TOPOLOGY QUALIFYING EXAM: SPRING 2009

- I. [10 points] Let (X,d) be a compact metric space, and let $f: X \to X$ be an isometry: for all $x, y \in X$, d(x,y) = d(f(x), f(y)). Show that f is a bijection.
- II [10 points]. a) Show that a continuous bijection from a compact space to a Hausdorff space is a homeomorphism.
- b) Give an example which shows that the "Hausdorff" hypothesis in part a) is necessary.
- III. [10 points]. Show that a connected, normal topological space with more than a single point is uncountable.
- IV [10 points]. Let X be the one-point union of $S^1 \times S^1$ and S^1 .
- a) Compute the fundamental group of X.
- b) Compute the homology groups of X.
- V [15 points].
- a) What is the degree of the antipodal map on the *n*-sphere? (no justification required)
- b) Define a CW-complex homeomorphic to real projective n-space \mathbb{RP}^n .
- c) Use parts a) and b) to compute the integral homology groups of \mathbb{RP}^n .
- VI [15 points]. Let X be a CW-complex and $\pi: Y \to X$ be a covering space.
- a) Show that Y is compact iff X is compact and π has finite degree.
- b) Assume that π has finite degree d. show that $\chi(Y) = d\chi(X)$.
- c) Let $\pi: \mathbb{RP}^N \to X$ be a covering map. Show that if N is even, π is a homeomorphism.
- VII [10 points]. How many surfaces are there, up to homeomorphism which are: connected, compact, possibly with boundary, possibly nonorientable and with Euler characteristic -3? Describe one representative from each class.
- VIII [20 points] View the torus T as the quotient space $\mathbb{R}^2/\mathbb{Z}^2$. Let A be a 2×2 matrix with \mathbb{Z} -coefficients.
- a) Show that the linear map $A: \mathbb{R}^2 \to \mathbb{R}^2$ descends to a continuous map $A: T \to T$.
- (b) Show that, with respect to a suitable basis for $H_1(T, Z)$, the matrix A represents the map induced on H_1 by A.
- (c) Find a necessary and sufficient condition on A for $\mathcal A$ to be homotopic to the identity.
- (d) Assume additionally that A is a homeomorphism, that $\det A = 1$, and that all entries of A are nonnegative. Find a necessary and sufficient condition on A for A to be homotopic to a map with no fixed points.