Department of Mathematics PRELIMINARY EXAMINATION August 12, 2014

3 hours. Work all of the following problems. Justify your answers. \mathbb{R} denotes the field of real numbers; \mathbb{N} denotes the set $\{1, 2, 3, ...\}$ of natural numbers.

- 1. Let f be a function mapping \mathbb{R} of to \mathbb{R} . Give the definitions of each of the following concepts in words, without using logical symbols or the word "not".
 - a) f is surjective
 - b) f is not injective
 - c) f is uniformly continuous
 - d) f is not uniformly continuous
- 2. Let (a_n) be a sequence defined recursively by $a_1 = 1$ and $a_{n+1} = \frac{a_n}{3} + 5$ for $n \ge 1$. Prove inductively that $a_n \le a_{n+1} \le 10$ for each positive integer n. Then explain why the sequence (a_n) converges and find its limit.
- 3. Suppose f and g are functions mapping R into itself with lim_{x→0} f(x) = 0.
 a) Prove from the ε − δ definition that if g is bounded,
 - then $\lim_{x\to 0} f(x)g(x) = 0$ as well.
 - b) Give an example to show that the boundedness hypothesis cannot be omitted from Part a).
- 4. Let v_1, v_2, v_3 form a basis for a vector space V. Prove that $v_1 + v_2, v_2 v_3, v_2 + 2v_3$ form a basis for V.
- 5. Let R be the region in the first quadrant bounded by the curves $x^2 + y^2 = 2x$ and y = 0. Let C be the boundary of the region R, oriented counterclockwise. Evaluate the line integral

$$\int_C x e^x dx + (y e^y + x^2) dy$$

6. Take $A := \begin{bmatrix} 2 & -2 \\ -2 & 5 \end{bmatrix}$. Find an orthogonal matrix P for which $P^{-1}AP$ is diagonal. Then find the minimum value of the dot products $Ax \cdot x$ as x ranges through the unit vectors in \mathbb{R}^2 .

- 7. Take $A = \{0, 1, 2, 3, 4, 5\}$. Define a relation R on A by x R y if and only if $x^2 4x = y^2 4y$.
 - a) Prove that R is an equivalence relation.
 - b) Exhibit the partition of A whose members are the equivalence classes of R.
- 8. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be continuous.
 - a) Define what it means for f to be *(totally) differentiable* at the origin.
 - b) Suppose $\frac{\partial f}{\partial x}$ is continuous at (0,0), while $\frac{\partial f}{\partial y}$ exists at (0,0). Prove that f is differentiable at (0,0).

Note: You can "buy" the answer to Part a) for 4 points. Also you can earn partial credit on Part b) by making the stronger assumption both partial derivatives are continuous at (0, 0).