Topology Qualification Exam, Spring 2023

Instructions: You can assume homology groups and fundamental groups of a point and wedges of spheres in all dimensions. Everything else should be computed. All problems have equal weight.

1. Prove that a metric space is Hausdorff.

2. Let \(\{X_i \mid i \in I\} \) be a collection of topological spaces indexed by an indexing set \(I \). Let \(X = \prod_{i \in I} X_i \) be the Cartesian product. Recall that there are two natural topologies one might put on \(X \), the box topology, with basis equal to the set of sets of the form \(\prod_{i \in I} U_i \) for all possible open \(U_i \subset X_i \), and the product topology, with the same basis elements except that in each product \(\prod_{i \in I} U_i \), all but finitely many \(U_i \) are required to equal the total space \(X_i \). Give an example where \(X \) with the product topology is not homeomorphic to \(X \) with the box topology.

3. Describe a path-connected 3-sheeted covering space \(p : \tilde{X} \to X \) of \(X = \mathbb{R}P^2 \vee S^1 \). Make sure to describe both the space \(\tilde{X} \) and the map \(p \). Let \(x_0 \in X \) denote the point at which the wedge operation is performed to create \(\mathbb{R}P^2 \vee S^1 \). Fix some \(\tilde{x}_0 \in p^{-1}(x_0) \) and explicitly describe the subgroup \(p_\ast(\pi_1(\tilde{X}, \tilde{x}_0)) \subset \pi_1(X, x_0) \) in terms of the description of \(\pi_1(X, x_0) \) as \((\mathbb{Z}/2\mathbb{Z}) \ast \mathbb{Z} \).

4. Explicitly describe a path-connected space \(X \) with basepoint \(x_0 \in X \) such that \(\pi_1(X, x_0) \cong \mathbb{Z} \times (\mathbb{Z}/3\mathbb{Z}) \).

5. Consider a regular octagon \(P \) in the plane with opposite sides identified by a rigid translation of the plane. In other words, consider the equivalence relation \(\sim \) on \(P \) where for two distinct points \(p, q \in P \), \(p \sim q \) if and only if \(p \) and \(q \) are on the boundary of \(P \) and there is a rigid translation of the plane taking one edge of \(P \) to an opposite edge and taking \(p \) to \(q \). This produces an orientable surface \(\Sigma = P/\sim \).

 (a) Calculate the genus of \(\Sigma \).

 (b) Let \(\rho : P \to P \) be rotation by \(\pi \) about the center point of \(P \). Note that since \(p \sim q \) implies \(\rho(p) \sim \rho(q) \), \(\rho \) descends to a map \(\rho : \Sigma \to \Sigma \). (You do not need to prove that fact.) How many fixed points does \(\rho : \Sigma \to \Sigma \) have?

 (c) We claim that \(\Sigma/\rho \) is a surface (do not prove this); what is the genus of \(\Sigma/\rho \)?

6. Decompose \(S^1 \times S^n \) as \((S^1 \times S^n) \cup (S^1 \times S^n) \), where

\[
S^n_\pm = \{(x_0, \ldots, x_n) \in \mathbb{R}^{n+1} \mid x_0^2 + \cdots + x_n^2 = 1 \text{ and } \pm x_0 > -1/2\}.
\]

Use the Mayer-Vietoris sequence for this decomposition to show that \(H_k(S^1 \times S^n) \cong H_{k-1}(S^1 \times S^{n-1}) \) for all \(k \geq 3 \) and for all \(n \geq 1 \). (This is also true for other values of \(k \) and \(n \) but this is the easiest case to prove.)

7. Let \(B \) be the closed unit ball in \(\mathbb{R}^3 \), let \(S \) be the circle of radius \(1/2 \) centered at the origin in the \(xy \) plane in \(\mathbb{R}^3 \), and let \(P = (0,0,0) \). Compute the homology of \(X = B \setminus (S \cup \{P\}) \).
8. Using cylindrical coordinates \((r, \theta, z)\) on \(S^2\), consider the function \(f_n : S^2 \to S^2\) given by
\[f_n(r, \theta, z) = (r, n\theta, z) \]
for some \(n \in \mathbb{Z}\). Use cellular homology to compute all homology groups of the space \(X\) obtained by gluing \(B^3\) to \(S^2\) using the map \(f_n\) (thought of as a map from the boundary of \(B^3\) to \(S^2\)).