Department of Mathematics PRELIMINARY EXAMINATION

August 12, 2008

9–12 am

Work all of the following problems, justifying your answers. The problems are weighted evenly.

 \mathbb{R} denotes the set of real numbers, \mathbb{N} denotes the set of positive integers, and \mathbb{Z} denotes the set of all integers.

- 1. Discuss the truth of each of the following statements.
 - a. For each integer x, there is an integer y so that x + y is odd.
 - b. There is an integer x so that x + y is odd for each integer y.
 - c. For each integer x there is an integer y so that the product xy is odd.
 - d. There is an integer x so that the product xy is even for each integer y.
- 2. Let $F: \mathbb{R} \to \mathbb{R}$ be defined by $F(x) = \int_{3}^{\sin x} \sqrt{1 + t^4} dt$. Compute the derivative F'(x) and carefully state the theorems needed to justify your answer.
- 3. For $n \in \mathbb{N}$, let $s_n = \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2}$.
 - a. Prove that $s_n \leq 2 \frac{1}{n}$ for all $n \in \mathbb{N}$.
 - b. Prove that $\{s_n\}$ is a Cauchy sequence.

4. Let $A = \begin{bmatrix} -1 & 0 & 0 \\ -2 & 3 & -2 \\ -2 & 3 & -2 \end{bmatrix}$. Prove that A is diagonalizable and use this fact to compute A^{19} .

5. Suppose U and V are subspaces of a vector space X with $U \cap V = \{0\}$. Define

$$U + V = \{x \in X : x = u + v \text{ for some } u \in U \text{ and } v \in V\}.$$

Suppose $\{u_1, \ldots, u_m\}$ is a basis for U and $\{v_1, \ldots, v_n\}$ is a basis for V. Prove that $\{u_1, \ldots, u_m, v_1, \ldots, v_n\}$ is a basis for U + V.

- 6. Suppose $f:[0,1] \to \mathbb{R}$ is a continuous function, $f(x) \ge 0$ for all $x \in [0,1]$, and f(1/2) > 0. Prove that $\int_0^1 f(x) dx > 0$. Give an example to show that the result need not hold when f fails to be continuous.
- Let S ⊂ Z be a nonempty subset that is closed under addition and additive inverse (i.e., if a, b ∈ S, then a + b ∈ S and -a ∈ S). Prove that there is an integer k so that S = {nk : n ∈ Z}. (You may use the division algorithm for Z but no fancy theorems.)
- 8. Give examples of the following. No proofs are required.
 - a. a power series whose domain of convergence is the singleton set {5}
 - b. functions $f, g : \mathbb{R} \to \mathbb{R}$, both of which are differentiable at 0 but whose composition $f \circ g$ is not differentiable at 0
 - c. a function $f: \mathbb{R}^2 \to \mathbb{R}$ that is continuous in each variable separately but is not continuous at (0,0)
 - d. a sequence $\{a_n\}$ that converges to 0, where the partial sums of the series $\sum a_n$ are bounded and yet the series diverges
 - e. a continuously differentiable vector field F(x, y) = (M(x, y), N(x, y)) defined on \mathbb{R}^2 so that $\int_C M(x, y) \, dx + N(x, y) \, dy = 4 \text{ when } C \text{ is the unit circle, oriented counterclockwise}$