Probability Theory, Ph.D Qualifying, Spring 2019

Completely solve any five problems.

1. (a) Show that the mean μ of a random variable X has the property

$$\min_{c} E(X - c)^{2} = E(X - \mu)^{2} = V(X).$$

(b) Prove that for any r.v. X

$$E|X| = \int_0^\infty P(|X| \ge t) dt.$$

2. Suppose that X and Y are independent random variables with the same exponential density

$$f(x) = \theta e^{-\theta x}, \ x > 0$$

Show that the sum X + Y and the ratio X/Y are independent.

3. Given a square integrable r.v. X, show that for $\lambda \geq 0$,

$$P(X - EX \ge \lambda) \le \frac{\sigma^2(X)}{\sigma^2(X) + \lambda^2}.$$

4. (a) Given a random variable X with finite mean square. Let \mathcal{D} be a σ -algebra. Show that $E[X|\mathcal{D}]$ is the minimizer of $E(X - \xi)^2$ over all \mathcal{D} -measurable r.v.s ξ , i.e.,

$$E(X - E[X|\mathcal{D}])^2 \le E(X - \xi)^2$$

for all \mathcal{D} -measurable r.v.s ξ .

(b) Let (Ω, \mathcal{F}, P) denote a probability space. Suppose $f : \mathbb{R}^n \times \Omega \to \mathbb{R}$ is a bounded $\mathcal{B}(\mathbb{R}^n) \times \mathcal{C}$ measurable function and X be a *n*-dimensional \mathcal{D} measurable random variable. Assume \mathcal{C} and \mathcal{D} are independent. If $g(x) := Ef(x, \omega)$, then

$$g(X) = E[f(X, \omega)|\mathcal{D}], \text{ a.s.}$$

5. Let $\{X_n, n \ge 1\}$ be a sequence of independent identically distributed random variables with $E|X_1| < \infty$. Show that

$$\lim_{n \to \infty} \frac{1}{n} E(\max_{1 \le k \le n} |X_k|) = 0.$$

- 6. Let $\{X_n\}$ be iid r.v.s. Then,
 - (a) $n^{-1} \max_{1 \le i \le n} |X_i| \to 0$ in probability if and only if $nP(|X_1| > n) = o(1)$.
 - (b) $n^{-1} \max_{1 \le i \le n} |X_i| \to 0$ a.s. if and only if $E|X_1| < \infty$.
- 7. Let X_1, X_2, \ldots be a sequence of independent r.v.s with $EX_i = 0$. Let $S_n = X_1 + X_2 + \cdots + X_n$ and $\mathcal{F}_n = \sigma\{X_1, \ldots, X_n\}$. Show that $\phi(S_n)$ is an \mathcal{F}_n -submartingale for any convex ϕ provided that $E|\phi(S_n)| < \infty$ for all n.