QUALIFYING EXAMINATION IN REAL ANALYSIS

August 13, 2010 1:30-3:30 pm

The six problems are weighted equally. A^c denotes the complement of the set A, and m denotes Lebesque measure.

- For small values of |x|, which is larger, $\sin^2 x$ or $\sin(x^2)$? 1.
- 2. Let $f \in L^1([0,1])$, and for $x \in [0,1]$ define

$$g(x) = \int_x^1 \frac{f(t)}{t} dt.$$
 Show that $g \in L^1([0,1])$ and that $\int_0^1 g(x) dx = \int_0^1 f(x) dx.$

Let $A \subset [0,1]$ be measurable, and define $L^2(A) \subset L^2([0,1])$ to be the subspace consisting 3. of all $f \in L^2$ such that $f \equiv 0$ a.e. off A. Show that

$$L^2(A)^{\perp} = L^2(A^c) \,.$$

Let $f_n \to f$ pointwise a.e. on [0, 1]. Suppose 4.

> $\limsup_{n \to \infty} \|f_n\|_1 \le \|f\|_1 < \infty.$ Show that $f_n \to f$ in L^1 , i.e., that $\lim_{n \to \infty} ||f_n - f||_1 = 0$.

5. Suppose $f \in L^1(\mathbb{R})$ and $f \ge 0$. For y > 0, let

$$g(y) = m\left(\{x \in \mathbb{R} : f(x) \ge y\}\right).$$

Set G(y) = yg(y).

- Prove that $\lim_{y\to 0^+} G(y) = \lim_{y\to\infty} G(y) = 0$ and that G is bounded. Prove that G achieves its maximum at some point y_0 . a.
- b.
- Let $f_1, f_2, \ldots : \mathbb{N} \to \mathbb{R}$ be a sequence of functions such that $|f_i(n)| \leq n$ for all $i, n \in \mathbb{N}$. 6. Show that there is a subsequence $f_{i'}$ converging pointwise on \mathbb{N} to a function f_0 .