interpreted into

$$\lim_{x\to\infty}\pi(x)=\infty.$$

But how large $\pi(x)$ is when x is large? For that we seek a function f(x) such that

$$\lim_{x\to\infty}\frac{\pi(x)}{f(x)}=1,$$

in that case we use the notation

$$\pi(x) \sim f(x).$$

< ロ > < 同 > < 回 > < 回 >

How infinite primes are?

Call the number of primes less than or equal to a positive number x, $\pi(x)$, that is, $\pi(x) = \#\{p: \text{ prime} | p \le x\}$ for a positive real number x. Euclid's proof can be interpreted into

$$\lim_{x\to\infty}\pi(x)=\infty.$$

But how large $\pi(x)$ is when x is large? For that we seek a function f(x) such that

$$\lim_{x\to\infty}\frac{\pi(x)}{f(x)}=1,$$

in that case we use the notation

$$\pi(x) \sim f(x).$$

Legendre's First Conjecture

In 1798, Legendre published the first conjecture on the size of $\pi(x)$ in his book *Essai sur la Théorie des Nombres*. Legendre stated the following:

$$\pi(x) \sim \frac{x}{\log x - 1.08366}$$

Х	$\pi(\mathbf{X})$	Legendre	%Error
10 ³	168	172	2.381
10 ⁴	1229	1231	0.162
10 ⁵	9592	9588	0.042
10 ⁶	78498	78534	0.046
10 ⁷	664579	665138	0.084
10 ⁸	5761455	5769341	0.137
10 ⁹	50847534	50917519	0.138
10 ¹⁰	455052511	455743004	0.152

Legendre's First Conjecture

In 1798, Legendre published the first conjecture on the size of $\pi(x)$ in his book *Essai sur la Théorie des Nombres*. Legendre stated the following:

$$\pi(x) \sim \frac{x}{\log x - 1.08366}$$

X	$\pi(\mathbf{X})$	Legendre	%Error	
10 ³	168	172	2.381	
10 ⁴	1229 1231		0.162	
10 ⁵	9592	9588	0.042	
10 ⁶	78498	78534	0.046	
10 ⁷	664579	665138	0.084	
10 ⁸	5761455	5769341	0.137	
10 ⁹	50847534	50917519	0.138	
10 ¹⁰	455052511	455743004	0.152	

Yidi Chen (University of Georgia)

Legendre's First Conjecture

In 1798, Legendre published the first conjecture on the size of $\pi(x)$ in his book *Essai sur la Théorie des Nombres*. Legendre stated the following:

$$\pi(x) \sim \frac{x}{\log x - 1.08366}$$

X	$\pi(\mathbf{x})$	Legendre	%Error
10 ³	168	172	2.381
10 ⁴	1229	1231	0.162
10 ⁵	9592	9588	0.042
10 ⁶	78498	78534	0.046
10 ⁷	664579	665138	0.084
10 ⁸	5761455	5769341	0.137
10 ⁹	50847534	50917519	0.138
10 ¹⁰	455052511	455743004	0.152

Yidi Chen (University of Georgia)

Gauss's Li(x)

Gauss was also studying prime tables and came up with a different estimate for $\pi(x)$ (perhaps first considered in 1791), communicated in a letter to a friend in 1849 and first published in 1863. Gauss

$$\pi(x) \sim \int_2^x \frac{1}{\log t} dt \sim \frac{x}{\log x}$$

The integral in the middle is called the logarithmic integral and denoted by Li(x).

Х	$\pi(X)$	$\operatorname{Li}(x)$	%Error	
10 ³	168	178		
10 ⁴	1229	1246	1.3832	
10 ⁵			0.3961	
10 ⁶	78498		0.1656	
10 ⁷	664579	664918	0.0510	
10 ⁸	5761455	5762209	0.0131	
10 ⁹	50847534	50849235		
10 ¹⁰	455052511	455055614	0.0007	
			A A A A	

Gauss's Li(x)

Gauss was also studying prime tables and came up with a different estimate for $\pi(x)$ (perhaps first considered in 1791), communicated in a letter to a friend in 1849 and first published in 1863. Gauss conjectured the following:

$$\pi(x) \sim \int_2^x \frac{1}{\log t} dt \sim \frac{x}{\log x}$$

The integral in the middle is called the logarithmic integral and denoted by Li(x).

Х	$\pi(\mathbf{X})$	$\operatorname{Li}(x)$	%Error
10 ³	168	178	
10 ⁴	1229	1246	1.3832
10 ⁵			0.3961
10 ⁶	78498		0.1656
10 ⁷	664579	664918	0.0510
10 ⁸	5761455	5762209	0.0131
10 ⁹	50847534	50849235	
10 ¹⁰	455052511	455055614	0.0007
			Image: A matrix and a matrix

Gauss's Li(x)

Gauss was also studying prime tables and came up with a different estimate for $\pi(x)$ (perhaps first considered in 1791), communicated in a letter to a friend in 1849 and first published in 1863. Gauss conjectured the following:

$$\pi(x) \sim \int_2^x \frac{1}{\log t} dt \sim \frac{x}{\log x}$$

The integral in the middle is called the logarithmic integral and denoted by Li(x).

X	$\pi(\mathbf{X})$	Li(x)	%Error
10 ³	168	178	5.9523
10 ⁴	1229	1246	1.3832
10 ⁵	9592	9630	0.3961
10 ⁶	78498	78628	0.1656
10 ⁷	664579	664918	0.0510
10 ⁸	5761455	5762209	0.0131
10 ⁹	50847534	50849235	0.0033
10 ¹⁰	455052511	455055614	0.0007

Yidi Chen (University of Georgia)

Chebyshev's Approximation

Chebyshev made the first real progress toward a proof of the prime number theorem in 1850. He showed there exist positive constants $a \le 1 \le b$ such that

$$a\frac{x}{\log x} < \pi(x) < b\frac{x}{\log x}.$$

He also showed that IF $\frac{\pi(x)}{\frac{x}{\log(x)}}$ had a limit, then its value must be one.

A (10) > A (10) > A (10)

Chebyshev's Approximation

Chebyshev made the first real progress toward a proof of the prime number theorem in 1850. He showed there exist positive constants $a \le 1 \le b$ such that

$$a rac{x}{\log x} < \pi(x) < b rac{x}{\log x}.$$

He also showed that IF $\frac{\pi(x)}{\frac{x}{\log(x)}}$ had a limit, then its value must be one.

For a positive integer *n*, von Mangoldt function $\Lambda(n)$ is defined as the following:

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^a \text{ for some } a \ge 1\\ 0 & \text{otherwise} \end{cases}$$

Definition

For a positive integer x, $\psi(x)$ is defined as the following:

$$\psi(\mathbf{x}) = \sum_{n \leq \mathbf{x}} \Lambda(n)$$

$$ax < \psi(x) < bx$$

$$\lim_{x \to \infty} \frac{\psi(x)}{\pi(x)} = \log x$$

• • • • • • • • • • • •

Yidi Chen (University of Georgia)

For a positive integer *n*, von Mangoldt function $\Lambda(n)$ is defined as the following:

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^a \text{ for some } a \ge 1\\ 0 & \text{otherwise} \end{cases}$$

Definition

For a positive integer x, $\psi(x)$ is defined as the following:

$$\psi(\mathbf{x}) = \sum_{n \leq \mathbf{x}} \Lambda(n)$$

$$ax < \psi(x) < bx$$

$$\lim_{x\to\infty}\frac{\psi(x)}{\pi(x)}=\log x$$

• • • • • • • • • • • •

The Prime Number Theorem

In 1896, Hadamard and independently de la Vallée Poussin completely proved the Prime Number Theorem using ideas introduced by Riemann's $\zeta(s)$ function. We now have

$$\lim_{x \to \infty} \frac{\pi(x)}{\frac{x}{\log(x)}} = 1$$

In other words,

$$\pi(x) \sim rac{x}{\log x}$$

A > + = + + =

Summary

Theorem (Infinitely Many Primes)

$$\lim_{x\to\infty}\pi(x)=\infty.$$

Theorem (Prime Number Theorem)

$$\pi(x) \sim rac{x}{\log x}$$

	4	ロ・スピッスボッス	æ	500
Yidi Chen (University of Georgia)	The Prime Number Theorem	DRP 2017	7	11 / 12

🛸 A. Niven I, S. Zuckerman H.

An Introduction To The Theory Of Numbers, FIFTH EDITION. New York, Wiley, 1960.

🕨 A. Pollack P. Not Always Buried Deep. American Mathematical Society, 2009

S. Caldwell, Chirs K. How Many Primes Are There?. <https://primes.utm.edu/howmany.html>.