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a b s t r a c t

Ecosystems are often modeled as stocks of matter or energy connected by flows. Network environ analysis
(NEA) is a set of mathematical methods for using powers of matrices to trace energy and material flows
through such models. NEA has revealed several interesting properties of flow–storage networks, including
dominance of indirect effects and the tendency for networks to create mutually positive interactions
between species. However, the applicability of NEA is greatly limited by the fact that it can only be
applied to models at constant steady states. In this paper, we present a new, computationally oriented
approach to environ analysis called dynamic environ approximation (DEA). As a test of DEA, we use it to
ood webs compute compartment throughflow in two implementations of a model of energy flow through an oyster
reef ecosystem. We use a newly derived equation to compute model throughflow and compare its output
to that of DEA. We find that DEA approximates the exact results given by this equation quite closely – in
this particular case, with a mean Euclidean error ranging between 0.0008 and 0.21 – which gives a sense
of how closely it reproduces other NEA-related quantities that cannot be exactly computed and discuss
how to reduce this error. An application to calculating indirect flows in ecosystems is also discussed and

ects i
dominance of indirect eff

. Introduction

Compartment models (Matis et al., 1979) are widely used to rep-
esent ecological networks of stocks, xi (i = 1, 2, . . ., n), and flows,
ij (i, j = 1, 2, . . ., n), of conserved substances (energy or matter).
he flows are generated by boundary inputs, zj, and they termi-
ate in boundary outputs, yi. Throughflows are the sums of inflows,
in
i

, and outflows, Tout
i

, to and from each stock. Within-model envi-
onments of the compartments are environs (Patten, 1978). These

ay be found using the system’s mathematical description by net-
ork environ analysis (NEA), a set of methods derived from Leontief

1936, 1966) input–output analysis. NEA has revealed several inter-
sting properties of flow–storage networks, including dominance
f indirect effects (Patten, 1984; Higashi and Patten, 1989) and
he tendency for networks to create mutually positive interactions
etween species (Patten, 1991).

At least three aspects of dynamical behavior limit the applica-

ility of present NEA methods. (1) The methodology can only be
pplied to models at constant steady states where inputs balance
utputs. This greatly limits the range of applicability because (2) not
ll models reach constant steady states, and (3) those that do may

∗ Corresponding author. Tel.: +1 706 542 2968; fax: +1 706 542 4819.
E-mail address: jaia@uga.edu (J. Shevtsov).

304-3800/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.ecolmodel.2009.07.022
n a nonlinear model is demonstrated.
© 2009 Elsevier B.V. All rights reserved.

also have significant, but unanalyzable, transient behavior. Previous
attempts to respond to these limitations and develop methods for
non-steady-state linear (Hippe, 1983) as well as nonlinear (Hallam
and Antonios, 1985) systems have not found use, in part because of
their mathematical difficulty.

This paper describes a computational approach to dynamic env-
iron analysis. Like NEA, the dynamic methodology can be applied to
any compartment model that satisfies two properties. First, either
all compartments that have an input must have a boundary out-
put or, failing that, every block of compartments that receives an
input must have a boundary output (Fadeev and Fadeeva, 1963).
Second, at least one compartment must receive input from outside
the system to prevent system descent to the zero state (although
zero-input transient dynamics from a nonzero initial state may be
of interest, and could be analyzed using DEA).

2. The method

2.1. Overview of standard environ analysis
For a compartmental system, let xn×1 = (xi), zn×1 = (zj), and
yn×1 = (yi) be stock, input, and output vectors, respectively; let 1n×1
be a vector of ones, and FT the transpose of the matrix of flows,
Fn×n = (fij). We define F̄ as the flow matrix F with negative through-
flows on the diagonal, so f̄ij = fij for i /= j and f̄ii = −Ti. Then, for a

http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:jaia@uga.edu
dx.doi.org/10.1016/j.ecolmodel.2009.07.022
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ystem at steady state, input- and output-driven ordinary differen-
ial equation descriptions of model dynamics, in matrix notation,
re

dx

dt
= 0 = F̄ · 1 + z (1a)

= −F̄
T · 1 − y (1b)

The first equation represents time-forward dynamics generated
y input, z. The second denotes reverse-time trace-back dynamics
eginning at output, y, which serves as the forcing condition. (The
ows z and y may be termed boundary flows.) In Eq. (1b), taking the
ranspose of F̄ orients it to backward movement of time, signified
y the negative signs of both terms.

Standard NEA converts boundary inputs (in output-environ
nalysis) and outputs (in input-environ analysis) into steady-
tate throughflows, Tn×1 = (T in

i
) = (Tout

i
), and storages (stocks),

n×1 = (xi), employing flow intensity matrices, Nn×n and N′
n×n for

hroughflow analysis, and Sn×n and S′
n×n for storage analysis:

= Nz = N ′y (2a)

= Sz = S′y. (2b)

ere, N = (I − Gn×n)−1, N′ = (I − G′
n×n)−1, S = −Cn×n

−1, and
′ = –C′

n×n
−1, where In×n is the multiplicative identity matrix,

nd the elements of G and C are gij = fij/Tj and cij = fij/xj, and those of
′ and C′ are, gij

′ = fij/Ti and cij
′ = fij/xi. Both G and G′ are dimension-

ess, while C and C′ have the dimensions of reciprocal time; note
hat C is the familiar “community matrix” used in population and

ommunity ecology.

Inputs, z, outputs, y, and throughflows, T, have the same
imensions, therefore N and N′, Eq. (2a), are dimensionless trans-

ormations from boundary flows, z and y, to interior throughflows,
. Both Eqs. (2a) and (2b) have infinite power series equivalents that

ig. 1. Energy flows in an oyster reef ecosystem. The stock and flow values are for a con
rom Patten (1985).
lling 220 (2009) 3219–3224

reflect trajectories of the boundary flows over all interior pathways
of all lengths traveled in reaching the points where the steady-state
throughflows, T, are registered. For Eq. (2a), these series are

T = [I + G + G2 + · · · + Gk + · · ·]z (3a)

= [I + G′ + G′2 + · · · + G′k + · · ·]y (3b)

2.2. The dynamic case

The equation that governs the dynamics of a single compartment
k is

dxk

dt
= T in

k (t) − Tout
k (t) (4)

where T in
k

(t) and Tout
k

(t) are functions that represent rates of input
to and output from compartment k at time t. Note that T in

k
(t) is a

combinations of environmental and inter-compartmental flows:

T in
k =

n∑
i=1

fki(t) + zk(t) (5)

Combining Eqs. (4) and (5), we get, for i /= k,

n∑
i=1

fki + zk = Tout
k + dxk

dt
(6)

As before, we define G, the flow matrix normalized with respect
to throughflows (Tout), as gik = fik/Tout. Replacing F with G in Eq.
k k
(6), we get

zk − dxk

dt
= Tout

k −
n∑

i=1

gkiT
out
i (7)

stant steady state. Note that only Compartment 1 receives direct boundary inflow.
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Table 1
Steps of dynamic environ approximation and illustration using oyster reef model.

Step Description Implementation in oyster reef model analysis

1 Numerically simulate the system using discrete time steps, ıt, to obtain stocks, x(tm) ıt = 0.025 day
2 At time steps �t ≥ ıt, compute inputs z(tm), outputs y(tm), interior flows F(tm) and

throughflows T(tm)
�t = 0.25 day (one time unit in the empirical model)
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+· · · + [W · W · . . . (m terms) . . . · W ] + . . . , (10b)

then the corresponding DEA form can be written as:

V DEA(t0) = V 0 + V 1 + V 2 + V 3 + · · · + Vm + . . . (11a)
Letting VNEA denote any of Eq. (2) transformation matrices (N, N , S, or S ) r
quantities, derive corresponding DEA versions, VDEA

Perform any of the customary NEA computations using VDEA instead of VN

Using matrix notation, the equation above can be expressed as
ollows:

− dx

dt
= (I − G)Tout (8)

Assuming that the matrix I − G is invertible and N = (I − G)−1 as
efore, we get
(

z − dx

dt

)
= Tout (9)

Note that at steady state, dx/dt = 0 and the above equation
educes to Eq. (2a).

We will now show how N is obtained in the dynamic case, where
x/dt /= 0.

.3. Dynamic environ approximation

The constant matrices G and G′ of static NEA do not reflect
he reality that systems and their flow coefficients change over
ime, including the (infinite) time required for the power series in
q. (3) to become equal to the transformation matrices (I − G)−1

nd (I − G′)−1 of Eq. (2). In NEA, the matrix powers in (3) are
nterpreted as corresponding to pathway lengths, implying that
as k → ∞) all pathways of all lengths are utilized in the limit in
ringing T ((3a), (3b)) to its measured or modeled value. In through-
ow analysis, paths are pathways lacking self-loop subsequences,
. . i → i → . . . → i . . .. If each adjacent link, denoting a pathway of
ength 1, is associated with a discrete time of passage, �t = tm+1 − tm,
hen the time required to traverse pathways of lengths m = 0, 1, 2,
. ., ∞ is m�t. Therefore, matrix powers may also be viewed as rep-
esenting numbers of time steps (Patten, 1985; Patten et al., 1990).
his interpretation is helpful in understanding dynamic environ
pproximation.

DEA involves four computational steps:

Step 1. Generate a numerical solution of the system differential
equations (Eq. (1)) using discrete computational time steps, ıt, to
obtain stocks, x(tm). This computational interval may be constant
or time-varying; in the latter case, it will be necessary to inter-
polate x(tm) for all integer values of m until the end of the time
series.
Step 2. At sampling times �t = nıt, where n is an integer, compute
from the simulated values at times tm the NEA quantities indicated
in Eqs. (1) and (2): inputs z(tm), outputs y(tm), interior flows F(tm)
and throughflows T(tm).
Step 3. Letting VNEA denote any of the Eq. (2) transformation matri-
ces (N, N′, S, or S′) relating these quantities, derive corresponding
DEA versions, VDEA.
Step 4. Perform any of the customary NEA computations using VDEA
instead of VNEA matrices.
Integer powers, m, of any scalar or matrix quantity, say W,
orrespond to m − 1 repeated multiplications of that quantity:

m = W·W· . . . ·W (m terms). The innovation behind DEA is the
ecognition that this makes it possible to substitute a non-constant,
g these The NDEA matrix was calculated using a moving window of length 20

trices As a test of the method, T was calculated using the equation T = NDEAz.
Indirect flows were calculated as NDEA-I-G.

time- and pathway-varying product series for each constant-
generated time- and pathway-varying term of the NEA power
series. Thus, if the generalized NEA form of the power series in Eq.
(3) is

V NEA = W0 + W1 + W2 + W3 + · · · + Wm + . . . (10a)

= I + W + W · W + W · W · W
Fig. 2. Difference, in kcal/day/m2, between actual and calculated throughflows
in linear (a) and nonlinear (b) simulations of the oyster reef model. Error is the
Euclidean distance between a throughflow vector computed with the NDEA matrix
(Eq. (9)) and one computed as the sum of outflows in the dynamic simulation.
Compartment names (x1. . .x6) are explained in Fig. 1.
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This expression can be expanded to get:

DEA(t0) = W0 + [W0 · W1] + [W0 · W1 · W2]

+· · · + [W0 · W1 · W2 · . . . · Wm] + . . . , (11b)

here W0 = I. Truncation after m + 1 terms gives the approximation:

DEA(t0) ≈ W0 + [W0 · W1] + [W0 · W1 · W2]

+· · · + [W0 · W1 · W2 · . . . · Wm] (11c)

here V and W represent any appropriately related pair of NEA
atrices. Here, m + 1 is the length of the longest product in the

eries as well as the number of terms in the sum. In general,

DEA(tk) = W (tk) + [W (tk) ∗ W (tk+1)] + [W (tk) ∗ W (tk+1)

∗W (tk+2)] + · · · + [W (tk) ∗ W (tk+1) ∗ . . . ∗ W (tk+m)]

(11d)

These calculations can be thought of as stepping a moving win-
ow of fixed length m along the simulated dynamics at a fixed
ampling interval, �t, which must be at least as large as the numer-
cal integration step size. At each sampling step, a value for VDEA(tk)
s calculated. The interpretation of VDEA is simplest when �t = 1.
The forms for VDEA = N and VDEA = N′ (with W0 = G0 = G′
0 = I omit-

ed from the m > 1 terms, as multiplication by I does not affect the
esults) are as follows:

DEA(tk) = I + G(t1) + G(t1) · G(t2) + G(t1) · G(t2) · G(t3) + . . .

(12a)

ig. 3. Evolution of stock values (a) and direct to indirect flow ratios (b) in the oyster mo
ther stocks are on the right scale. Compartment abbreviations (x1. . .x6) are explained in
lling 220 (2009) 3219–3224

N ′
DEA(tk) = I + G′(t1) + G′(t1) · G′(t2) + G′(t1) · G′(t2) · G′(t3) + . . .

(12b)

where G is the matrix of flows normalized by donor through-
flows and G′ is the matrix of flows normalized by recipient
throughflows. Using this methodology, non-steady- or steady-state
analyses can be performed, and a dynamic analysis applicable to
nonlinear as well as linear systems becomes possible. Standard
NEA becomes a special case of the more general DEA approach,
which, in principle, becomes arbitrarily exact as �t → ıt and ıt → 0.
That is, the approximations of Eq. (11) can be improved by re-
simulating the dynamical model with coefficients re-calculated
using a smaller time unit (e.g. hours instead of days). This is
particularly important for systems that exhibit high-frequency
dynamics.

There is a trade-off involved in increasing window size (m).
Notice that V(t) is defined at a particular time, t, but computed using
W(t + 1), W(t + 2) and other future values. This creates an unavoid-
able error, and introducing more distant time points will increase
this error, while decreasing the error due to truncation of the infi-
nite series defining V(t). Note that terms added to the end of Eq.
(11d) will be very small. In general, there is little gain from using a
window size larger than about 20.

2.4. Numerical test of DEA methodology
Dame and Patten (1981) modeled energy flow in an intertidal
oyster reef in South Carolina, USA (Fig. 1). This model has one
nonzero boundary input, z1, six compartments (x1 to x6) each dissi-
pating energy to nonzero outputs (y1 to y6), and twelve empirically

del after the oyster compartment was doubled. x1 and x2 are on the left scale; all
Fig. 1.
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easured internal flows (fij, i, j = 1, 2, . . ., 6). The flow units are
cal/(m2 day) and the stocks kcal/m2. Two implementations of this
odel, described below, were used to test dynamic environ approx-

mation methods. Table 1 gives a summary of the analysis.
A linear time-forward model (Eq. (1a)) was formulated by defin-

ng interior flows as scalar multiples of the donor compartments,
ij = cijxj. In Step 1 the model was simulated using EcoNet (Kazancı,
007). A 200-time unit (50 day) run with the initial filter feeder
tock, x1(t0), displaced from 2000 to 4000 kcal/m2 is shown in
ig. 2a. In Step 2, stock vectors, x(t), and community matrices, C(t),
ere assembled for each sample time step of ıt = 0.1 day. Using the
matrices, F(t) (Eq. (1a)), and G(t) matrices were computed for each

ampling time in Step 3, then used to compute NDEA (Eq. (12a)) with
window size of 20.

A nonlinear, mass-action version of the Fig. 1 model was for-
ulated by making flows functions of the product of the donor

nd recipient stocks, fij = aijxixj. Flows to Detritus (x2) remained
onor-dependent, as in the linear model. The same computations
s described for the linear model above were performed.
For both models, the NDEA matrix was used to calculate
he throughflow vector, T (Eq. (9)). Throughflow for each com-
artment was also computed directly as the sum of outflows

n the dynamic simulation program Berkeley Madonna 8.0.1
www.berkeleymadonna.com). Since the analysis presented here

ig. 4. Evolution of stock values (a) and direct to indirect flow ratios (b–e) in a nonlinear
as doubled. x1 and x2 are on the left scale; all other stocks are on the right scale. Compa
lling 220 (2009) 3219–3224 3223

is forward-looking (i.e., Eq. (12a)), Ti was defined as the sum of out-
flows from compartment i; a backward-looking analysis (i.e., Eq.
(12b)) would have used the sum of inflows to compartment i. Error
was calculated using the Euclidean norm:

Error =
√

(Tcalc
1 − Tactual

1 )
2 + · · · + (Tcalc

n − Tactual
n )

2
(13)

(Here, n is the number of compartments in the model.) The error
thus defined was calculated for ten randomly selected time points
in both model implementations. The mean error in the linear model
was 0.0008 with a standard deviation of 0.0004; that of the nonlin-
ear model was 0.2171 with a standard deviation of 0.11. Differences
between actual and calculated throughflows are displayed in Fig. 2.

3. Application to indirect effects

Output from the linear and nonlinear dynamic oyster reef model
implementations was analyzed to compute the fraction of flow
between pairs of compartments that traveled over pathways of

lengths greater than one (indirect flow fraction). This quantity was
calculated by dividing entries in NDEA-I-G, which isolates indirect
flows, by the corresponding entries in N, which represents total
flows. If there is no directed path of any length between two com-
partments, the ratio is undefined; in this case, it was arbitrarily set

version of the oyster reef model (explained in text) after the oyster compartment
rtment abbreviations (x1. . .x6) are explained in Fig. 1.

http://www.berkeleymadonna.com/
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qual to zero. The results of this calculation for the linear model
re shown in Fig. 3b; those for the nonlinear model appear in
ig. 4b–e. The Matlab function used to do these calculations is given
n Appendix 1.

In the linear model, direct to indirect flow ratios remained con-
tant as the system evolved; in the nonlinear model, they varied
ith time. The mean and median values for the two models were

imilar: between 0.45 and 0.6. Typically, direct to indirect flow
atios in the nonlinear model changed gradually and, over the 45
ays simulated, underwent proportionately much less change than
tock values (Fig. 4b–e). This relationship should be explored in
uture research, as should the constancy of indirect flow fractions
n linear models.

. Discussion

The dynamic environ approximation approach described in this
aper potentially has a broad range of applications. Here, we have
escribed the approach and given an example of its accuracy.

Previous attempts to develop a dynamic environ analysis were
rimarily analytical. (Hippe, 1983; Hallam and Antonios, 1985)
Hippe’s approach appears related to the dynamic inverse in
nput–output analysis (Leontief, 1970; Kendrick, 1972; Johnson,
985; ten Raa, 2005) and deeper exploration of the relation-
hip between the two methodologies may prove worthwhile.)
he strength of DEA lies in the fact that, like NEA, it makes no
ssumptions about the underlying dynamics of the model being
nalyzed. Although two simulation models were used in the present
nstance to produce the background data for DEA, the analysis
ould also proceed based on purely empirical time series data gath-
red in context of a defined network model. Only output is used;
hat happens in the equations stays in the equations. This lets
EA sidestep the mathematical difficulties associated with prior
ethods.

Borrett et al. (in review) have found that, in empirically based
rophic and biogeochemical models at a constant steady state, indi-
ect effects become dominant after only a few terms of the infinite
eries expansion of the N matrix. These results are consistent with
ur finding that a window size of about 20 is sufficient to closely
pproximate N.

We note that there might be better approximations than our
ethod. However, the value of DEA methodology is in its intuitive

efinition. Eqs. (4) and (7) imply that any network characteristic
nvestigated by NEA can also be studied with DEA, provided that
he measure in question makes sense for a system away from steady
tate. It should be possible to investigate energy cycling (Patten,

985) and system properties such as dominance of indirect effects
Patten, 1984), as well as the defined network properties of environs
e.g. Patten, 1995; Fath and Patten, 1999). Other promising areas of
pplication for dynamic environ approximation include the anal-
sis of bioenergetic food web models, the study of system-level
lling 220 (2009) 3219–3224

properties of individual-based models, including those incorpo-
rating evolution, and investigation of exactstochastic simulations
of trophic dynamics. Applications such as these could provide a
much-needed link between conventional and systems ecology.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ecolmodel.2009.07.022.

References

Borrett, S.R., Whipple, S.J., Patten, B.C., in review. Rapid development of indirect
effects in ecological networks.

Dame, R.F., Patten, B.C., 1981. Analysis of energy flows in an intertidal oyster reef.
Mar. Ecol. Prog. Ser. 5 (2), 115–124.

Fadeev, D.K., Fadeeva, V.N., 1963. Computational Methods of Linear Algebra. (R. C.
Williams, transl.). Freeman, San Francisco.

Fath, B.D., Patten, B.C., 1999. Review of the foundations of network environ analysis.
Ecosystems 2 (2), 167–179.

Hallam, T.G., Antonios, M.N., 1985. An environ analysis for nonlinear compartment
models. Bull. Math. Biol. 47 (6), 739–748.

Higashi, M., Patten, B.C., 1989. Dominance of indirect causality in ecosystems. Am.
Nat. 133, 288–302.

Hippe, P.W., 1983. Environ analysis of linear compartmental systems: the dynamic,
time-invariant case. Ecol. Model. 19 (1), 1–26.

Johnson, T., 1985. A continuous Leontief dynamic input–output model. Pap. Reg. Sci.
56 (1), 177–188.

Kazancı, C., 2007. EcoNet: a new software for ecological modeling, simulation and
network analysis. Ecol. Model. 208 (1), 3–8.

Kendrick, D., 1972. On the Leontief dynamic inverse. Q. Jon. Econ. 86 (4), 693–696.
Leontief, W.W., 1936. Quantitative input–output relations in the economic system

of the United States. Rev. Econ. Stat. 18, 105–125.
Leontief, W.W., 1966. Input–Output Economics. Oxford University Press, London and

New York.
Leontief, W.W., 1970. The dynamic inverse. In: Proceedings of the Fourth Interna-

tional Conference on Input–Output Techniques, Geneva, 8–12 January 1968:
Published in Honor of Wassily Leontief.

Matis, J.H., Patten, B.C., White, G.C. (Eds.), 1979. Compartmental Analysis of Ecosys-
tem Models. International Cooperative Publishing House, Fairland, Maryland.

Patten, B.C., 1978. Systems approach to the concept of environment. Ohio J. Sci. 78,
206–222.

Patten, B.C., 1984. Toward a theory of the quantitative dominance of indirect effects
in ecosystems. Verhalt Gesellschaft für Ökologie 13, 271–284.

Patten, B.C., 1985. Energy cycling in the ecosystem. Ecol. Model. 28, 1–71.
Patten, B.C., 1991. Network ecology: indirect determination of the life–environment

relationship in ecosystems. In: Higashi, M., Burns, T.P. (Eds.), Theoretical Ecosys-
tem Ecology: The Network Perspective. Cambridge University Press, London, pp.
288–351.
Patten, B.C., 1995. Network integration of ecological extremal principles: exergy,
emergy, power, ascendency, and indirect effects. Ecol. Model. 79, 75–84.

Patten, B.C., Higashi, M., Burns, T.P., 1990. Trophic dynamics in ecosystem networks:
significance of cycles and storage. Ecol. Model. 51, 1–28.

ten Raa, T., 2005. The Economics of Input–Output Analysis. Cambridge
University Press, New York.

http://dx.doi.org/10.1016/j.ecolmodel.2009.07.022

	Dynamic environ analysis of compartmental systems: A computational approach
	Introduction
	The method
	Overview of standard environ analysis
	The dynamic case
	Dynamic environ approximation
	Numerical test of DEA methodology

	Application to indirect effects
	Discussion
	Acknowledgments
	Supplementary data
	References


