Algebra Preliminary Examination: Spring 1999

- 1. Let G be a finite group and let P be a Sylow p-subgroup for p a prime.
 - (a) Suppose that H is a normal subgroup of G. Show that $H \cap P$ is a Sylow p-subgroup of H.
 - (b) Does the same hold if H is not normal? Prove or give a counterexample.
- 2. Let R be a commutative ring with 1. Suppose that I is a proper ideal in R. Show there is a maximal ideal U such that $I \subseteq U \neq R$.
- 3. Let \mathbb{E} be a subfield of the complex numbers \mathbb{C} and let $\alpha \in \mathbb{C}$. Show that α is algebraic over \mathbb{E} if and only if $[\mathbb{E}(\alpha) : \mathbb{E}]$ is finite.
- 4. Let M be an $n \times n$ matrix over the complex numbers \mathbb{C} and let $V = \mathbb{C}^n$.
 - (a) Show that there is a subspace W of V such that the dimension of W is 1. and $M \cdot W \subseteq W$.
 - (b) Is the same true if we replace the complex numbers by the real numbers \mathbb{R} ? Prove or give a counterexample.
- 5. Let F = GF(3) be the field with three elements and let R = F[x]. Find all isomorphism classes of *R*-modules *M* such that *M* has exactly 81 elements and also $(x^2 1)^6 \cdot M = \{0\}$.
- 6. Let

$$M = \left[\begin{array}{rrrr} 15 & -1 & -12 \\ 13 & 1 & -12 \\ 13 & -1 & -10 \end{array} \right].$$

Find the minimal polynomial, characteristic polynomial and Jordan canonical form for M.

- 7. Let A_7 be the alternating group on 7 letters. Show that any two elements of order 5 in A_7 are conjugate.
- 8. Let \mathbb{E}_n be the cyclotomic field $\mathbb{Q}(\zeta)$ where ζ is a primitive *n*th root of 1 and \mathbb{Q} is the rational numbers. Find the Galois group $G(\mathbb{E}_n/\mathbb{Q})$ of the extension of \mathbb{E}_n by \mathbb{Q} and find all intermediate fields F with $\mathbb{Q}_n \subseteq F \subseteq \mathbb{E}_n$ for

(a) n = 24 and

- (b) n = 15.
- 9. Prove that any simple group of order 1092 is isomorphic to a subgroup of A_14 , the alternating group on 14 letters. (Hint: look at the Sylow 13-subgroup.)