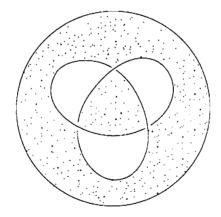
Topology Qualifying Examination August, 2012

Instructions: Work all problems. Give clear explanations and complete proofs.

- (1) Let $X = \{(x, \sin(1/x)) | x > 0\}$ and let $Y = \{(0, y) | -1 \le y \le 1\}$. Show that $X \cup Y$ is not a path connected subset of \mathbb{R}^2 .
- (2) Let A denote a subset of points of S^2 that looks exactly like the capital letter A. Let Q be the quotient of S^2 given by identifying all points of A to a single point. Show that Q is homeomorphic to a familiar topological space and identify this space.
- (3) Given an example of a map $f: X \to Y$ such that both spaces are connected and the map is a continuous bijection but not a homeomorphism.
- (4) Let A and B be circles bounding disjoint disks in the plane z=0 in \mathbb{R}^3 . Let X be the subset of the upper half space of \mathbb{R}^3 that is the union of the plane z=0 and a (topological) cylinder C that intersects the plane in $\partial C = A \cup B$. Compute $H_{\star}(X)$ using the Mayer-Vietoris sequence.
- (5) Use covering space theory to show that $\mathbb{Z}_2 * \mathbb{Z}$, that is, the free product of \mathbb{Z}_2 and \mathbb{Z} , has two subgroups of index 2 which are not isomorphic to each other.
- (6) Let $f = id_{\mathbb{R}P^2} \vee *$ and $g = * \vee id_{S^1}$ be two maps of $\mathbb{R}P^2 \vee S^1$ to itself where * denotes the constant map of a space to its base point. Show that one map is homotopic to a map with no fixed points, while the other is not.
- (7) Use the classification of surfaces to identify the surface drawn below.



(8) Denote points of $S^1 \times I$ by (z,t) where z is a unit complex number and $0 \le t \le 1$. Let X denote the quotient of $S^1 \times I$ given by identifying (z,1) and $(z^2,0)$ for all $z \in S^1$. Give a cell structure for X, and use it to compute $\pi_1(X,*)$ and $H_*(X)$.