2019 GRADUATE PRELIMINARY EXAM

All problems are weighted equally. Throughout \mathbb{R} denotes the real numbers.

- (1) Negate each of the following sentences. (Do not simply say "It is not the case that...").
 - (a) The integer x is odd, the integer y is odd and the integer z is even.
 - (b) Every prime number is odd.
 - (c) Either you pay the bill or we're not going to dinner.
 - (d) If I'm lying, I'm dying.
- (2) Let $f(x) = e^{x^2}$. Show: for every positive integer *n*, there is a degree *n* polynomial $P_n(x)$ such that for all $x \in \mathbb{R}$ we have $f^{(n)}(x) = P_n(x)e^{x^2}$. (Here $f^{(n)}$ denotes the *n*th derivative of *f*.)
- (3) Let X and Y be nonempty sets.
 - (a) Let $f: X \to Y$ and $g: Y \to X$ be functions. Show: if $g \circ f$ is injective, then f is injective.
 - (b) Let $f: X \to Y$ and $g: Y \to X$ be functions. Show: if $g \circ f$ is surjective, then g is surjective.
 - (c) Let $g: Y \to X$ be a surjective function. Show: there is a function $f: X \to Y$ such that $g \circ f = 1_X$, i.e., for all $x \in X$ we have g(f(x)) = x.
 - (d) Let $f: X \to Y$ be an injective function. Show: there is a function $g: Y \to X$ such that $g \circ f = 1_X$.
- (4) For each part, either find a linear transformation $L : \mathbb{R}^3 \to \mathbb{R}^3$ satisfying the given properties or show that no such linear transformation exists.
 - (a) The kernel and image of L are both spanned by (1, 2, 3).
 - (b) The kernel of L is spanned by (1, 2, 3) and the image of L is $\{(x, y, z) \mid 3x + 4y + 5z = 0\}$.
- (5) Diagonalize the matrix $M = \begin{bmatrix} 1 & -2 \\ 4 & 7 \end{bmatrix}$ over \mathbb{R} .
- (6) Show directly from the ϵ , δ definition that

$$\lim_{x \to 3} \frac{1}{x - 2} = 1.$$

- (7) Let $I \subset \mathbb{R}$ be an interval, and let $\{f_n : I \to \mathbb{R}\}_{n=1}^{\infty}$ be a sequence of real-valued functions.
 - (a) Give a careful definition of: "The sequence $\{f_n\}$ converges pointwise on I."
 - (b) Give a careful definition of: "The sequence $\{f_n\}$ converges uniformly on I."
 - (c) Let $f_n = x^n$. Show: the sequence $\{f_n\}$ converges pointwise on [0, 1] and does not converge uniformly on [0, 1].
- (8) (a) Let G be a finite commutative group, written multiplicatively, with identity element e. Suppose that G has exactly one element, t of order 2 i.e., such that t² = e and t ≠ e. Show: ∏_{x∈G} x = t. (Hint: for all x ∈ G we have xx⁻¹ = e.)
 - (b) Let p be a prime number. Deduce from part a) that $(p-1)! \equiv -1 \pmod{p}$.