Algebra Prelim

Work as many problems as possible.

1. Suppose that A, B, and C are groups and we have homomorphisms $\beta: A \rightarrow B$ and $\gamma: A \rightarrow C$. Show that if β is surjective and if the kernel of β is a subgroup of the kernel of γ, then there exists a homomorphism $\mu: B \rightarrow C$ such that $\mu \circ \beta=\gamma$.
2. Let p be a prime and let A be a normal subgroup of a finite group G. Suppose that the order of A is p. Prove that A is in the center of G.
3. Let R be a commutative Noetherian ring. Let M be an R-module. For $m \in M$, the annihilator of m is the set $A(m)=\{x \in R \mid x m=0\}$. Show that if $m \in M, m \neq 0, A(m) \neq 0$, then there exists $r \in R$ such that $r m \neq 0$ and $A(r m)$ is a prime ideal.
4. Let V be a finite dimensional vector space over a field \mathbb{F}. Let $T: V \rightarrow V$ be a linear transformation.
(a) Show that T has a minimal polynomial $f(x) \in \mathbb{F}[x]$. (A minimal polynomial of T is a polynomial $f(x) \in \mathbb{F}[x]$ such that $f(T)=0$ and whenever $g(x)$ is a polynomial in $\mathbb{F}[x]$ with $g(T)=0$, we have that $f(x)$ divides $g(x))$.
(b) With $f(x)$ as in (a), suppose that $f(x)=g(x) \cdot h(x)$ where $g(x)$ and $h(x)$ are relatively prime. Show directly that $V=V_{1} \ominus V_{2}$ where V_{1} and V_{2} are subspaces which are invariant under T and such that the minimal polynomial of T on V_{1} is $g(x)$, while the minimal polynomial of T on V_{2} is $h(x)$.
5. Suppose that G is a simple group of order 660 . Prove that G is isomorphic to a subgroup of A_{12}, the alternating group on 12 letters. (Hint: look at the Sylow 11-subgroups of G.)
6. Let K be a field and suppose that $f(t) \in K[t]$ is a polynomial of degree n.
(a) Define what is meant by a splitting field for $f(t)$ over K.
(b) Prove that $f(t)$ has a splitting field over K which is an extension of degree at most n !.
7. Suppose that R is a ring with unit and that

is a diagram of R-modules and homomorphisms with exact row. Prove that there is an R-module M and homomorphisms τ, σ, θ such that the diagram

has exact rows and commutes. (Hint: Let $M=\{(b, d) \in B \oplus D \mid \beta(b)=\gamma(d)\}$.)
8. Let E be a subfield of the complex numbers \mathbb{C} and suppose that $\zeta \in \mathbb{C}$ is a primitive nth root of 1 for some positive integer n.
(a) Is $E(\zeta)$ a normal extension of E ? Prove or give a counterexample.
(b) If $E=\mathbb{Q}$, the rationals, what is the degree extension of $E(\zeta)$ over E ? Explain briefly.
9. Suppose that U and V are subspaces of a vector space W over a field \mathbb{F}. Suppose that W has dimension n and both U and V have dimension $s<n$. Prove that there is a subspace X of dimension $n-s$ such that $X \cap U=0=X \cap V$. (Hint: One approach is to build a basis for X by first choosing $x_{1} \in W$ such that $x_{1} \notin U \cup V$ (how?) then factoring out the subspace spanned by x_{1} and choosing a second basis element, etc.)
