Numerical Analysis: MAT 603-605

MAMS Comprehensive Exam Spring 1996

Name:

Score:

100

Instructions: Please work any 5 and only 5 of the following 6 problems. Each of the problems is worth 20 points. Please start each problem on a separate sheet of paper and write on only one side of each page.

1. Kepler's equation

$$m = x - E \sin x$$
.

where m and E are given and x is sought, plays a considerable role in dynamical astronomy. Use one-point (linear or fixed point) iteration to iteratively compute the solutuion to Kepler's equation correct to 2-decimal places if m = 0.8 and E = 0.2. Justify your accuracy claim.

2. Let $f \in C^2[x_0, x_1]$ and let p(x) be a polynomial of degree ≤ 1 that interpolates to f(x) at the two points $(x_0, f(x_0))$ and $(x_1, f(x_1))$. Use the classical theorem on polynomial interpolation error to prove that

$$\max_{x_0 \le x \le x_1} |f(x) - p(x)| \le \frac{1}{8} (x_1 - x_0)^2 \max_{x_0 \le x \le x_1} |f''(x)|.$$

3. Use the composite trapezoidal rule and a calculator to approximate

$$\int_0^1 \frac{\sin x}{x} dx,$$

if the step size h = .25.

4. Determine a, b, α and β so that the one-step method

$$y_{n+1} = y_n + ak_1 + bk_2$$

$$k_1 = hf(x_n, y_n)$$

$$k_2 = hf(x_n + \alpha h, y_n + \beta k_1)$$

has local truncation error $O(h^3)$.

5. Let A be an $n \times n$ diagonal matrix with diagonal entries all equal to 10^{-1} ,

$$A = diag(10^{-1}, 10^{-1}, \dots, 10^{-1}).$$

- a) Compute the determinant of A, det A.
- b) Compute the condition number K(A) of A relative to the 1-matrix norm $\|\cdot\|_1$.
- c) Some people believe that the linear system Ax = b is ill-conditioned if $|\det A| << 1$. In view of (a) and (b) above is this belief justified? Explain.
- 6. Use the method of undetermined coefficients to derive the 2-point Gauss-Legendre quadrature rule.