- **1.** Suppose (X,d) is a metric space. State criteria for continuity of a function $f:X\to X$ in terms of
 - i) open sets,
 - ii) ϵ 's and δ 's, and
 - iii) convergent sequences.

Then prove that (iii) implies (i).

- 2. Prove that every compact, Hausdorff topological space is normal.
- 3. Write Y for the interval $[0, \infty)$, equipped with the usual topology. Find, with proof, all subspaces Z of Y which are retractions of Y.
- **4.** State, without proof, a criterion in terms of the fundamental group for a covering map $p: \tilde{X} \to X$ to be regular. Give an example of a covering map that is not regular, and show explicitly how it fails to satisfy this criterion.
- 5. Start with the unit disk \mathbb{D}^2 and identify points on the boundary if their angles, thought of in polar coordinates, differ by a multiple of $\frac{\pi}{2}$. Let X be the resulting space. Use van Kampen's theorem to compute $\pi_1(X,*)$.
- **6.** Let $S^2 \to \mathbb{RP}^2$ be the universal covering map. Is this map null-homotopic? Give a proof of your answer.
- 7. Compute the homology of the space X obtained by attaching a Mobius band to \mathbb{RP}^2 via a homeomorphism of its boundary circle to the standard \mathbb{RP}^1 in \mathbb{RP}^2 .
- 8. Let $X = S^2/\{p_1 = \cdots = p_k\}$ be the topological space obtained from the 2-sphere by identifying k distinct points on it $(k \ge 2)$.
 - a) Find the fundamental group of X.
 - b) Find the Euler characteristic of X.
 - c) Find the homology groups of X.
- 9. Let M and N be finite CW-complexes.
 - a) Describe the cellular structure of $M \times N$ in terms of the cellular structure of M and N.
 - b) Show that the Euler characteristic of $M \times N$ is the product of the Euler characteristics of M and N.