Ph.D. Preliminary Examination, March 1997
(Solve any 5 problems completely.)

1. Let \(\{X_n\} \) be a sequence of independent random variables.
 (a) If \(EX_n = 0 \) for \(n = 1, 2, \ldots \), and \(\sum_{n=1}^{\infty} \text{var}(X_n) < \infty \), show that \(\sum_{n=1}^{\infty} X_n \) converges a.s.
 (b) State (without proof) Levy's inequality and use it to prove that \(S_n = \sum_{k=1}^{n} X_k \) converges a.s. if and only if it converges in probability.

2. (a) Prove that for any r.v. \(X \)
 \[
 E|X| = \int_{0}^{\infty} P(|X| \geq t)dt.
 \]
 (b) Given a square integrable r.v. \(X \), show that for \(\lambda \geq 0 \),
 \[
 P(X - EX \geq \lambda) \leq \frac{\sigma^2(X)}{\sigma^2(X) + \lambda^2}.
 \]

3. (a) State (without proof) the Levy continuity theorem regarding a sequence of characteristic functions.
 (b) Let \(\{X_n\} \) be iid r.v.s with distribution \(F(x) \) having finite mean \(\mu \) and variance \(\sigma^2 \).
 Let \(S_n = X_1 + \cdots + X_n \). Show that
 \[
 \frac{S_n - n\mu}{\sigma \sqrt{n}} \rightarrow N(0, 1) \text{ in distribution as } n \rightarrow \infty.
 \]

4. (a) State (without proof) the Doob's maximum inequality and Kolmogorov's inequality.
 (b) Let \(F_n \) be a family of \(\sigma \)-algebras such that
 \[
 \mathcal{F}_1 \supset \mathcal{F}_2 \supset \cdots
 \]
 and \(X \) be an integrable random variable. Show that
 \[
 E[X|F_n] \rightarrow E[X|\mathcal{F}_\infty] \text{ a.s. and in } L^1,
 \]
 where \(\mathcal{F}_\infty = \cap_{n=1}^{\infty} \mathcal{F}_n \).

5. If \(\{X_n\} \) are iid r.v.s, then \(E|X_1| < \infty \) if and only if \(\sum_{n=1}^{\infty} X_n \text{ sinn} \) converges a.s. for every \(t \in (-\infty, \infty) \).

6. Let \(\{X_n\} \) be iid r.v.s. Then,
 (a) \(n^{-1} \max_{1 \leq i \leq n} |X_i| \rightarrow 0 \) in probability if and only if \(n P(|X_1| > n) = o(1) \).
 (b) \(n^{-1} \max_{1 \leq i \leq n} |X_i| \rightarrow 0 \) a.s. if and only if \(E|X_1| < \infty \).

7. (a) Given a random variable \(X \) with finite mean square. Let \(\mathcal{D} \) be a \(\sigma \)-algebra. Show that \(E[X|\mathcal{D}] \) is the minimizer of \(E(X - \xi)^2 \) over all \(\mathcal{D} \)-measurable r.v.s \(\xi \), i.e.,
 \[
 E(X - E[X|\mathcal{D}])^2 \leq E(X - \xi)^2
 \]
 for all \(\mathcal{D} \)-measurable r.v.s \(\xi \).
 (b) Let \((\Omega, \mathcal{F}, P) \) denote a probability space. Suppose \(f : \mathbb{R}^n \times \Omega \rightarrow \mathbb{R} \) is a bounded \(\mathcal{B} (\mathbb{R}^n) \times \mathcal{C} \) measurable function and \(X \) be a \(n \)-dimensional \(\mathcal{D} \) measurable random variable. Assume \(\mathcal{C} \) and \(\mathcal{D} \) are independent. If \(g(x) := E f(x, \omega) \), then
 \[
 g(X) = E[f(X, \omega)|\mathcal{D}], \text{ a.s.}
 \]