QUALIFYING EXAMINATION IN REAL ANALYSIS
August 13, 2010
1:30–3:30 pm

The six problems are weighted equally. A^c denotes the complement of the set A, and m denotes Lebesgue measure.

1. For small values of $|x|$, which is larger, $\sin^2 x$ or $\sin(x^2)$?

2. Let $f \in L^1([0, 1])$, and for $x \in [0, 1]$ define

 $$g(x) = \int_x^1 \frac{f(t)}{t} \, dt.$$

 Show that $g \in L^1([0, 1])$ and that $\int_0^1 g(x) \, dx = \int_0^1 f(x) \, dx$.

3. Let $A \subset [0, 1]$ be measurable, and define $L^2(A) \subset L^2([0, 1])$ to be the subspace consisting of all $f \in L^2$ such that $f \equiv 0$ a.e. off A. Show that
 $$L^2(A)^\perp = L^2(A^c).$$

4. Let $f_n \to f$ pointwise a.e. on $[0, 1]$. Suppose
 $$\limsup_{n \to \infty} \|f_n\|_1 \leq \|f\|_1 < \infty.$$

 Show that $f_n \to f$ in L^1, i.e., that $\lim_{n \to \infty} \|f_n - f\|_1 = 0$.

5. Suppose $f \in L^1(\mathbb{R})$ and $f \geq 0$. For $y > 0$, let
 $$g(y) = m(\{x \in \mathbb{R} : f(x) \geq y\}).$$

 Set $G(y) = yg(y)$.
 a. Prove that $\lim_{y \to 0^+} G(y) = \lim_{y \to \infty} G(y) = 0$ and that G is bounded.
 b. Prove that G achieves its maximum at some point y_0.

6. Let $f_1, f_2, \ldots \colon \mathbb{N} \to \mathbb{R}$ be a sequence of functions such that $|f_i(n)| \leq n$ for all $i, n \in \mathbb{N}$. Show that there is a subsequence $f_{i'}$ converging pointwise on \mathbb{N} to a function f_0.