Probability Theory, Ph.D. Qualifying Exam, Fall 2025

1. For any random variable X with finite mean μ , prove that:

$$\min_{c} E[(X - c)^{2}] = E[(X - \mu)^{2}] = Var(X).$$

- 2. Let X and Y be independent random variables with the same exponential density $f(x) = e^{-x}$ for x > 0. Show that the sum X + Y and the ratio X/Y are independent.
- 3. Let $\{X_n\}$ be a sequence of i.i.d. random variables such that $P(|X_1| > c) > 0$ for all c > 0. Show that:

$$P\left(\limsup_{n\to\infty}|X_n|=\infty\right)=1.$$

4. Let $\{X_n\}$ be i.i.d. random variables with mean μ and finite variance σ^2 . Let $S_n = X_1 + \cdots + X_n$. Show that:

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \longrightarrow N(0,1) \quad \text{in distribution as } n \to \infty.$$

5. Let $\{X_n\}$ be a sequence of i.i.d. random variables with $E|X_1| < \infty$. Prove that:

$$\sum_{n=1}^{\infty} (-1)^n \frac{X_n}{n}$$
 converges almost surely.

6. Let $\{X_n\}$ be a sequence of i.i.d. random variables with $E[X_1] = 0$ and $E|X_1|^{\alpha} < \infty$ for some $\alpha > 0$. Prove that for any $\beta > \alpha$:

$$\frac{1}{n^{1/\beta}}\max_{1\leq k\leq n}|X_k|\longrightarrow 0\quad\text{in probability as }n\to\infty.$$