
Sponsored by: UGA Math Department and UGA Math Club

Written test, 25 problems / 90 minutes
November 8, 2014

WITH SOLUTIONS

1 Easy Problems

Problem 1. How many ordered triples of prime numbers (x, y, z) are there with
xy − z = 1 and and z ≤ 2014?

(A) 0 (B) 1 (C) 2 (D) 3 (E)♥ 4

Solution. Rearranging gives xy − 1 = z. Since x, y > 1 and x − 1 divides xy − 1,
the only way xy − 1 can be prime is if x = 2. This reduces the problem to counting
the number of prime values of y for which 2y − 1 is a prime number in [2, 2014]. The
restriction 2y − 1 ≤ 2014 forces y ≤ 10. Checking y = 2, 3, 5, 7, we find that 2y − 1 is
prime for all 4 of these values.

Problem 2. Two points A and B lie on the graph of y = x3. If their x-coordinates
differ by 1, what is the least by which their y-coordinates can differ?

(A) 0 (B) 1
8

(C)♥ 1
4

(D) 1
2

(E) 1

Solution. Call the points (a, a3) and (a+ 1, (a+ 1)3); we want the smallest value of
(a + 1)3 − a3 = (a3 + 3a2 + 3a + 1)− a3 = 3a2 + 3a + 1. This quadratic assumes its
minimum value at the vertex of the corresponding parabola, located at a = − 3

2·3 =
−1

2
. So the points are (1

2
, 1
8
) and (−1

2
,−1

8
), and the difference in their y-coordinates

is 1
4
.

Problem 3. Which real number is the value of the following infinite product?

(1 +
1

2
)× (1 +

1

22
)× (1 +

1

24
)× (1 +

1

28
)× · · ·



(A) 1 (B) 1+
√
5

2
(C)♥ 2 (D) e (E) diverges to infinity

Solution. Expanding the infinite product, we obtain the sum of all expressions of
the form

1

2ε0·1+ε1·21+ε2·22+...
,

where each εi ∈ {0, 1} and all but finitely many of the εi are zero. Now every
nonnegative integer n has a unique expansion in the form

ε0 · 1 + ε1 · 21 + ε2 · 22 + . . . ;

this is just the binary expansion of n. Hence, the value of the infinite product is
precisely

∑∞
n=0

1
2n

= 2.

Problem 4. In “shift geometry”, a line
shifts vertically 2 units as it crosses the y-
axis, then continues with the same slope.
For example, the “line” from (−1,−2) to
(1, 2) is as shown.

Where does the “shifted” line from (−1, 1)
to (2,−1) intersect the line shown?

(A) they do not intersect (B) (4
5
,−1

5
)

(C) (−2
5
, 3
5
) (D)♥ (2

7
, 9
7
), (E) (1

8
, 1
4
)

Solution. Lines in this geometry are of the form

y =

{
mx+ b if x ≤ 0,

mx+ b+ 2 if x > 0.

Substituting (−1,−2) and (1, 2) for (x, y) gives

−2 = −m+ b

2 = m+ b+ 2.

So for the given line m = 1 and b = −1:

y =

{
x− 1 if x ≤ 0,

x+ 1 if x > 0.

Similarly the second line is described by

y =

{
−4

3
x− 1

3
if x ≤ 0,

−4
3
x+ 5

3
if x > 0.



These clearly do not intersect when x ≤ 0, and when x > 0 they intersect when
−4

3
x+ 5

3
= x+ 1. So x = 2

7
and y = 9

7
.

Problem 5. If an is defined recursively by a1 = 1 and an+1 = 1
3
an for n ≥ 1, then

an → 0 as n→∞. Find a value of c so that, if bn is defined recursively by

bn = 1, bn+1 =
1

3
bn + c for n ≥ 1,

then bn → 2014 as n→∞.

(A)♥ 4028
3

(B) 2014
3

(C) 1007
3

(D) 2014 (E) there is no such c

Solution. Rewrite the recursive definition in the form bn+1 − k = 1
3
(bn − k). This is

the same as bn+1 = 1
3
bn + c if and only if k = 3

2
c. Then bn − k → 0 as n → ∞; i.e.,

bn → k. For k = 2014, we need c = 2
3
· 2014 = 4028

3
.

Problem 6. Suppose you rotate a cube rapidly around one of its diagonals. Which of
the following most closely resembles the silhouette of the resulting solid of revolution?

(A)♥ (B) (C) (D) (E)

Solution. Try it! In fact, we did at the awards ceremony, using a cube that was
color coded to make the middle section clear, and which doubled as the trophy for
the top performers in this year’s tournament. For pictures, or to 3-D print your own
cube, go to

http://www.thingiverse.com/thing:534801

Alternatively, suppose you rotate around the diagonal AB. The top and bottom
of the silhouette are determined by the edges emanating from the vertices A and B.
These form cones. The edges not adjacent to A or B are skew to the diagonal, so
their rotation determines a hyperboloid of one sheet. In particular this shows that
the hyperboloid of one sheet is a ruled surface. In fact, the hyperboloid is doubly
ruled, since there are two non-parallel edges not adjacent to A or B.

Problem 7. Let f(x) = anx
n+an−1x

n−1+ · · ·+a1x+a0 be a polynomial of degree n.
We call f eponymous if f(0) = a0, f(1) = a1, . . . , f(n) = an. (Of course, f(0) = a0
is true for all polynomials; the other conditions are typically not true.) Now suppose
f(x) is an eponymous polynomial of degree 2 and f(0) = 1. Find f(3).

http://www.thingiverse.com/thing:534801


(A)♥ −5 (B) −3 (C) −1 (D) 1 (E) 3

Solution. Since f(0) = 1, we know f(x) = a2x
2 + a1x+ 1. The condition f(k) = ak

implies

4a2 + 2a1 + 1 = a2,

a2 + a1 + 1 = a1,

from which we see a2 = −1 and a1 = 1. So f(x) = −x2 + x+ 1 and so f(3) = −5.
In general, if f(x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0 is eponymous of degree n,

then it must satisfy knan + kn−1an−1 + · · · + ka1 + a0 = ak for all 0 ≤ k ≤ n. With
v = [a0, . . . , an]T , these conditions amount to the matrix equation

nn . . . n 1
...

. . .
...

...
kn . . . k 1
...

. . .
...

...
1 . . . 1 1
0 . . . 0 1


v = v,

i.e., v is an eigenvector of the matrix on the left-hand side, with eigenvalue 1.

Definition of eponymous: of, relating to, or being the person or thing

for whom or which something is named

(from http://www.merriam-webster.com/dictionary/eponymous)
Also the title of the album released in 1988 by famous Athens alternative rock band
R.E.M.

Problem 8. Erect a pole of length 1 on a sphere of radius 2 in any direction you like,
not necessarily perpendicular to the surface. Now shine a light so that the shadow of
the pole on the sphere is as long as possible. What is the maximum possible length
of the shadow?

(A) π
6

(B) π
3

(C) π
2

(D)♥ 2π
3

(E) π

Solution. The longest shadow occurs when the light is perpen-
dicular to the top of the pole and tangent to the sphere. The
diagram shows then that θ = arccos(1

2
) = π

3
, so s = rθ = 2π

3
.

θ

Problem 9. Tetra and Yuri both want to approximate
∑2014

n=1
1
n
. Tetra approximates

each 1
n

by rounding it up to the nearest 1
10

; for example, she approximates 1
3

as 0.4.

http://www.merriam-webster.com/dictionary/eponymous


Yuri approximates each 1
n

by rounding down to the nearest 1
10

. What is the difference
of their sums?

(A)♥ 201 (B) 201.4 (C) 2010 (D) 2014 (E) ln(2014)

Solution. Notice that neither of them rounds 1, 1
2
, 1
5
, or 1

10
. For the remaining 2010

terms their approximations differ by exactly 0.1, so the difference of their sums is
2010 · 0.1 = 201.

Problem 10. Suppose that x is chosen uniformly at random from the interval (0, 1).
What is the probability that the leftmost decimal digit of 1

x
is 1?

(A) 2
3

(B)♥ 5
9

(C) 1
2

(D) 1
9

(E) 1
10

Solution. The leftmost digit of 1
x

is 1 ⇐⇒ 1
x
∈ [1, 2)∪ [10, 20)∪ [100, 200)∪ . . .⇐⇒

x ∈ (1
2
, 1) ∪ ( 1

20
, 1
10

) ∪ ( 1
200
, 1
100

) ∪ . . . . The sum of the lengths of these final intervals
is 1

2
+ 1

20
+ 1

200
+ · · · = 1

2

∑∞
k=0(

1
10

)k = 1
2
· 1
1− 1

10

= 5
9
.

2 Medium Problems

Problem 11. What is the largest integer n for which
20!

1!2!3!4!n!
is an integer?

(A) 5 (B) 10 (C) 11 (D) 13 (E)♥ 15

Solution. Since 1 + 2 + 3 + 4 + n = 20 when n = 10, the expression is an integer for
n ≤ 10. In fact, when n = 10 we get the multinomial coefficient

(
20

1,2,3,4,10

)
, which is

the coefficient of vw2x3y4z10 in (v + w + x+ y + z)20.
Clearly 11 divides 20!

1!·2!·3!·4! , since the numerator contains a factor of 11 but the
denominator does not, and similarly for 13, 17, 19. In fact,

20! = 218 · 38 · 54 · 72 · 11 · 13 · 17 · 19,

and so
20!

1!2!3!4!
= 213 · 36 · 54 · 72 · 11 · 13 · 17 · 19.

Since 15! = 211 · 36 · 53 · 72 · 11 · 13 and 16! = 215 · 36 · 53 · 73 · 11 · 13, we have n = 15.

Problem 12. A Pythagorean triangle is one with integer side lengths a, b, c sat-
isfying a2 + b2 = c2. What is the smallest positive integer that does not occur as the
radius of a circle inscribed in a Pythagorean triangle?



(A) 2 (B) 3 (C) 4 (D) 5 (E)♥ every positive integer occurs

Solution. We need the following fact: If a circle of radius r is
inscribed in an (a, b, c) Pythagorean triangle, then r = a+b−c

2
.

Taking (a, b, c) = (3, 4, 5) shows that the radius 1 occurs.
Since we can scale the entire figure by any integer factor,
every positive integer occurs as a value of r.

Problem 13. Suppose A = (0, 0), B = (2, 0), C = (4, 2), and D = (2, 2). For which
of the following points E is ∆ABC similar to ∆ADE?

(A) (2, 4) (B) (2, 5) (C)♥ (2, 6) (D) (1, 4) (E) (3, 5)

Solution. Represent B,C, andD as complex numbers: B = 2, C = 4+2i, D = 2+2i.
Then recall that multiplication by a complex number may rotate and change length,
but does not change angles; i.e., it sends triangles to similar (though not necessarily
congruent) triangles. In particular, multiplying by 1 + i carries A to A, B to D and
C to (4 + 2i)(1 + i) = 4 + 6i− 2 = 2 + 6i. Thus, E = (2, 6).

Problem 14. A square formation of Army cadets, 50 feet on the side, is marching
forward at a constant pace. The company mascot, a bulldog, starts at the center of
the rear rank, trots forward in a straight line to the center of the front rank, then
trots back again in a straight line to the center of the rear. At the instant he returns
to his original position, the cadets have advanced exactly 50 feet. Assuming the dog
trots at a constant speed and loses no time in turning, how many feet does he travel?

(A) 50 ft (B)♥ 50 + 50
√

2 ft (C) 100 ft (D) 100 + 50
√

2 ft (E) 150 ft

Solution. Without loss of generality, assume the troops are moving forward at a



constant rate of 50 ft/min. Let v be the dog’s constant speed (in ft/min) and t the
time (in min) it takes him to reach the front. Then

vt = 50t+ 50 or v = 50
t+ 1

t

and
vt− v(1− t) = 50 or v(2t− 1) = 50.

The first equation says that the distance the dog moves in t minutes (namely, vt) is
equal to the distance the troops move (50t ft) plus 50 ft (to move the dog from the
back to the front). The second equation says, from the position reached at time t
(namely, vt), the dog moves backwards for the remaining 1− t minutes, and ends up
50 feet ahead of his starting point.

Combining the two equations gives

50

(
t+ 1

t

)
· (2t− 1) = 50⇒ (t+ 1)(2t− 1) = t

⇒ (2t2 − 1) = 0⇒ t =
1√
2

;

hence,

v = 50

1√
2

+ 1
1√
2

= 50(1 +
√

2).

Problem 15. Fran the Frog is resting at Lilypad #0 in the middle of an infinite,
bidirectional sequence of Lilypads numbered with the integers. Fran has the ability
to jump forwards or backwards, but can only move by a square number of steps at
each jump. For example, in 3 moves, Fran could jump 100 lilypads forward to 100,
then 144 lilypads backward to −44, then 64 lilypads forward to 20. But this is not
the shortest way of reaching 20, since Fran could have jumped forward 16 lilypads
and then another 4 lilypads to get to 20 in just 2 moves.

If Fran wants to reach 2014 instead of 20, what is the smallest number of moves
Fran can make?

(A) 2 (B)♥ 3 (C) 4 (D) 5 (E) more than 5

Solution. The answer is 3. We first show that we can reach any Lilypad in three
moves and then that 2014 actually requires three.

Jumping +k2 steps and then −(k− 1)2 steps, we reach k2− (k− 1)2 = 2k− 1. So
any odd numbered Lilypad can be reached in two steps. Any even numbered Lilypad
can then be reached by an extra step of length 1.

We now show that 2014 needs 3 steps. Since 2014 is not a square, we need more
than one step. To rule out two steps, we must demonstrate that 2014 cannot be
written in the form x2 − y2 or x2 + y2, for any integers x and y. If 2014 = x2 − y2,
then 2014 = (x − y)(x + y), and the two right-hand factors have the same parity.



Clearly, at least one must be even, since the product 2014 is even. But then both are
even, forcing the product to be a multiple of 4, which 2014 is not. If 2014 = x2 + y2,
either x and y are both even or both odd. Hence, x−y

2
and x+y

2
are both integers, and(

x− y
2

)2

+

(
x+ y

2

)2

=
x2 + y2

2
= 1007,

so that 1007 is the sum of two squares of integers. But this is impossible, since
1007 ≡ 3 (mod 4), while the square of an integer is 0 or 1 modulo 4.

Remark: If we replace “square number of steps” with “cube number of steps”, one
can show by fairly simple arguments that some Lilypads require at least 4 steps to
reach and that no Lilypad requires more than 5. But it is an open problem to decide
whether any Lilypad actually requires 5. For more on this theme, look up the easier
Waring problem.

Problem 16. In Rn, draw spheres of radius 1 at each of the points (±1,±1, . . . ,±1).
Notice that each of these 2n spheres is tangent to the adjacent spheres, and also
tangent to (but contained in) the cube with vertices (±2,±2, . . . ,±2). Now draw one
more sphere, centered at the origin, with the largest radius subject to the condition
that no point of the other 2n spheres is inside the central sphere. What is the smallest
value of n for which the central sphere extends outside the cube?

(A) 5 (B) 8 (C) 9 (D)♥ 10 (E)
the central sphere never extends
outside the cube

Solution. The center of any (non-central)
sphere is

√
n units from the origin, so the cen-

tral sphere will meet it tangentially at a point√
n − 1 units from the origin. So the central

sphere has radius
√
n − 1. When n = 9, this

radius is 2, so the central sphere is tangent to
the cube. For n ≥ 10, it extends beyond the
cube.

Problem 17. What is the smallest value of n so that
∑n

k=1 arctan(k) ≥ 2π.

(A) 4 (B) 5 (C)♥ 6 (D) 7 (E) 8

Solution. Note that arctan(1) = π
4

and that π
4
< arctan(k) < π

2
whenever k > 1.

Thus, n must be greater than 4 and no more than 8. The angle arctan(k) is the
angle between the x-axis and the vector (1, k); equivalently, it is the argument of the
complex number 1 + ik. Since the argument of the product of complex numbers is
the sum of their arguments, one can think of

∑n
k=1 arctan(k) as the argument of

(1 + i)(1 + 2i)(1 + 3i) · · · (1 + ni).



Now start multiplying:

(1 + i)(1 + 2i) = −1 + 3i,

(−1 + 3i)(1 + 3i) = −10.

This shows that
∑3

k=1 arctan(k) = π. Therefore,
∑5

k=1 arctan(k) < 2π (since each
term in the sum is less than π

2
) and

∑6
k=1 arctan(k) > 2π (since each of the first three

angles is less than each of the last three). So n = 6.

Problem 18. ···

Suppose a total of n squares are arranged as shown, n ≥ 4. In how many ways can
the numbers 1, 2, . . . , n can be placed in the box so that both rows are increasing left
to right, and all columns are increasing top to bottom?

(A)♥ n(n−3)
2

(B) n2−5n+8
2

(C) n(n−1)
2

(D) n2−3n+2
2

(E) none of the
above

Solution.

A

B C

···

A must be 1. C must be at least 4, since there have to be numbers less than C to
its left and above. For any choice of C, we must have 1 < B < C, so there are C − 2
choices for B. Once A, B, and C are in place, everything else is determined. So the
total number of arrangements is

n∑
C=4

(C − 2) =
n∑

C=4

C − 2(n− 3)

=
n(n+ 1)

2
− (1 + 2 + 3)− 2(n− 3)

=
n2 − 3n

2
.

Remark: Recall from the solution to Ciphering Problem #7 that the collection of
symmetries of an object forms an algebraic structure called a group. Mathematicians
also study the ways groups act on algebraic structures called vector spaces. This
is the foundation of Representation Theory, a topic that spans many areas of
mathematics and which has applications to modern chemistry and physics. It is a
known fact that the representations of the symmetric group Sn are parametrized by
the partitions of n, and they can be studied using Young Diagrams. These are the
diagrams you saw above and in Ciphering Problem #2. The instructions you were
given about labeling these diagrams correspond to a standard labeling for a Young



Diagram. Counting the number of standard labelings gives information about the
dimension of the representation that corresponds to that diagram.

Problem 19. Evaluate the product
∏45

k=1(1 + tan(k◦)).

(A) (1+
√
5

2
)23 (B) 315 (C) 245/2 (D) π14 (E)♥ none of the above

Solution. Observe that for each θ = 0◦, 1◦, 2◦, . . . , 45◦,

(1 + tan(θ))(1 + tan(45◦ − θ)) = 1 + tan(θ) + tan(45◦ − θ) + tan(θ) tan(45◦ − θ)

= 1 +
tan(θ) + tan(45◦ − θ)

1− tan(θ) tan(45◦ − θ)
(1− tan(θ) tan(45◦ − θ)) + tan(θ) tan(45◦ − θ)

= 1 + tan(45◦)(1− tan(θ) tan(45◦ − θ)) + tan(θ) tan(45◦ − θ)
= 1 + (1− tan(θ) tan(45◦ − θ)) + tan(θ) tan(45◦ − θ)
= 2.

After inserting a harmless extra factor of 1 + tan(0) = 1, we can write

(1 + tan(1◦)) · · · (1 + tan(45◦)) =
22∏
θ=0

(
(1 + tan(θ))(1 + tan(45◦ − θ))

)
= 223.

Problem 20. Consider a collection of airports at distinct distances from each other.
A plane leaves each airport and flies to the nearest other airport. What is the most
planes that could land at the same airport?

(A) 4 (B)♥ 5 (C) 6 (D) 7 (E) 8

Solution. Notice that 5 airports, equally spaced on a circle centered at a sixth
airport, say ATL, almost gives an example, if there are no other airports nearby.
Now move those 5 airports radially towards ATL by small but differing amounts.

If we tried to arrange 6 airports around ATL, any two “adja-
cent” airports, say X and Y , and ATL, would form a triangle with
a 60◦ angle at ATL. The other angles can’t be 60◦, since all dis-
tances are distinct, so one angle α must be greater than 60◦. Then
the side opposite α must be longer than the side opposite ATL,
i.e., Y is closer to X than to ATL.

3 Hard problems

Problem 21. For how many nonnegative integers m < 2014 is the polynomial

1 + x2014 + x2·2014 + · · ·+ x2014·m



evenly divisible by the polynomial

1 + x+ · · ·+ xm?

(A) 1 (B)♥ 936 (C) 1007 (D) 2013 (E) 2014

Solution. We claim that this divisibility holds for a given m precisely when gcd(m+
1, 2014) = 1. Suppose for now that the claim is proved. Writing n = m + 1, we are
asked to count the number of positive integers n ∈ [1, 2014] coprime to 2014. Now
2014 = 2·19·53. An integer in [1, 2014] is divisible by 2 with probability exactly 1

2
, and

similarly for 19 and 53; moreover, these events are independent. Consequently, the
probability an n ∈ [1, 2014] is coprime to 2014 is precisely (1− 1

2
)(1− 1

19
)(1− 1

53
) = 936

2014
.

Thus, the total number of these n is 936. (Fans of number theory will recognize that
we have just computed φ(936), where φ is the Euler phi-function.)

Now we turn to the proof of the claim. Simplifying the geometric series, we have
to determine when

1− xm+1

1− x
divides

1− x2014(m+1)

1− x2014
,

or equivalently, when
1− x2014(m+1)

1− x2014
1− x

1− xm+1

simplifies to a polynomial. This occurs precisely when every complex root of the
denominator (1 − x2014)(1 − xm+1) appears to at least the same multiplicity in the
numerator (1− x2014(m+1))(1− x).

Since 1− x2014 and 1− xm+1 both divide 1− x2014(m+1), every root of the denomi-
nator is a root of 1− x2014(m+1), and so also a root of the numerator. The root z = 1
always occurs with multiplicity 2 in both the numerator and denominator. Moreover,
if z 6= 1 is a root of the numerator, then z is a root of 1−x2014(m+1) and not 1−x; since
1− x2014(m+1) has only simple roots, z appears with multiplicity 1 in the numerator.
So in order for the denominator to divide the numerator, it is necessary and sufficient
that every root z 6= 1 of (1− x2014)(1− xm+1) appears with multiplicity 1.

Claim: This holds exactly when m+ 1 and 2014 are relatively prime.

Ifm+1 and 2014 share a common factor d > 1, then (1−xd)2 | (1−x2014)(1−xm+1),
and so each dth root of unity z 6= 1 occurs with multiplicity larger than 1.

Now suppose gcd(m + 1, 2014) = 1. Since 1 − xm+1 and 1 − x2014 have only
simple roots, it suffices to show that their only common root is z = 1. The roots of
1 − x2014 are the numbers e2πik/2014, where 0 ≤ k < 2014, and the roots of 1 − xm+1

are the numbers e2πi`/(m+1), where 0 ≤ ` < m + 1. Any common root z corresponds
to a rational number that is both of the form k

2014
and `

m+1
. When put in lowest

terms, this rational number has denominator dividing both 2014 and m + 1. Since
gcd(m + 1, 2014) = 1, this denominator is 1, so our rational number is an integer.
Since 0 ≤ k < 2014, our rational number is 0, forcing z = e2πi·0/2014 = 1.



Problem 22. Evaluate

100∑
m=1

bcos2
(
π · (m− 1)! + 1

m

)
c.

Here bxc is the floor function of x, i.e., the largest integer less than or equal to x.

(A) 1 (B) 12 (C) 25 (D)♥ 26 (E) 100

Solution. Since 0 ≤ cos2(θ) ≤ 1, we see that bcos2(θ)c = 0 except when cos(θ) = ±1,
i.e., when θ = kπ for some k ∈ Z. Hence, the sum is counting those values of m ≤ 100
for which m divides (m−1)!+1. This obviously includes m = 1. A theorem of Wilson
asserts that this divisibility holds for an integer m > 1 if and only if m is prime. Since
there are 25 primes up to 100, the final answer is 1 + 25 = 26.

Problem 23. Let f(x) = 2x2 − 1, and let f (k)(x) denote the kth iterate of f(x).
That is, f (0)(x) = f(x) and f (k+1)(x) = f(f (k)(x)) for each nonnegative integer k.
For how many distinct real values of t is f (2014)(t) = 1?

(A) 1 (B) 3 (C)♥ 22013 + 1 (D) 22014 − 1 (E) 22014

Solution. Observe that if f(x) ∈ [−1, 1], then 2x2 ∈ [0, 2], so that x itself lies in
[−1, 1]. Iterating this observation, we see that all possible values of t with f (2014)(t) =
1 satisfy −1 ≤ t ≤ 1. Write t = cos(θ), where 0 ≤ t ≤ π is uniquely determined.
Then f(t) = 2 cos2(θ) − 1 = cos(2θ). Similarly, f (2)(t) = cos(4θ), f (3)(t) = cos(8θ)
and in general f (n)(t) = cos(2nθ). Consequently, f (2014)(t) = 1 precisely when 22014θ
is an integer multiple of 2π. Since θ ∈ [0, π], we see 0 ≤ 22014θ ≤ 22014π. The number
of multiples of 2π in [0, 22014π] is precisely 22013 + 1.

Problem 24. Consider a triangle in the plane whose vertices have integer coordinates.
Recall that Pick’s Theorem says that the area of this triangle is

A = I +
B

2
− 1

where I is the number of integer points in the interior of the triangle and B is the
number of integer points on the boundary. Notice that B ≥ 3 always, since the 3
vertices of the triangle are integer points.

If I = 1, what is the largest B can be?

(A) 8 (B)♥ 9 (C) 10 (D) 12 (E) more than 12

Solution. First some examples to show that B can be any of 3, 4, 6, 8, or 9.



Claim: B ≤ 9.

Proof. We first determine the maximum number of lattice points that can lie on an
edge of such a triangle. Suppose 6 integer points P1, . . . , P6 lie on the edge opposite
vertex Q as shown:

Q

The six points will be equally spaced, so that the 5 triangles ∆QPiPi+1, i =
1, 2, . . . , 5, will all have the same area. Since there is exactly one interior point R
in ∆QP1P6, at least one of the triangles ∆QP2P3, ∆QP3P4, ∆QP4P5, ∆QP5P6 has
B = 3 and I = 0, so A = 1

2
. Moreover, at least one of them has an additional interior

or boundary point, so that A > 1
2
. This contradiction shows that there cannot be 6

integer points on an edge.
Suppose next that there are 5 integer points P1, . . . , P5 on the edge opposite Q.

Divide into equal area triangles as above; this is only possible if R lies on edge QP3,
and thus edges QP1 and QP5 must each contain one lattice point. So if there are
5 lattice points on one side, the triangle must have exactly 8 lattice points on its
boundary.

Any other Pick’s triangle with one interior point must have ≤ 4 integer points per
side – these are the examples drawn above, so B ≤ 9.



Problem 25. Let R0 be the positive x-axis and P0 = (1, 0). Given Rn and Pn, let
Rn+1 be the ray in the first quadrant which bisects the angle between Rn and the
positive y-axis, and let Pn+1 be the intersection of Rn+1 with the line through Pn
perpendicular to Rn. The sequence of points P0, P1, . . . approaches the y-axis. What
is the y-coordinate of the limit of that sequence?

(A) 1+
√
5

2
(B) 2 (C) e (D) π (E)♥ π

2

Solution. First let’s name some things.
Pn and Rn are already defined. Let O be the origin. Let Ln be the line joining

Pn and Pn+1, and let Qn the point at which Ln intersects the x-axis. Let θn be the
angle between Rn and Rn+1. θn shows up in many places; in particular, θn is also the
angle between Rn+1 and the positive y-axis.

O
r r r

For example, P1 = (1, 1), L1 is the line y = −x+ 2, Q1 = (2, 0) and θ1 = π/8.
Since θ1 = π/8, we have that θn = π/2n+2.
Now notice that ∆OPn+1Qn is isosceles, since both ∠OPn+1Qn and ∠Pn+1OQn

measure π/2− θn. This implies that ∠OQnPn+1 equals 2θn.
Next notice that ∆Pn+1QnQn+1 is also isosceles, since both ∠Pn+1Qn+1Qn and

∠QnPn+1Qn+1 equal θn. This implies that |QnQn+1| = |QnPn+1|, which we know
from the last paragraph to also equal |OQn|. Consequently, |OQn+1| = 2 · |OQn|.



Since
|OQ1| = 2, we obtain inductively that |OQn| = 2n.

Finally we want to find |OPn+1|. This is approximately the length of the circular
arc subtended by O and Pn+1 on the circle centered at Qn. That arc has length
|OQn| · 2θn = 2n · π

2n+1 = π/2. Since this is independent of n, it follows that

lim
n→∞

|OPn+1| = lim
π

2
=
π

2
.

Authors. Written by Mo Hendon, Paul Pollack, and Amber Russell. We thank
Will Kazez for his help in drawing the pictures.

Sources. Problem #14 is taken from Martin Gardner’s My Best Mathemati-
cal and Logic Puzzles, problem 35, pp. 18–19. Martin Gardner (1914–2010) was
a popular science writer who (anong many other contributions) wrote the monthly
“Mathematical Games” column for Scientific American from 1956 to 1981. While
having no formal training in mathematics, his writings served to encourage an entire
generation of budding young scientists. For more information on Gardner, see

http://en.wikipedia.org/wiki/Martin_Gardner

Problem #20 was posted by Tatiana Shubin on http://www.mathteacherscircle.

org. Problem #21 is adapted from Problem #1 on the 1977 USAMO. Problem #23
is adapted from a 1998 competition in Turkey. Problem #25 was inspired by retired
UGA Math Professor Roy Smith, who offered the given solution as a more geometric
approach to Problem #25 on the 2013 UGA HSMT written test.
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