Algebra Preliminary Exam

Tuesday, March 31, 1998

Do as many problems as you can. Problem 1 is worth 25 points, the others are worth 10 points each. The number of problems done completely will also be taken into account: one correct problem is better than two half-done problems.

\(\mathbb{Z}, \mathbb{Q}, \) and \(\mathbb{C} \) denote the integers, the rational numbers, and the complex numbers, respectively.

1. (a) Explain why there is a natural one-to-one correspondence between maximal ideals of \(\mathbb{C}[x] \) and the elements of \(\mathbb{C} \).

(b) Let \(R \) be a ring. Prove that if \(I \) is an ideal of \(R \) and \(I \neq R \), then \(I \) is contained in a maximal ideal of \(R \). If \(R \) is a commutative ring with 1. Let \(P \) be a prime ideal of \(R \). Prove that if there are ideals \(I_1, I_2, \ldots, I_n \), such that \(P = I_1 \cap I_2 \cap \ldots \cap I_n \), then \(P = I_j \) for some \(j \).

(c) Give an example of a commutative ring \(R \), an \(R \)-module \(M \), and an exact sequence of \(R \)-modules \(0 \rightarrow A \rightarrow B \rightarrow M \) such that \(0 \rightarrow A \otimes M \rightarrow B \otimes M \) is not exact.

(d) Suppose \(A \) is a hermitian (self-adjoint) matrix over the complex numbers. Prove that there is a matrix \(B \) such that \(A = B^2 \).

(e) Identify the \(\mathbb{Z} \)-module \(\mathbb{Z}[(1 + \sqrt{5})/2] / \mathbb{Z}[\sqrt{5}] \) as a standard finitely generated module over the PID \(\mathbb{Z} \).

2. Let \(R \) be a commutative ring with 1. Let \(P \) be a prime ideal of \(R \). Prove that if there are ideals \(I_1, I_2, \ldots, I_n \), such that \(P = I_1 \cap I_2 \cap \ldots \cap I_n \), then \(P = I_j \) for some \(j \).

3. Let \(p \) be a prime and let \(n \) be a natural number. Let \(\text{GF}(p^n) \) denote the field of order \(p^n \). Prove that the group of automorphisms of \(\text{GF}(p^n) \) is cyclic of order \(n \).

4. Suppose that \(G \) is a group of order 18. Prove that either \(G \) is abelian, or \(G \) is isomorphic to the dihedral group \(D_9 \), or \(G \) is generated by three elements \(a, b, c \), such that \(a^3 = b^3 = c^2 = 1 \), \(ab = ba \) and \(cac^{-1} = a^qb^r, bcb^{-1} = a^sb^t \), where \(\begin{bmatrix} q & r \\ s & t \end{bmatrix} \) is in \(\text{GL}_2(\mathbb{Z}/3\mathbb{Z}) \) and has order 2. (If you have time at the end of the test: how many non-isomorphic groups of the latter type are there?)

5. Find a set of matrices over the complex numbers such that any matrix (over \(\mathbb{C} \)) whose characteristic polynomial equals \((x - 2)^3 \) is similar (conjugate) to one and only one matrix in your set. Prove your answer.
6. (a) Find the order of the group $\text{SL}_2(\mathbb{Z}/7\mathbb{Z})$ and prove your answer.
 (b) How many Sylow 7-subgroups does $\text{SL}_2(\mathbb{Z}/7\mathbb{Z})$ have? Find one explicitly.

7. Let $\alpha \in \mathbb{C}$ be a root of $x^3 + 2x + 2$.
 (a) Prove that $\mathbb{Q}[\alpha]$ is a field.
 (b) Find $(\alpha^2 + 1)^{-1}$ as a polynomial in α.

8. Let p be an odd prime. Let F be splitting field of $x^p - 1$ over \mathbb{Q}. Prove that there is a unique field K between \mathbb{Q} and F which is of degree 2 over \mathbb{Q}. Describe this field explicitly when $p = 5$.